


In the pesticide experiment, fungal treatment significantly affected both the final number of
CFUs and mortality of G.mellonella fromMetarhizium spp. (Figs 4 and 5, Table 4). Strain
DWR 346 had overall higher CFUs than strain DWR 356 (df = 98, t-value = 12.42, P< 0.0001)

Table 1. Test of independence for mortality ofGalleria mellonella byMetarhizium anisopliae s.l. or Beauveria bassiana s.l.

Year Source dfa � 2 P

2011 Practiceb 1 3.84 0.05

Cropc 1 0.47 0.49

Treatmentd 1 0.12 0.73

Practice × Crop 1 2.23 0.13

Practice × Treatment 1 0.09 0.76

Crop × Treatment 1 <0.01 0.96

Practice × Crop × Treatment 1 0.57 0.45

2012 Practice 1 0.20 0.66

Crop 1 1.95 0.16

Treatment 1 0.68 0.41

Practice × Crop 1 2.59 0.11

Practice × Treatment 1 <0.01 0.95

Crop × Treatment 1 0.57 0.45

Practice × Crop × Treatment 1 0.11 0.74

a df: degrees of freedom
b Practice: organic vs conventional
c Crop: corn vs soybean
d Treatment: arable field vs field margin

doi:10.1371/journal.pone.0133613.t001

Fig 3. Abundance of colony forming units (CFUs) ofMetarhizium anisopliae s.l. in soil. Bar heights are sample means and error bars are the standard
error of the mean.

doi:10.1371/journal.pone.0133613.g003
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and strain MA 1200 (df = 98, t-value = 5.42, P< 0.0001), and strain MA 1200 had higher
CFUs than strain DWR 356 (df = 98, t-value = 7.00, P< 0.0001). We also found that strain
DWR 356 imposed overall lower proportion mortality of G.mellonella than strain DWR 346
(df = 133, t-value = 4.93, P< 0.0001) and strain MA 1200 (df = 133, t-value = 6.83,
P< 0.0001), but no difference was detected between MA 1200 and DWR 356 (df = 133, t-
value = 1.90, P = 0.1769). However, there was no significant effect of pesticide treatment or sig-
nificant interaction between pesticide treatment and fungal treatment (Table 4), indicating the
exposure to fungicides and herbicides did not significantly reduce the number of viable conidia
or the capacity ofMetarhizium spp. to kill G.mellonella (Figs 4 and 5). Additionally, the dead
G.mellonella from the controls that were not inoculated withMetarhizium spp. did not
develop conidia ofMetarhizium spp. and none of the Petri dishes receiving soil suspensions
from these controls producedMetarhizium spp. CFUs, indicating that we did not detect any
background levels ofMetarhizium spp. in the soil we used for the experiment.

Table 2. Analysis of variance for the number of colony forming units (CFUs) ofMetarhizium anisopliae s.l. in the field study.

Year Source dfa F P

2011 Practiceb 1, 35 6.55 0.01

Cropc 1, 35 1.74 0.20

Treatmentd 1, 35 0.43 0.52

Practice × Crop 1, 35 0.08 0.78

Practice × Treatment 1, 35 0.72 0.40

Crop × Treatment 1, 35 1.92 0.17

Practice × Crop × Treatment 1, 35 0.05 0.83

2012 Practice 1, 27 0.34 0.57

Crop 1, 27 0.51 0.48

Treatment 1, 27 0.80 0.38

Practice × Crop 1, 27 0.47 0.50

Practice × Treatment 1, 27 0.09 0.77

Crop × Treatment 1, 27 0.58 0.45

Practice × Crop × Treatment 1, 27 0.19 0.67

a df: numerator degrees of freedom, denominator degrees of freedom
b Practice: organic vs conventional
c Crop: corn vs soybean
d Treatment: arable field vs field margin

doi:10.1371/journal.pone.0133613.t002

Table 3. Multiple linear regression for number of colony forming unit (CFU) ofMetarhizium anisopliae s.l. in 2011.a

Variable Slope Std. error F P

Total Nitrogen (%) -7.47744 2.87781 6.75 0.01

Tillage -1.16204 0.37193 9.76 <0.01

Conventional Field & Herbicides -0.89547 0.34473 6.75 0.01

Conventional Margin -0.86284 0.34885 6.12 0.01

Percent Silt 0.02252 0.00858 6.88 0.01

Organic Fertilizer 1.45412 0.46996 9.57 <0.01

(Intercept) 2.42664 0.57335 17.91 <0.01

aR2 = 0.23

doi:10.1371/journal.pone.0133613.t003
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Discussion
In 2011, we found that the occurrence of EPF was significantly greater in the soil of organic
agroecosystems than conventional agroecosystems. This was the case for total abundance of
Beauveria bassiana s.l. andMetarhizium anisopliae s.l. determined by baiting with Galleria
mellonella (Table 1, Fig 2) and for the abundance ofM. anisopliae s.l. measured by counting
CFUs in soil (Table 2, Fig 3). Our findings are consistent with Klingen et al. [11] who found
greater occurrence of EPF in soil of organic farms compared to conventional farms in Norway.
It is important to note that the choice of bait insect can influence the diversity of EPF recovered
from soils. For example, Klingen et al. [11] used G.mellonella to recoverMetarhizium spp. and
Beauveria spp. from soils, but also used Delia floralis (Diptera: Anthomyiidae) which recovered
the entomopathogenic fungus Tolypocladium cylindrosporum (Hypocreales: Ophiocordycipita-
ceae). Aside from EPF, other studies have observed greater abundance of natural enemies
including predatory beetles, entomopathogenic nematodes, and parasitoids within cropping
systems using organic practices [38, 39]. However, this pattern of increased entomopathogen
abundance may not be consistent across years, as indicated by our 2012 data, and by other
multi-year studies [13, 14]. It may be the case that organic soils foster a greater abundance of

Fig 4. Abundance of colony forming units (CFUs) ofMetarhizium spp. in cups of soil treated with foliar applications of fungicides (F) or herbicides
(H). Bar heights are sample means and error bars are the standard error of the mean.

doi:10.1371/journal.pone.0133613.g004
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Fig 5. Proportional mortality ofGalleria mellonella fromMetarhizium spp. in cups of soil treated with foliar applications of fungicides (F) or
herbicides (H). Bar heights are sample means and error bars are the standard error of the mean.

doi:10.1371/journal.pone.0133613.g005

Table 4. Mixedmodel analysis of variance for effect of pesticides onMetarhizium spp.

Model Effect df F P

Model #1a Fungi 2, 14 19.05 <0.01

Pesticide 4, 28 1.17 0.34

Fungi × Pesticide 8, 56 0.90 0.53

Model #2b Fungi 2, 14 14.50 <0.01

Pesticide 4, 28 1.31 0.29

Fungi × Pesticide 8, 56 1.60 0.14

a Model #1: Metarhizium spp. colony forming unit (CFU) g-1 soil
b Model #2: Mortality of Galleria mellonella larvae from Metarhizium spp.

doi:10.1371/journal.pone.0133613.t004
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soil-borne EPF, but additional research is needed to better understand the effects of organic
practices on EPF in corn and soybean fields in the Midwestern United States.

Multiple regression analysis of data from 2011 showed that several factors including physi-
cal properties of soil and some cropping practices, were significantly correlated with the abun-
dance ofM. anisopliae s.l. Silt content and use of organic fertilizers were positively correlated
with abundance ofM. anisopliae s.l. Soils with higher silt content could have greater water
retention and consequently may protect the fungal conidia from desiccation [40]. Additionally,
soils that received organic fertilizer were positively associated with abundance ofM. anisopliae
s.l. Applications of organic fertilizer are not exclusive to organic farmers and some conven-
tional farmers in our survey used them. Organic fertilizers may provide decomposed plant tis-
sues as substrates for EPF mycelium and/or increase the abundance of soil-inhabiting insects
and consequently increase the abundance of potential hosts available to EPF [11]. Meta-
analyses showed greater invertebrate abundance and evenness in organic agroecosystems
which in turn may support a greater abundance of diversity of EPF [4–6]. It is possible that our
organic fields studied in 2011 had more insect activity in the soil and thereby more EPF infec-
tions compared to the conventional fields.

In 2011, several factors also were negatively correlated with abundance ofM. anisopliae s.l.
CFUs. Consistent with the results of ANOVA (Table 2; Fig 3), both conventional field and con-
ventional margin showed significant negative effects in multiple regression analysis (Table 3).
Because all conventional fields received at least one application of herbicide, it is unclear to
what extent herbicides may have negative effects on EPF in conventional fields. Additionally,
none of the farmers, organic or conventional, used fungicides in their fields before the time of
soil sampling. The significant effect of conventional margin suggests that EPF in conventional
field boundaries may be negatively affected by practices that occur within the field, for example,
herbicide drift. de Snoo [41] observed lower abundance and lower diversity of insects inhabit-
ing field margins that were sprayed with herbicides compared to the field margins left
unsprayed. Lower numbers of insects in these reservoirs outside the field could correlate to
fewer hosts for EPF [23]. Additionally, CFU abundance decreased with soil nitrogen content
(Table 3). Due to the extreme complexity of soil environments, discerning the relationship
between nitrogen concentrations and EPF abundance is difficult. This result could be indirectly
mediated by a diversity of soil microorganisms, for example, bacteria that may exploit elevated
nitrogen concentrations and subsequently outcompete EPF propagules for substrates. Tillage
was also associated with lower abundance ofM. anisopliae s.l. Tillage may be harmful to soil
microorganisms, even in organically managed systems, because tillage can move EPF to the
soil surface thereby exposing conidia to ultraviolet radiation, high temperatures, and desicca-
tion [13, 14, 42]. Across all years of a field study, Sosa-Gomez and Moscardi [16] measured
higher titers of soil-borne EPF in no-till soybean fields compared to fields that were tilled. It
should be noted that there were other soil and field properties we did not measure, which likely
may have explained additional variation of EPF titers. We did not ask farmers about insecticide
applications and the history of insect pests in these fields. In addition, micronutrients, metallic
ions, pH and other soil properties were not quantified in our field survey.

Although many studies have found herbicides and fungicides to be inhibitory to EPF in
vitro, fewer have been able to replicate this effect in the field. Similar to Bruck [43], we found
no effect of fungicides on EPF in bulk soil (Figs 4 and 5, Table 4). Furthermore, the two herbi-
cides used in our experiment had no significant impact on EPF. Loria et al. [44] found that the
fungicides mancozeb and metiram were inhibitory to B. bassiana s.l. on agar media in the labo-
ratory, but only mancozeb negatively impacted B. bassiana s.l. abundance on potato foliage in
the field. Fewer studies have measured the negative impacts of herbicides and fungicides on
EPF in belowground systems. Based on our findings and previous studies, it would appear that
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some herbicides and fungicides do not have a significant impact onM. anisopliae s.l. in bulk
soil in the short term nor do they impact infection of some host insects [43, 45]. Future studies
should measure soil-borne EPF titers over more time and include the rhizosphere (i.e., plant-
soil interface) to better simulate field scenarios.

The fungus B. bassiana s.l. was rarely recovered from our soil samples, but it does not neces-
sarily mean that it is scarce in agroecosystems. A review by Scheepmaker and Butt [46] found
that geometric mean fungal densities of B. bassiana s.l. varied greatly by soil type and crop,
whereas geometric mean fungal titers forM. anisopliae s.l. were more cosmopolitan and greater
in density. Also,M. anisopliae s.l. is easily isolated from agricultural soils whereas B. bassiana s.
l. tends to be found in undisturbed forest habitats and semi-natural landscapes [47–49]. Rud-
een et al. [8] recovered B. bassiana s.l. in 60% of soil samples from corn fields using the same
Galleria bait method; however, samples were taken from corn root masses and it is possible
that B. bassiana s.l. prefers to reside in close proximity to plant tissue as opposed to bulk soil.
Our soil samples were taken between crop rows adjacent to crops, but plants were not
uprooted.M. anisopliae s.l. CFUs in our soil samples were in the thousands per gram of soil. By
contrast, for the few Petri dishes of selective media that produced B. bassiana s.l., densities
were ca. 150 CFUs g-1 soil, and as such, other samples with B. bassiana s.l. could have gone
undetected with the dilutions used on the selective media. Consistent with this hypothesis,
Bing and Lewis [14] found an average of only 51 to74 B. bassiana s.l. CFUs g-1 soil in Iowa
cornfields.

In contrast to data from 2011, the summer of 2012 showed no significant differences
between organic and conventional cropping systems and this may have resulted from abnor-
mally high seasonal temperatures and drought that occurred in Iowa during 2012. By the end
of July 2012, 100% of Iowa was in severe drought; by contrast, at the end of July 2011, 0% of
Iowa was in severe drought [50]. Many of the studies on EPF have concluded that environmen-
tal conditions including precipitation and temperatures can explain seasonal variations in
abundance [13, 14, 51]. For example Yaginuma [52] found that rainfall varied greatly by year
but was highly correlated (r = 0.94) with the number of apple orchard insects infected by EPF.
The warm weather during the spring of 2012 may have shortened the date of early insect activ-
ity for populations of insect pests in Iowa fields [53]. As a consequence of the earlier insect
activity in 2012, EPF titers may have been bolstered by greater numbers of invertebrate hosts
that resided in the soil before our time of sampling. In addition, the extreme drought caused
cracking of the upper 15 to 30 cm of most soils, and thus no-till fields may have suffered the
same changes to topsoil that tilled fields experienced at the time of sampling [53]. We hypothe-
size that the 2012 drought masked any soil-altering effects of farming practices that may have
explained the variation of EPF titers in 2011 when precipitation and temperatures were closer
to the historical averages.

To preserve EPF and thereby their beneficial services, data are needed on how cultural, bio-
logical and mechanical practices in cropping systems may affect EPF. For one year of the field
study, we found that factors including the particulate composition of soil, absence of tillage,
and organic fertilizers were correlated with enhanced abundance ofM. anisopliae s.l. The
severe drought in 2012 may have negated any abundance-bolstering effects of agricultural
practices like no-tillage on soil-borne EPF titers. In 2011, we found that the abundance ofM.
anisopliae s.l. in field margins was negatively affected by proximity to conventional fields, sug-
gesting that cropping practices within a field could affect soil-borne microorganisms outside of
a field. However, it is unclear if such negative effects would extend beyond the ecologically
homogenous grassy field margins evaluated in this study. To the extent that increased EPF
enhances suppression of pest insects, these data indicate that organic cropping systems will
enjoy the benefit of reduced pest abundance during some years. Furthermore, crop producers
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may be able to take advantage of ecosystem services provided by EPF through conservation
biological control by adopting practices that enhance EPF abundance, including use of organic
fertilizers and no-till agriculture. At the same time, there are some factors that cannot be
manipulated by growers, including soil composition and weather, which can greatly impact
communities of natural enemies in belowground systems. Because of the 2012 drought and the
implications of climate change, future multi-year studies should monitor communities of soil
microbiota in agroecosystems and how beneficial organisms likeMetarhizium anisopliae s.l.
may be affected by weather extremes. Considering the results of both the multiple regression
analysis and the pesticide experiment, soil-borne EPF appear to be robust to some conventional
farming practices whereas other practices, especially tillage, could have greater impacts on EPF
titers. More research will be required to quantify the benefits achieved by cultivating a higher
abundance of EPF in agricultural soils.
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