Rapid communication: Linkage mapping of the porcine Agouti gene

K. S. Kim
Iowa State University

E. A. Mendez
Iowa State University

S. Marklund
Iowa State University

A. C. Clutter
Oklahoma State University

Daniel Pomp
University of Nebraska–Lincoln

Follow this and additional works at: http://lib.dr.iastate.edu/ans_pubs

Part of the Agriculture Commons, Animal Sciences Commons, and the Genetics and Genomics Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ans_pubs/273. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Rapid communication: Linkage mapping of the porcine Agouti gene

Abstract
Genus and Species. Sus scrofa. Locus. Porcine agouti gene. Source and Description of Primers. The forward primer was designed from pig sequence (GenBank accession no. AF018166) and the reverse primer was developed from comparing the homologous regions of mouse and bovine agouti sequences (GenBank accession no. L06451 and X99691, respectively). The primers were used to amplify approximately 1.4 kb of the porcine agouti gene fragment spanning exons 2 and 3. Sequences of the PCR fragment revealed 83% and 89% exonic identities to the corresponding human and bovine agouti nucleotide sequences, respectively. The porcine agouti sequence has been submitted to GenBank, accession no. AF133261.

Keywords
Agouti, Pigs, Gene Mapping

Disciplines
Agriculture | Animal Sciences | Genetics and Genomics

Comments
This is an article from Journal of Animal Science 78 (2000): 1395, doi:/2000.7851395x. Posted with permission.

Authors
K. S. Kim, E. A. Mendez, S. Marklund, A. C. Clutter, Daniel Pomp, and Max F. Rothschild

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/ans_pubs/273
Rapid communication: Linkage mapping of the porcine Agouti gene

K. S. Kim*, E. A. Mendez*2, S. Marklund*, A. C. Clutter†, D. Pomp‡, and M. F. Rothschild*3

*Department of Animal Science, Iowa State University, Ames 50011; †Department of Animal Science, Oklahoma State University, Stillwater, 74078; and ‡Department of Animal Science, University of Nebraska, Lincoln, NE 68583

Genus and Species. Sus scrofa.

Locus. Porcine agouti gene.

Source and Description of Primers. The forward primer was designed from pig sequence (GenBank accession no. AF018166) and the reverse primer was developed from comparing the homologous regions of mouse and bovine agouti sequences (GenBank accession no. L06451 and X99691, respectively). The primers were used to amplify approximately 1.4 kb of the porcine agouti gene fragment spanning exons 2 and 3. Sequences of the PCR fragment revealed 83% and 89% exonic identities to the corresponding human and bovine agouti nucleotide sequences, respectively. The porcine agouti sequence has been submitted to GenBank, accession no. AF133261.

Primer Sequences. Forward primer: 5′-TCA TGG TAT GCC TGT GCT TCT TC-3′; reverse primer: 5′-CTT TTC CGC TTC ATT TCT GCT-3′.

Method of Detection. The PCR reaction was performed using 12.5 ng of porcine genomic DNA, 1.5 mM MgCl2, .125 mM dNTP, 3 pmol of each primer, .35 U Taq DNA polymerase (Promega, Madison, WI), and PCR buffer (10 mM Tris-HCl, 50 mM KCl, and .1% Triton X-100) in a final volume of 10 μL. The PCR profile included 2 min at 94°C; 35 cycles of 30 s at 94°C, 1 min at 54°C, 1.5 min at 72°C; and a final 15-min extension at 72°C in a Robocycler (Stratagene, La Jolla, CA). The PCR product was digested overnight with DdeI at 37°C. The digested fragments were separated by electrophoresis on a 3% agarose gel.

Description of Polymorphism. Sequence comparison of the PCR fragments of the pooled DNA from individual pigs of several different breeds revealed an intronic nucleotide difference situated within a DdeI restriction enzyme recognition site. The DdeI digestion of the PCR product produced 149-bp (allele 1) and 111- and 38-bp (allele 2) polymorphic fragments. The monomorphic fragments were 242, 208, 177, 131, 97, 85, and 80 bp (Figure 1).

Pattern of Inheritance. Autosomal segregation following a pattern of Mendelian inheritance was observed in three families of the three-generation PiGMaP reference family (Archibald et al., 1995).

Allele Frequencies. Allele frequencies were determined by genotyping of 14 grandparental animals of the European PiGMaP families and 42 unrelated animals from several breeds in the Iowa State University herd. Allele 1 was observed with a frequency of .72 in Yorkshire (n = 9), .22 in Large White (n = 10), and .05 in Chester White (n = 9). Allele 1 was not observed in any Meishan (n = 8), Hampshire (n = 9), Duroc (n = 7), or Landrace (n = 4) pig.

Chromosomal Location. Two-point linkage analyses were performed using the genotypes of the three PiG-
MaP families and the CRI-MAP program (Green et al., 1990). The agouti gene shared significant linkage to two markers on porcine chromosome 17 (SSC17). The linked markers (LOD score and sex-averaged centi-morgan distances in parentheses) were SO292 (7.22, 0) and ENDO (6.99, 15).

Comments. The porcine agouti gene had been physically mapped to SSC17q21 and the physical location corresponds to the comparative locations of the human (HSA 20) and mouse (MMU 2) agouti genes (Kijas et al., 1998). Our linkage results agree reasonably well with the physical data. The agouti protein antagonizes the binding of certain pro-opiomelanocortins to melanocortin receptors (MCR) involved in pigmentation and obesity (Fan et al., 1997). Further sequence analyses to find polymorphisms in addition to our intronic one are underway.

Literature Cited

Green, P., K. Falls, and S. Crooks. 1990. Documentation for CRI-MAP (Version 2.4 Ed.). Washington Univ. School of Medicine, St. Louis, MO.

Key Words: Agouti, Pigs, Gene Mapping