Single electrons from heavy-flavor decays in p + p collisions at root s=200 GeV

S. S. Adler
Brookhaven National Laboratory

Sergey Belikov
Iowa State University

S. Bhagavatula
Iowa State University

Paul Constantin
Iowa State University

Nathan C. Grau
Iowa State University

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/physastro_pubs

Part of the Elementary Particles and Fields and String Theory Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/physastro_pubs/350. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Physics and Astronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Physics and Astronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Abstract
The invariant differential cross section for inclusive electron production in p+p collisions at root s=200 GeV has been measured by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider over the transverse momentum range 0.4 <= p(T) <= 5.0 GeV/c in the central rapidity region (vertical bar eta vertical bar <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e., charm quarks or, at high p(T), bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy-flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined to be sigma(c (c) over bar) = 0.92 +/- 0.15(stat) +/- 0.54(syst) mb.

Disciplines
Elementary Particles and Fields and String Theory | Physics

Comments

Authors
S. S. Adler, Sergey Belikov, S. Bhagavatula, Paul Constantin, Nathan C. Grau, John C. Hill, John G. Lajoie, Alexandre Lebedev, Craig Ogilvie, Jan Rak, Marzia Rosati, F. K. Wohn, et al., and PHENIX Collaboration

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/physastro_pubs/350
Single Electrons from Heavy-Flavor Decays in $p + p$ Collisions at $\sqrt{s} = 200$ GeV

(PhENIX Collaboration)

1Abilene Christian University, Abilene, Texas 79699, USA
2Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
3Department of Physics, Banaras Hindu University, Varanasi 221005, India
4Bhabha Atomic Research Centre, Bombay 400 085, India

© 2006 The American Physical Society

0031-9007/06/96(3)/032001(6)$23.00
The invariant differential cross section for inclusive electron production in $p + p$ collisions at $\sqrt{s} = 200$ GeV has been measured by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider over the transverse momentum range $0.4 < p_T < 5.0$ GeV/c in the central rapidity region ($|\eta| < 0.55$). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e., charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy-flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined to be $\sigma_{cc} = 0.92 \pm 0.15$ (stat) ± 0.54 (syst) mb.

DOI: 10.1103/PhysRevLett.96.032001

PACS numbers: 13.85.Qk, 13.20.Fc, 13.20.He, 25.75.Dw
The production of hadrons carrying heavy quarks, i.e., charm or bottom, serves as a crucial proving ground for quantum chromodynamics (QCD), the theory of the strong interaction. Because of the large quark masses, charm and bottom production can be treated by perturbative QCD (pQCD) even at small momenta without being significantly affected by additional soft processes [1]. This is in distinct contrast to the production of particles composed solely of light quarks, which can be evaluated perturbatively only for sufficiently large momenta. Consequently, pQCD calculations of heavy quark production are expected to be reliable over the full momentum range experimentally accessible at collider energies.

For bottom production, next-to-leading order (NLO) calculations are in reasonable agreement with data [2]. Charm measurements at \(\sqrt{s} = 1.96 \) TeV exist for high transverse momentum \((p_T) \) only [3], where the cross section is higher than NLO predictions by \(\geq 50\% \). However, these discrepancies are within the substantial experimental and theoretical uncertainties [3]. At the Relativistic Heavy Ion Collider (RHIC), charm yields have been measured for \(p + p \) and \(d +Au \) collisions at \(\sqrt{s_{NN}} = 200 \) GeV [4,5] as well as for \(Au +Au \) collisions at 130 and 200 GeV [6,7]. Further measurements are crucial for a better understanding of heavy-flavor production at RHIC. In particular, the relevance of higher order processes and other production mechanisms like jet fragmentation is unclear.

We report on the central rapidity production \((|\eta| \leq 0.35) \) of inclusive electrons, \((e^+ + e^-)/2 \), in \(p + p \) collisions at \(\sqrt{s} = 200 \) GeV measured by the PHENIX experiment [8] at RHIC. Contributions from semileptonic heavy-flavor decays are extracted in the electron \(p_T \) range \(0.4 \leq p_T \leq 5.0 \) GeV/c. The resulting invariant differential cross section is an important benchmark for pQCD calculations of heavy quark production. Furthermore, it provides a crucial baseline for measurements in nuclear collisions at RHIC. Since hadronic heavy-flavor production is expected to be dominated by initial parton scattering, systematic studies in \(p + p \) and \(d + Au \) collisions should be sensitive to the nucleon parton distribution functions as well as to their nuclear modifications such as shadowing [9]. In \(Au + Au \) collisions, heavy quarks constitute a unique and, with the data presented here, calibrated probe for the hot and dense medium created in the collisions. Possible medium modification of heavy-flavor probes include energy loss [10,11], azimuthal asymmetry [12], and quarkonia suppression [13] or enhancement [14,15].

The data used here were recorded by PHENIX during RHIC Run 2. Beam-beam counters (BBCs), positioned at pseudorapidities \(3.1 < |\eta| < 3.9 \), measured the collision vertex and provided the minimum bias (MB) interaction trigger defined by at least one hit on each side of the vertex. Events containing high \(p_T \) electrons were selected by an additional level 1 trigger in coincidence with the MB trigger. This level 1 trigger required a minimum energy deposit of 0.75 GeV in a \(2 \times 2 \) tile of towers in the electromagnetic calorimeter (EMC) [16]. After a vertex cut of \(|z_{VTX}| < 20 \) cm, an equivalent of \(465 \times 10^6 \) MB events sampled by the EMC trigger was analyzed in addition to the \(15 \times 10^6 \) events recorded with the MB trigger itself.

The PHENIX east arm spectrometer \((|\eta| < 0.35, \Delta \phi = \pi/2)\) includes a drift chamber and a pad chamber layer for charged particle tracking. Tracks were confirmed by hits in the EMC matching in position with the track projection within \(3\sigma \). Electron candidates required at least two associated hits in the ring imaging Čerenkov detector (RICH) in the projected ring area. Random coincidences of hadron tracks and hits in the RICH occurred with a probability of \((3.0 \pm 1.5) \times 10^{-4}\). For electrons the energy \(E \) deposited in the EMC must be consistent with the momentum \(p \). Requiring \(|E - p|/p < 3\sigma \), a total charged hadron rejection factor of about \(10^4 \) \((10^5)\) was achieved for \(p_T = 0.4 \) \((2.0)\) GeV/c. Remaining background \(<1\%)\) was measured via event mixing and subtracted statistically.

The differential cross section for electron production was calculated as

\[
E \frac{d^3\sigma}{dp^3} = \frac{1}{\epsilon_{bias} \int Ldt 2\pi p_T \Delta y \Delta p_T A_{\text{rec}}} \frac{N_e}{1}.
\]

where \(\int L dt \) is the integrated luminosity measured with the MB trigger or sampled with the EMC trigger, respectively; \(\epsilon_{bias} \) is the probability for an electron event to fulfill the MB trigger condition; \(N_e \) is the measured electron yield; and \(A_{\text{rec}} \) is the product of geometrical acceptance and reconstruction efficiency. For the EMC triggered sample, \(\epsilon_{\text{rec}} \) includes the trigger efficiency \(\epsilon_{\text{lvl1}} \).

\[
\int L dt = N_{\text{MB}}/\sigma_{\text{BBC}},
\]

where \(N_{\text{MB}} \) is the number of MB triggers or, for the EMC triggered sample, the number of EMC triggers divided by the measured fraction of MB events which simultaneously fulfill the EMC trigger criterion. With the MB trigger cross section \(\sigma_{\text{BBC}} = 21.8 \pm 2.1 \text{ mb} \) [16], the analyzed data samples correspond to integrated luminosities of \(0.7 \text{ nb}^{-1} \) (MB trigger) and \(21 \text{ nb}^{-1} \) (EMC trigger), respectively. The \(p_T \) independent trigger bias \(\epsilon_{\text{bias}} = 0.75 \pm 0.02 \) was measured for events containing a \(p^0 \) with \(p_T > 1.5 \) GeV/c [16] and confirmed for charged hadrons with \(p_T > 0.2 \) GeV/c [17], indicating a universal bias both for hard and soft processes. \(A_{\text{rec}} \) was calculated as a function of \(p_T \) (<10% variation over the full \(p_T \) range) in a GEANT [18] simulation of electrons with flat distributions in rapidity \((|y| < 0.6) \), azimuth \((0 < \phi < 2\pi) \), and event vertex \((|z| < 30 \text{ cm}) \) as input. The simulated detector response was carefully tuned to match the real detector. Rigorous fiducial cuts were applied to eliminate active area mismatches between data and simulation as well as run-by-run variations. The trigger efficiency \(\epsilon_{\text{lvl1}} \), evaluated for single electrons in the fiducial area, rises from zero at low \(p_T \) to 95 ± 5% for \(p_T > 2 \) GeV/c. Finally, we appropriately corrected for the effect of finite bin width in \(p_T \).
The corrected electron spectra from the MB and EMC triggered samples cover \(p_T \) ranges of 0.4 < \(p_T \) < 2.0 GeV/c and 0.6 < \(p_T \) < 5.0 GeV/c, respectively. They are consistent with each other within the statistical uncertainties in the \(p_T \) region of overlap. The weighted average of both measurements is shown in Fig. 1(a).

The systematic uncertainty of the inclusive electron spectrum is about 12%, almost \(p_T \) independent, calculated as the sum in quadrature of contributions from the acceptance calculation (7%), electron identification cuts (5.2%), run-by-run variations (4%), tracking efficiency (3%), momentum scale (1–5%), and other smaller uncertainties (more details on the uncertainty estimations can be found in Ref. [19]). The value of 12% does not include the 9.6% uncertainty of the absolute normalization.

The invariant cross section of electrons from heavy-flavor decays was determined by subtracting a *cocktail* of contributions from other sources from the inclusive data. The most important background is the \(\pi^0 \) Dalitz decay which was calculated with a hadron decay generator using a parameterization of measured \(\pi^0 \) [16] and \(\pi^+ \) [20] spectra as input. The spectral shapes of other light hadrons \(h \) were obtained from the pion spectra by \(m_T \) scaling.

Within this approach the ratios \(h/\pi^0 \) are constant at high \(p_T \) and for the relative normalization we used: \(\eta/\pi^0 = 0.45 \pm 0.10 \) [21], \(\rho/\pi^0 = 1.0 \pm 0.3 \), \(\omega/\pi^0 = 1.0 \pm 0.3 \), \(\eta'/\pi^0 = 0.25 \pm 0.08 \), and \(\phi/\pi^0 = 0.40 \pm 0.12 \). Only the \(\eta \) contribution is of any practical relevance. Another major electron source is the conversion of photons, mainly from \(\pi^0 \to \gamma \gamma \) decays, in material within the acceptance. The spectra of electrons from conversions and Dalitz decays are very similar. In a Geant simulation of \(\pi^0 \) decays, the ratio of electrons from conversions to electrons from Dalitz decays was determined to be 0.73 ± 0.07, essentially \(p_T \) independent. Contributions from photon conversions from other sources were taken into account as well. In addition, electrons from kaon decays (\(K_\ell \)), determined in a Geant simulation based on measured kaon spectra [20], and electrons from external as well as internal conversions of direct photons [22,23] were considered in the cocktail. All background sources are compared with the inclusive data in Fig. 1(a) with the relative contributions shown in Fig. 1(b).

The total systematic uncertainty of the cocktail is about 12%, essentially \(p_T \) independent. This uncertainty is dominated by the systematic error of the pion parameterization (=10%). Other systematic uncertainties, mainly the \(\eta/\pi^0 \) normalization and, at high \(p_T \), the contribution from direct radiation, are much smaller.

Given the small amount of material within the acceptance (Be beam pipe: 0.29% \(X_0 \); air: 0.28% \(X_0 \)) the ratio \(R_{\text{NP}} \) of nonphotonic electrons from heavy-flavor decays to background from photon sources is large (\(R_{\text{NP}} > 1 \) for \(p_T > 1.5 \) GeV/c) as shown in Fig. 2. Two complementary analysis methods confirm the *cocktail* result:

The *converter* technique [7] compares electron spectra measured with an additional photon converter \(X_C = 1.67\%X_0 \) introduced into the acceptance to measurements without converter. The converter increases the contribution from conversions and Dalitz decays by a fixed factor, which was determined precisely via Geant simulations. Thus, the electron spectra from photon and nonphoton sources can be deduced (Fig. 2). The drawbacks of the *converter* method are the limitation in statistics of the converter run period and the fact that the photonic contribution is small at high \(p_T \).

The *e\gamma* coincidence technique evaluates the correlation of electrons and photons via their invariant mass. Electrons from \(\pi^0 \) Dalitz decays or the conversion of one of the photons from \(\pi^0 \to \gamma \gamma \) decays are correlated with a photon, in contrast to electrons from semileptonic heavy-flavor decays. Comparing the measured *e\gamma* coincidence rate with the simulated rate for single \(\pi^0 \) events allows \(R_{\text{NP}} \) to be deduced as shown in Fig. 2, once corrections for contributions from other photonic sources are applied.

After subtracting the background cocktail from the inclusive electron spectrum the invariant differential cross section of electrons from heavy-flavor decays is shown in Fig. 3 compared with two theoretical predictions. A leading order (LO) PYTHIA calculation, tuned to existing charm and bottom hadroproduction measurements [24,25], is in
reasonable agreement with the data for \(p_T < 1.5 \text{ GeV/c} \), but underestimates the cross section at higher \(p_T \). It is important to note that this calculation includes a scale factor \(K = 3.5 \) to accommodate neglected NLO contributions. A \textit{Fixed-Order plus Next-to-Leading-Log} (FONLL) pQCD calculation [26] still leaves room for further contributions beyond the included NLO processes. The predicted contribution from bottom decays is irrelevant for the electron cross section at \(p_T < 3 \text{ GeV/c} \) and becomes significant only for \(p_T > 4 \text{ GeV/c} \).

The charm production cross section was derived from the integrated electron cross section for \(p_T > p_{T,\text{low}} = 0.6(0.8) \text{ GeV/c} \) \((d\sigma_{\text{e}}^{\text{low}}/dy = 4.78(2.15) \pm 0.78(0.46) \times (\text{stat}) \pm 1.74(0.68)(\text{syst}) \times 10^{-3} \text{ mb}) \). Since in the low \(p_T \) region, which dominates the total cross section, PYTHIA describes the measured spectrum reasonably well, the total charm cross section was determined by extrapolating the properly scaled PYTHIA spectrum to \(p_T = 0 \text{ GeV/c} \). First the PYTHIA spectra for electrons from charm and bottom decays were fitted to the data for \(p_T > 0.6 \text{ GeV/c} \), with only the normalizations as free parameters. The resulting central rapidity charm production cross section was determined to be \(d\sigma_{c_\ell} / dy = 0.20 \pm 0.03(\text{stat}) \pm 0.11(\text{syst}) \text{ mb} \), where the systematic error is dominated by the uncertainty of the electron spectrum itself (\(\approx 56\% \)), evaluated by refitting PYTHIA to the data at the minimum and maximum of the \(1\sigma \) systematic error band. Additional uncertainties from the relative ratios of different charmed hadron species and their branching ratios into electrons (\(\approx 9\% \)) and the variation of the PYTHIA spectral shape (\(\approx 11\% \)) [7] were added in quadrature. The rapidity integrated cross section was determined to be \(\sigma_{c_\ell} = 0.92 \pm 0.15(\text{stat}) \pm 0.54(\text{syst}) \text{ mb} \), where various parton distribution functions [GRV98LO and MRST(cg) [27] in addition to the default CTEQ5L [25]] were used for the extrapolation, with an associated extra systematic error of \(\approx 6\% \) [7] added in quadrature.

Within errors the integrated charm cross section is compatible with data from \(\text{Au + Au} \) collisions [7] (minimum bias value: \(0.622 \pm 0.057 \pm 0.160 \text{ mb per } NN \text{ collision} \) and from \(d + \text{Au} \) collisions [4] (1.3 \pm 0.2 \pm 0.4 \text{ mb}) at the same \(\sqrt{s_{NN}} = 200 \text{ GeV} \). The FONLL cross section is smaller (\(\sigma_{\text{FONLL}}^{\text{charm}} = 0.256 \pm 0.400 \text{ mb} \)) but it is still compatible with the data. Our measurement does not allow a bottom cross section to be deduced, which is predicted by FONLL to be \(\sigma_{\text{b}}^{\text{FONLL}} = 1.87^{+0.99}_{-0.65} \mu \text{b} \).

In conclusion, we have measured single electrons from heavy-flavor decays in \(p + p \) collisions at \(\sqrt{s} = 200 \text{ GeV} \). These data provide a crucial benchmark for pQCD heavy quark calculations. We observe that above \(p_T = 2 \text{ GeV/c} \) the electron spectrum is significantly harder than predicted by a LO PYTHIA charm and bottom calculation. Contributions to the charm production cross section in excess of the considered FONLL calculation, e.g., from jet fragmentation, cannot be excluded. Similar excess at high \(p_T \) was ob-

FIG. 2 (color online). Ratio of electrons from heavy-flavor decays (nonphotonic) and other sources (photonic), \(R_{\text{NP}} \), for three independent analysis methods. Error bars (boxes) are statistical (\textit{cocktail} systematic) uncertainties.

FIG. 3 (color online). (a) Invariant differential cross section of electrons from heavy-flavor decays compared with PYTHIA LO (with \(K = 3.5 \)) and FONLL pQCD calculations. Error bars (brackets) show statistical (systematic) uncertainties. For the FONLL calculation contributions from charm, bottom and bottom cascade decays are shown separately. (b) Ratio of data and FONLL calculations with experimental statistical (error bars) and systematic (brackets) uncertainties as well as the theoretical uncertainty (shaded band). The solid line corresponds to the ratio of PYTHIA and FONLL.
served by Fermilab experiments (CDF and D0) at $\sqrt{s} = 1.96$ TeV [3]. The new data reported here provide an important baseline for the study of possible medium modification of heavy quark production at RHIC.

We thank the staff of the Collider-Accelerator and Physics Departments at BNL for their vital contributions. We acknowledge support from the Department of Energy and NSF (U.S.A.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), CNRS-IN2P3 and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE and DST (India), ISF (Israel), KRF and CHEP (Korea), RMIST, RAS, and RMAE (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, US-Hungarian NSF-OTKA-MTA, and US-Israel BSF.

*Deceased.
†Corresponding author.

Email address: zajc@nevis.columbia.edu

[18] GEANT 3.21, CERN program library.