2010

Efficacy Results of Fungicides on Soybean White Mold Control

Shrishail S. Navi
Iowa State University, ssnavi@iastate.edu

Xiao-Bing Yang
Iowa State University, xbyang@iastate.edu

Kenneth T. Pecinovsky
Iowa State University, kennethp@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports

Part of the Agricultural Science Commons, Agriculture Commons, and the Plant Pathology Commons

Recommended Citation
Navi, Shrishail S.; Yang, Xiao-Bing; and Pecinovsky, Kenneth T., "Efficacy Results of Fungicides on Soybean White Mold Control" (2010). Iowa State Research Farm Progress Reports. 390.
http://lib.dr.iastate.edu/farms_reports/390

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Efficacy Results of Fungicides on Soybean White Mold Control

Abstract
Soybean white mold has been a production problem for soybean producers since the early 1990s. Iowa’s cool, wet summer has increased the white mold risk for some growers in Iowa. Sclerotia (in the soil) germinate and produce apothecia, and apothecia produce ascospores. These spores attack soybean plants at flowering. Therefore, treatment to protect soybean has to be made before or during the flowering period, depending on chemicals used.

Keywords
RFR A9034, Plant Pathology

Disciplines
Agricultural Science | Agriculture | Plant Pathology
Efficacy Results of Fungicides on Soybean White Mold Control

RFR-A9034

Shrishail S. Navi, assistant scientist
X.B. Yang, professor
Department of Plant Pathology
Ken Pecinovsky, farm superintendent

Introduction
Soybean white mold has been a production problem for soybean producers since the early 1990s. Iowa’s cool, wet summer has increased the white mold risk for some growers in Iowa. Sclerotia (in the soil) germinate and produce apothecia, and apothecia produce ascospores. These spores attack soybean plants at flowering. Therefore, treatment to protect soybean has to be made before or during the flowering period, depending on chemicals used.

In Iowa, for the first time in the 2009 growing season, we observed wide spread of both the soybean sudden death syndrome (SDS) and white mold (WM). Sporadically, the simultaneous occurrence of SDS and WM had only been observed once in 2007 (X.B. Yang, ICM December 14, 2009). Many growers experienced the occurrence of SDS and WM (Figure 1) on the same farm, and some in the same field. This is complicating management strategies. The objective of this study was to evaluate fungicides against WM alone; since SDS was observed in the same field we considered evaluating the products against SDS as well.

Materials and Methods
The experiments were established in a randomized complete block design with three replications at the ISU Northeast Research Farm, Nashua, IA. A soybean variety (Pioneer 92M76RR) was planted (203,000 plants/acre) on May 11. Each plot consisted of 30-in. row spacing, 15 ft wide, and 35 ft long. Weeds were kept under control by spraying Roundup Weathermax at 22 oz/acre twice during the season. Plots were evaluated for infected plants, incidence, and severities of WM and SDS on August 3 and 17 and September 1 and 18, 2009. The final disease rating is given in Table 1. Plot yields were measured in bushels/acre.

Results and Summary
The results indicated that seed treatment of soybean with a bio-fungicide (BFNI) reduced both WM and SDS compared with other products tested during the season (Table 1). Also, the yield levels of BFNI treatments were on par with other products tested except the HeadsUp. Protection from white mold by seed treatment could be a result of reducing sclerotial germination of Sclerotinia sclerotiorum that were in the vicinity of seed emergence or may have been due to systemic-acquired resistance similar to HeadsUp. Fungicide seed treatment as a preventive measure can increase yields in a season when disease pressure is moderate or high. For a preliminary report on effects of foliar fungicides on soybean yield tested during 2008 growing season please refer to http://www.ag.iastate.edu/farms/08reports/Northeast/EffectofFoliar.pdf and to understand minimizing SDS and WM risk in the same field please refer to ICM newsletter December 14, 2009 http://www.extension.iastate.edu/CropNews/2009/1209yang.htm.
Table 1. Efficacy results of fungicides on soybean white mold and SDS tested during 2009 at the Northeast Research and Demonstration Farm, Nashua, IA.

<table>
<thead>
<tr>
<th>Products tested</th>
<th>Application rate</th>
<th>Application method</th>
<th>White mold (WM)</th>
<th>Sudden death syndrome (SDS)</th>
<th>Yield bu/ac</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plants/plot</td>
<td>Inc %</td>
<td>Sev %</td>
<td>Plants/Plot</td>
<td>Inc %</td>
</tr>
<tr>
<td>HeadsUp</td>
<td>1g in 1L of water</td>
<td>Seed treat</td>
<td>30.7</td>
<td>1.5</td>
<td>71.7</td>
</tr>
<tr>
<td>Topsin</td>
<td>19 fl oz/ac</td>
<td>Seed treat</td>
<td>57.0</td>
<td>2.8</td>
<td>70.0</td>
</tr>
<tr>
<td>BFNI100*</td>
<td>4 ml/kg</td>
<td>Seed treat</td>
<td>13.3</td>
<td>0.7</td>
<td>76.7</td>
</tr>
<tr>
<td>BFNI50*</td>
<td>4 ml/kg</td>
<td>Seed treat</td>
<td>16.0</td>
<td>0.8</td>
<td>61.7</td>
</tr>
<tr>
<td>Cobra</td>
<td>5 fl oz/ac</td>
<td>Spray at R3</td>
<td>53.3</td>
<td>2.5</td>
<td>70.0</td>
</tr>
<tr>
<td>Headline</td>
<td>6 fl oz/ac</td>
<td>Spray at R3</td>
<td>74.3</td>
<td>3.5</td>
<td>76.7</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>Untreated</td>
<td>76.0</td>
<td>3.6</td>
<td>91.7</td>
</tr>
</tbody>
</table>

Mean of 3 replications; * = Unregistered bio-fungicide, Plant Pathology Dept, Iowa State University

Inc = incidence, Sev = Severity; Plot size: 445 to 455 square feet. Products tested in this study during 2009 do not imply endorsement of one over another, nor did discrimination intend against any similar products tested in our studies.

Figure 1. Occurrence of white mold and sudden death syndrome of soybean in the same field during 2009 growing season.