Gas-Phase Acidity Computations of Silanols and Their Sulfur Analogs

Mark S. Gordon
Iowa State University, mgordon@iastate.edu

Robert Damrauer
University of Colorado Denver

Michèle Krempp
University of Colorado Denver

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs

🔗 Part of the [Chemistry Commons](http://lib.dr.iastate.edu/chem_pubs/247)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/247. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Gas-Phase Acidity Computations of Silanols and Their Sulfur Analogs

Abstract
β-Methyl and β-ethyl substitution of silanols has been reported to give small acid weakening effects in an earlier experimental study. In this study, ab initio computations have been used to assess β-methyl and β-ethyl substitution effects and have demonstrated that such effects are very small. Such results contrast with the commonly accepted acid strengthening β-alkyl substitution effects first demonstrated in alcohols.

Disciplines
Chemistry

Comments

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/chem_pubs/247
Gas-Phase Acidity Computations of Silanols and Their Sulfur Analogs

Mark S. Gordon
Department of Chemistry, Iowa State University, Ames, Iowa 50011

Robert Damrauer and Michèle Krempp
Department of Chemistry, University of Colorado at Denver, Box 173364, Denver, Colorado 80217-3364

Received: March 12, 1993; In Final Form: May 17, 1993

β-Methyl and β-ethyl substitution of silanols has been reported to give small acid weakening effects in an earlier experimental study. In this study, ab initio computations have been used to assess β-methyl and β-ethyl substitution effects and have demonstrated that such effects are very small. Such results contrast with the commonly accepted acid strengthening β-alkyl substitution effects first demonstrated in alcohols.

Introduction

We recently reported that β-methyl substitution in silanols decreases acid strength in contrast to β-methyl substitution in alcohols.1 Methylsilanol, CH₃SiH₂OH, was shown to be less acidic than SiH₂OH by 1 kcal/mol using bracketing techniques. We suggested that the attenuation of acid strength by β-methyl substitution resulted from a relatively greater contribution of inductive over polarizability effects in the silanols.1 In contrast, a recent paper by Grimm and Bartmess reported that (CH₃-C₂H₆)₂SiOH is more acidic than (CH₃)₂SiOH by 4.5 kcal/mol, a result which they suggested arose because of the dominance of polarizability effects.2 In this paper, we use ab initio computational methods to examine the effect of β-methyl and β-ethyl substitution on SiH₂OH and β-methyl substitution on SiH₂SH.

Computational Details

Ab initio calculations were carried out with the GAMESS, Gaussian 88, and Gaussian 90 programs.3,4 Molecular geometries were optimized using closed-shell restricted Hartree–Fock (RHF) self-consistent-field (SCF) calculations with a 6-31G(d)5 basis set [denoted RHF/6-31G(d)]. The geometries determined in this manner were verified to be minima by analytically calculating and then diagonalizing the matrix of energy second derivatives (Hessian). The Hessian is positive definite in all cases discussed here. A succession of increasingly sophisticated basis sets [from 6-311++G(d,p) to 6-311++G(2df,2pd)6] were used to determine the gas-phase acidities and to evaluate the convergence of the predicted energetics. The relative energies for the reaction HA → H⁺ + A⁻ were determined using these basis sets, together with full fourth-order perturbation theory (MP4).7

Results and Discussion

Gas-phase studies give an accounting of how substituents fundamentally affect reactivity, since the complications that often accompany studies in condensed phase are absent.8 It is now widely accepted that gas-phase substitution effects help provide an understanding of reactivity at a fundamental level, even though that understanding is still incomplete.5,6 Various ideas about substituent effects were originally derived from condensed-phase studies before gas-phase studies became prevalent. For example, it was generally accepted that the solution acidity of alcohols [CH₃OH > CH₃CH₂OH > (CH₂)₂CHOH > (CH₃)₂COH] was a reflection of a fundamental effect, namely, the acid weakening, electron-donating inductive effect of β-methyl substitutions.8,9 Consistent with this interpretation was the enhanced basicity of tert-butoxide over ethoxide in solution.10 Beginning in the late 1960s, however, Brauman and co-workers demonstrated clearly that β-methyl substitution effects were more complicated.11

Brauman and Blair showed that the acidity ordering given above for the alcohols in the condensed phase was reversed from that observed in the gas phase.11 They suggested that polarizability effects, which increase as β-methyl and β-ethyl substitution increases, are the dominant effects determining these alcohol acidities.

Extensive subsequent studies have resulted in a better understanding of gas-phase acidities and substituent effects.8–10 Taft has treated gas-phase substituent effects by defining substituent constants as weighted linear combinations of polarizability, resonance, and inductive contributions.8,10 An explanation of the gas-phase acidity ordering of the alcohols in terms of Taft's treatment would suggest that the polarizability effects are large, while resonance and inductive effects are comparatively small. Since polarizability effects are generally so dominant in the gas phase, we have come to expect that they always dominate gas-phase acidities when alkyl substitutions are made. It is this notion that we examine here for both silanols and silanethiols.

Silanols. The gas-phase acidities of a number of silanols were recently reported.1 These measurements were carried out using bracketing methods in a tandem selected ion flow tube flowing afterglow instrument. In particular, we determined the acid strength of a series of β-methyl-substituted silanols analogous to the alcohol series: SiH₂OH, CH₃SiH₂OH, (CH₂)₂SiHOH, and (CH₃)₂SiOH. The first of these was reported to be 1 kcal/mol more acidic than each of the others [ΔG°acid = 352 kcal/mol for SiH₂OH and 353 kcal/mol for CH₃SiH₂OH, (CH₂)₂SiHOH, and (CH₃)₂SiOH].1 In contrast, the alcohol series spans a 6 kcal/mol range. We also reported an acid strength of 352 kcal/mol for (CH₃)₂SiOH. Although β-methyl and β-ethyl substitution effects on acid strengths of these silanols are very small, such effects in other silanols are somewhat larger.1 Thus, C₆H₅SiH₂OH, C₆H₅(CH₃)(H)SiOH, and C₆H₅(CH₃)₂SiOH have ΔG°acid values of 348, 350, and 353 kcal/mol, respectively, clearly indicating that β-methyl substitution decreases acid strength in this series. Although polarizability effects outweigh inductive effects in the alcohol series, the opposite is possible in the β-methyl-substituted silanols, since polarizability effects have an r⁻³ distance dependence, while inductive effects vary as r⁻².

We have suggested that in silanols, where the Si–C and Si–O bond distances are both about 0.2 Å longer than the corresponding C–C and C–O bonds in alcohols, the acid weakening β-methyl inductive effect becomes more important than the polarizability effect because it operates with relatively greater effect with distance.1

Because bracketing experiments are limited by the number of reference acids which can be used to establish the relative acid
strength of an unknown acid, acidity determinations by equilibrium or collision-induced dissociation (CID) methods are preferred.14-16 Equilibrium methods generally fail for the silanols, however, since the simplest silanols themselves are unknown as isolable compounds. We have attempted to carry out CID experiments on the "complex" formed from H$_2$SiO and (CH$_3$-CH$_2$)SiOH with no success. The resulting CID products suggested that the "complex" was not a hydrogen-bonded one as required for this analysis.17 Rather, it appeared to be covalently bonded.

A recent paper by Grimm and Bartmess reported that (CH$_3$-CH$_2$)SiOH is a stronger gas-phase acid than (CH$_3$)$_2$SiOH by 4.5 kcal/mol.2 The acidities of (CH$_3$)$_2$SiOH and (CH$_3$-CH$_2$)SiOH were determined using equilibrium and bracketing methods, respectively. Ours1 and the Grimm and Bartmess2 study agree quite closely on the absolute value of the acidity of (CH$_3$)$_2$SiOH but disagree on the acidity of (CH$_3$-CH$_2$)SiOH. Although the experimental uncertainties in the two studies accommodate the results, there is a difference in the trends observed and their interpretation. Thus, Grimm and Bartmess indicate that an ethyl-for-methyl substitution leads to an increase in acid strength in silanols. This result is consistent with the dominance of polarizability effects in other gas-phase acids. As indicated earlier, our results suggest that polarizability effects are attenuated in silanols and that inductive effects, which are acid weakening, contribute in a relatively greater, although small, way.

Because of the questions raised by these two studies and because the CID experimental approach failed, we sought an alternative way to analyze the magnitude and direction of \(\beta \)-alkyl substitution effects. As a result, we have undertaken an \textit{ab initio} computational study of SiH$_3$OH, CH$_3$SiH$_2$OH, and CH$_3$CH$_2$SiH$_2$OH at levels of computational power which can evaluate small \(\beta \)-alkyl substitution effects. The results, which show the variation in energy with basis set for the general reaction HA \rightarrow H$^+$ + A$^-$, are summarized in Table I. At the highest level of theory used for each silanol [MP4/6-311+G(d,p) for SiH$_3$OH and MP4/6-311+G(2d,2p) for CH$_3$SiH$_2$OH], only small variations with basis set are observed. For SiH$_3$OH, there is only a 2.5 kcal/mol variation in going from the 6-311+G(d,p) to the 6-311+G(2d,2p) basis set. Similar small changes hold for CH$_3$SiH$_2$OH. Comparison of our computations on SiH$_3$OH with those of Ahrlich,18 Curtiss,19 and their co-workers shows a close correspondence. Thus, Sauer and Ahrlich18 using the coupled pair functional method with an extended basis set predict a ΔH$^\text{acid}$ = 359.3 kcal/mol at 298 K. Our value for silanol is 357.0 kcal/mol at 0 K (correction to 298 K gives 356.6 kcal/mol). Curtiss, Brand, Nicholas, and Iton18 using G2 theory obtain a corresponding ΔH$^\text{acid}$ of 356.2 kcal/mol at 0 K. All of the computations agree closely with our experimentally determined value of ΔH$^\text{acid}$ = 359 kcal/mol for SiH$_3$OH (at 298 K).1 Thus, the validity of the \textit{ab initio} computational approach for silanols is established for such high-level basis sets. The data also demonstrate that variations with \(\beta \)-alkyl substitution are small, in the range 2–3 kcal/mol. More importantly, the relative change in these energies due to a \(\beta \)-methyl substitution is almost unaffected by basis set. The effect of \(\beta \)-methyl substitution at high basis levels is shown to be small and in the direction found by our bracketing experiments. Nevertheless, we suggest only that such \(\beta \)-methyl substitution effects are small. In a similar manner, we have carried out MP4/6-311+G(d,p) level computations for CH$_3$CH$_2$SiH$_2$OH to show no effect for \(\beta \)-ethyl substitution. The similar result of this silanol to that of CH$_3$SiH$_2$OH studied at the same level of theory suggests that the effect of \(\beta \)-alkyl substitution by either methyl or ethyl is quite small. Further basis set enhancements for CH$_3$CH$_2$SiH$_2$OH would likely not alter this conclusion, since the relative acidities appear to be essentially basis set independent. All of our experimental and computational results, thus, present the consistent picture of very small \(\beta \)-alkyl substitution effects in silanols. Furthermore, these results suggest to us that the 4.5 kcal/mol acidity difference between (CH$_3$)$_2$SiOH and (CH$_3$-CH$_2$)SiOH reported by Grimm and Bartmess is inconsistent with our results, although we are unable to explain the inconsistency.

\begin{table}[h]
\centering
\caption{Calculated (MP4) Gas-Phase Acidities (kcal/mol) of Silanols and Silanethiols}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\textbf{basis set} & \multicolumn{2}{|c|}{\textbf{SiH$_3$OH}} & \multicolumn{2}{|c|}{\textbf{CH$_3$SiH$_2$OH}} & \multicolumn{2}{|c|}{\textbf{SiH$_3$SH}} & \textbf{CH$_3$SiH$_2$SH} \\
\hline
6-311++G(d,p) & 366.0 & 367.0 & 366.0 & 344.1 & 344.1 & \\
6-311++G(d,p) & 366.9 & 367.9 & 345.1 & 346.3 & & \\
6-311+G(2d,2p) & 365.5 & 365.0 & 342.3 & 343.2 & & \\
6-311+G(2df,2pd) & 364.4 & & 341.6 & & & \\
ΔG$^\text{acid}$ & 350.0a & & 329.0b & & & \\
 & 350.7c & & 351.7c & & & \\
\hline
\end{tabular}
\begin{flushright}
a ΔE is the change in energy for the process HA \rightarrow H$^+$ + A$^-$ taking place at 0 K. b Using ΔE from MP4/6-311+G(2d,2p) and adding scaled (0.89) zero-point vibrational energy corrections leads to the ΔH$^\text{acid}$ values of 357.0 and 336.0 kcal/mol for SiH$_3$OH and SiH$_3$SH (at 0 K). c These have been converted to the ΔG$^\text{acid}$ values shown using a TBS estimate of 7 kcal/mol.2 21
\end{flushright}
\end{table}

\textbf{Silanethiols.} We have also carried out computational studies of SiH$_3$SH and CH$_3$SiH$_2$SH (see Table I) to assess \(\beta \)-methyl substitution effects in these closely related compounds. The effect of a \(\beta \)-methyl substitution using the 6-311+G(2d,2p) basis set is very small. This result is in the same order and of the same magnitude as a \(\beta \)-methyl substitution of silanol. When zero-point vibrational corrections and TBS estimations are included, the predicted ΔG$^\text{acid}$ for SiH$_3$SH is 329 kcal/mol. A recent computational paper on silanethiols has appeared in which the results are obtained at far lower levels of theory than those reported herein.20

\textbf{Acknowledgment.} We thank the National Science Foundation (CHE-8911911 for M.S.G. and CHE-8921522 for R.D.), the donors of the Petroleum Research Fund, administered by the American Chemical Society (by R.D.), and the Air Force Office of Scientific Research (AFOSR 90-0052 by M.S.G.) for support of this work. The calculations were performed on the San Diego Super Computer Center’s Cray Y-MP and on and IBM RS 6000/350 provided by Iowa State University.

\textbf{References and Notes}

1. Damrauer, R.; Simon, R.; Kremp, M. J. Am. Chem. Soc. 1991, 113, 4432–4435. It is very important to understand that an acid with increased acidity means a stronger acid and that increased acidity corresponds to a smaller numerical value for ΔH$^\text{acid}$ or ΔG$^\text{acid}$. We use ΔG$^\text{acid}$ for experimental gas-phase acidities obtained under flowing afterglow conditions. Our computational studies give ΔH$^\text{acid}$. As indicated in the footnotes to Tables I and II, a standard TBS estimate of 7 kcal/mol is used to interconvert ΔH$^\text{acid}$ and ΔG$^\text{acid}$. This 7 kcal/mol correction is exactly verified by the calculations for silanol. See ref 21 for further details.

