Force fields in which centers of gravity can be defined

Roy F. Reeves
Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Mathematics Commons

Recommended Citation
Reeves, Roy F., "Force fields in which centers of gravity can be defined " (1951). Retrospective Theses and Dissertations. 12902.
https://lib.dr.iastate.edu/rtd/12902
NOTE TO USERS

This reproduction is the best copy available.

UMI®
FORCE FIELDS IN WHICH
CENTERS OF GRAVITY CAN BE DEFINED

by

Roy F. Reeves

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject: Mathematics

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major Department

Signature was redacted for privacy.

Dean of Graduate College

Iowa State College

1951
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform DP11964
Copyright 2005 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A. Notation</td>
<td>1</td>
</tr>
<tr>
<td>B. Definition of Mass and Mass Distributions in E₃</td>
<td>1</td>
</tr>
<tr>
<td>II. FIELDS OF FORCE ADMITTING OF A CENTER OF GRAVITY AS DEFINED BY ACZÉL AND FENYÖ</td>
<td>3</td>
</tr>
<tr>
<td>A. Center of Gravity as Defined by Aczél and Fenyö</td>
<td>3</td>
</tr>
<tr>
<td>B. Line Distribution of Point-masses in E₃</td>
<td>5</td>
</tr>
<tr>
<td>C. Arbitrary Distribution of Point-masses in E₃</td>
<td>24</td>
</tr>
<tr>
<td>D. Arbitrary Mass Distributions in E₃</td>
<td>31</td>
</tr>
<tr>
<td>E. Summary of Results</td>
<td>37</td>
</tr>
<tr>
<td>III. FORCE FIELDS THAT ADMIT OF A CENTER OF GRAVITY IN A SECOND SENSE</td>
<td>39</td>
</tr>
<tr>
<td>A. A Second Definition of Center of Gravity</td>
<td>39</td>
</tr>
<tr>
<td>B. Derivation of Fundamental Functional Equation</td>
<td>39</td>
</tr>
<tr>
<td>C. Point-mass Distributions in E₃</td>
<td>40</td>
</tr>
<tr>
<td>D. Arbitrary Mass Distributions in E₃</td>
<td>49</td>
</tr>
<tr>
<td>IV. SUMMARY</td>
<td>53</td>
</tr>
<tr>
<td>V. ACKNOWLEDGMENT</td>
<td>58</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

A. Notation

In this thesis Euclidean spaces of one, two, and three dimensions are considered. These are designated by \mathbb{E}_1, \mathbb{E}_2, and \mathbb{E}_3 respectively.

There is introduced in \mathbb{E}_3 an orthogonal set of unit vectors \vec{u}_1, \vec{u}_2, and \vec{u}_3 which is to serve as a basis. The location of a point is usually specified by means of the position vector which is designated by \vec{r}. As there is little occasion to change the basis, the triple (v_1, v_2, v_3) is often written in place of the notation

$$\vec{v} = \vec{u}_1 v_1 + \vec{u}_2 v_2 + \vec{u}_3 v_3$$

in designating vectors. Thus, a point \vec{r}_1 is written as (x_1, y_1, z_1) whenever it is convenient to do so.

B. Definition of Mass and Mass Distributions in \mathbb{E}_3

A point-mass, located at the point \vec{r}_1, is defined as a real, positive number $M(\vec{r}_1)$. And a point-mass distribution is defined as a real, non-negative, single valued function $M(\vec{r})$ which is zero at all but a denumerable set of isolated points. Furthermore, the sum (finite or infinite) of the functional values of $M(\vec{r})$ in a bounded region is assumed
to be finite. A point-mass is often referred to as a particle, or mass-particle.

A piece-wise continuous distribution of mass is defined in terms of a non-negative, bounded, real, single valued density function, \(D(R) \), which satisfies the following continuity condition: any bounded region can be divided into a finite number of sub-regions inside each of which \(D(R) \) is continuous.

Let \(V \) be a bounded region containing a point-mass distribution with particles at the points \(R_i \), \(i = 1, 2, 3, \ldots \), along with a piece-wise continuous mass distribution with density function \(D(R) \). The total mass in the region \(V \) is then defined to be \(M \), where

\[
M = \sum_{i=1}^{\infty} M(R_i) + \int_V D(R) dv.
\]

C. Definition of a Force Field

A force field is defined to be a vector field, \(F(R) \), such that the force acting on a point-mass \(M(R_1) \) is given by

\[
M(R_1) F(R_1),
\]

and such that the force acting on a mass that is piece-wise continuously distributed throughout a bounded region \(V \) is given by

\[
\int_V D(R) F(R) dv.
\]
II. FIELDS OF FORCE ADMITTING OF A CENTER OF GRAVITY AS DEFINED BY ACZÉL AND FENYÖ

A. Center of Gravity as Defined by Aczél and Fenyö

Messrs. Aczél and Fenyö describe a force field as one which admits of a center of gravity if, corresponding to any system of point-masses placed in the field, a point called the center of gravity exists which satisfies the following conditions.

1) The forces acting on the system have as a resultant the force which would act on a particle placed at the center of gravity, if this particle had a mass equal to the total mass of the system.

2) The mass system, if thought of as rigid, has no tendency to rotate about its center of gravity.

3) The center of gravity of two point-masses lies on the straight line joining them.

In this paper the above definition is extended to require the existence of a point satisfying conditions 1) and 2) for arbitrary mass distributions rather than for point-mass distributions only.

A mass system, which is contained entirely in a bounded region V, is now considered. If the mass system consists of particles $M(R_i)$, $i = 1, 2, 3, \ldots$, and of a piece-wise continuous mass distribution with

\footnote{Aczél, John and Fenyö, Stephen. On fields of force in which centers of gravity can be defined. Hungarica Acta Mathematica. 1, 3: 53-60. 1948. (Original article not available, reprint used.)}
density function \(D(R) \) then conditions i), and ii) require the two equations:

\[
2.1 \quad \left(\sum_{i=1}^{\infty} M(R_i) + \int_V D(R) d\nu \right) F(R_0) = \sum_{i=1}^{\infty} M(R_i) F(R_i) + \int_V D(R) F(R) d\nu,
\]

and

\[
2.2 \quad \left(\sum_{i=1}^{\infty} M(R_i) + \int_V D(R) d\nu \right) F(R_0) \times R_0
\]

\[
= \sum_{i=1}^{\infty} M(R_i) F(R_i) \times R_i + \int_V D(R) F(R) \times R d\nu.
\]

Here the symbol \(\times \) designates the vector or cross product, and \(R_0 \) designates the center of gravity.

The symbol \(F(R) \) is often written in an alternative form given by the equation

\[
F(R) = \left(F_1(R), F_2(R), F_3(R) \right).
\]

It is desired to find the most general function \(F(R) \) which satisfies the above two functional equations along with the following conditions. The first of these is that each of the functions \(F_i(R) \), \(i = 1, 2, 3 \), is real, single valued, and continuous except possibly on a finite sum of point sets of the following types: 1) an isolated point, 2) a straight line, or 3) a plane. It is further assumed that, if \(R_1 \) is a point at which \(F(R) \) is not continuous, then \(F(R) \) increases without bound as \(R \) approaches \(R_1 \) through points at which \(F(R) \) is continuous. If these conditions are met, no numerical value is assigned to \(F \) at \(R_1 \), but \(F \) is said to be infinite at \(R_1 \). The word "infinite" is used in this sense only.
Finally, it is assumed that each of the functions $F_i(U_j X)$, $i, j = 1, 2, 3$, has a unique inverse, or is a constant. It is to be observed that, along any line, $F(R)$ is either infinite at every point or is continuous with the exception of a finite number of isolated points where it is infinite.

The class of functions that is here considered is the same as that considered by Messrs. Aczél and Fenyö, though they did not state all of the above restrictions explicitly. The problem in E_3 is solved by a method similar to that used by Aczél and Fenyö to solve the problem in E_2.

Necessary restrictions on the force field will be found by considering mass-particles only, and then these conditions will be shown to be also sufficient for arbitrary mass distributions.

B. Line Distribution of Point-masses in E_3

1. Derivation of fundamental functional equations

It is supposed that $D(R) \equiv 0$, and that the resulting point-mass system consists of n particles located on the X-axis at the points $R_i = U_i X_i$, $i = 1, 2, 3 \ldots, n$. By condition iii), the center of gravity is a point on the X-axis, which is designated by $U_1 X_0$. Equations 2.1 and 2.2 now reduce to

$$2.3 \quad \sum_{i=1}^{n} M(U_1 X_i) F(U_1 X_i) = \sum_{i=1}^{n} M(U_1 X_i) F(U_1 X_0),$$

and

For that part of the proof that establishes necessary conditions on F, it is sufficient to let n be two.
6.

\[2.4 \quad \sum_{i=1}^{n} M(U_1X_1)F(U_1X_1) \times U_1X_c = \sum_{i=1}^{n} M(U_1X_1)F(U_1X_c) \times U_1X_c \]

\[= \sum_{i=1}^{n} M(U_1X_1)F(U_1X_1) \times U_1X_1. \]

If

\[F(U_1X) = (F_1(U_1X), F_2(U_1X), F_3(U_1X)) = (G_1(X), G_2(X), G_3(X)), \]

then equations 2.3 and 2.4 become

\[2.3' \quad \sum_{i=1}^{n} M(U_1X_1)G_j(X_c) = \sum_{i=1}^{n} M(U_1X_1)G_j(X_1), \quad j = 1, 2, 3, \]

and

\[2.4' \quad \sum_{i=1}^{n} M(U_1X_1)G_j(X_1)X_c = \sum_{i=1}^{n} M(U_1X_1)G_j(X_c)X_c \]

\[= \sum_{i=1}^{n} M(U_1X_1)G_j(X_1)X_1, \quad j = 2, 3. \]

2. **Two components of force assumed to be non-zero constants**

It is supposed that \(F_2(U_1X) \) and \(F_3(U_1X) \) are constants, but are not both zero. In this event, equations 2.3' with \(j = 2, \) and 3 are obviously satisfied, and from either of the equations 2.4' it is clear that

\[2.5 \quad X_c = \frac{\sum_{i=1}^{n} M(U_1X_1)X_1}{\sum_{i=1}^{n} M(U_1X_1)}. \]
Substituting this expression into 2.3', with \(j = 1 \), gives

\[
2.6 \quad G_1 \left(\frac{\sum_{i=1}^{n} M(U_1 X_i) X_i}{\sum_{i=1}^{n} M(U_1 X_i)} \right) = \frac{\sum_{i=1}^{n} M(U_1 X_i) G_1(X_i)}{\sum_{i=1}^{n} M(U_1 X_i)}.
\]

Replacing \(M(U_1 X_i) / \sum_{i=1}^{n} M(U_1 X_i) \) by \(M_j, j = 1, 2, \ldots, n \), in equation 2.6 shows that

\[
2.7 \quad G_1 \left(\sum_{i=1}^{n} M_i X_i \right) = \sum_{i=1}^{n} M_i G_1(X_i),
\]

where of course \(\sum_{i=1}^{n} M_i = 1 \). Putting \(X_i = 0 \) for \(i \neq k \), results in the

\(n \) equations

\[
2.8 \quad G_1(M_k X_k) = M_k G_1(X_k) + \sum_{i=1}^{n} M_i G_1(0), \quad k = 1, 2, \ldots, n,
\]

where the symbol ' indicates that the term of the summation that would involve \(M_k \) is left out. Substituting from 2.8 into 2.7 gives

\[
2.9 \quad G_1 \left(\sum_{i=1}^{n} M_i X_i \right) = \sum_{k=1}^{n} G_1(M_k X_k) - \sum_{k=1}^{n} \sum_{i=1}^{n} M_i G_1(0).
\]
If one subtracts

\[G_1(0) = \sum_{j=1}^{n} M_j G_1(0) \]

from both sides of 2.9, this equation becomes

\[G_1(\sum_{i=1}^{n} M_i X_i) - G_1(0) = \sum_{k=1}^{n} (G_1(M_k X_k) - G_1(0)). \]

If

\[M_k X_k = Z_k, \]

and if

\[G_1(X) - G_1(0) = S_1(X), \]

equation 2.10 takes on the form

\[S_1(\sum_{i=1}^{n} Z_i) = \sum_{i=1}^{n} S_1(Z_i). \]

By setting \(Z_k = 0, K = 1,2,\ldots,n \), one sees that \(S_1(0) = 0 \), and one has only to set \(Z_k = 0, K = 3,4,\ldots,n \), to see that

\[S_1(Z_1 + Z_2) = S_1(Z_1) + S_1(Z_2). \]

Hence \(S_1(X) \) must satisfy Cauchy's functional equation, and thus if \(S_1(X) \) is continuous on some interval it is given by the equation
2.15 \(S_1(X) = AX, \)

where \(A \) is an arbitrary constant. \(^1\) By equation 2.12 it is seen that

2.16 \(G_1(X) = AX + G_1(0) = AX + B, \)

or

2.17 \(F_1(U_1X) = AX + B. \)

Thus, under the assumption that \(F_2(U_1X) \) and \(F_3(U_1X) \) are constants, not both zero, equations 2.3 and 2.4 can have a solution, which is continuous in some interval, only if it is of the form

2.18 \(F(U_1X) = (AX + B, C, D), \)

where \(A, B, C, \) and \(D \) are constants. It is now shown by direct substitution that equation 2.18 actually satisfies equations 2.3 and 2.4.

Equation 2.3 requires

2.19 \[\sum_{i=1}^{n} M(U_1X_1)(AX_1 + B, C, D) = \sum_{i=1}^{n} M(U_1X_1)(AX_0 + B, C, D), \]

which reduces to

\[\sum_{i=1}^{n} M(U_1X_1)X_1 = \sum_{i=1}^{n} M(U_1X_1)X_0. \]

\(^1\) A proof of this well known result can be found in a book by Émile Picard. *Lecons sur quelques equations fonctionnelles.* Paris, Gauthier-Villars, 1928. p. 3.
This requires that

\[x_c = \frac{\sum_{i=1}^{n} M(U_i X_i) X_i}{\sum_{i=1}^{n} M(U_i X_i)} \]

which agrees with equation 2.5, the defining equation for \(x_c \). Now equation 2.4 requires

\[\sum_{i=1}^{n} M(U_i X_i) (AX_i + B, C, D) \times (X_i, 0, 0) \]

which becomes

\[\sum_{i=1}^{n} M(U_i X_i) \times (X_i, 0, 0) \]

It has been shown under the assumption that \(F_2(U_1 X) \) and \(F_3(U_1 X) \) are constants, not both zero, that

\[F(U_1 X) = (AX + B, C, D) \quad F_1, C_1. \]

is the only function satisfying the stated continuity conditions and satisfying equations 2.3 and 2.4 simultaneously. Furthermore, in this special case the center of gravity is given by
If $A = 0$, all the vectors $F(U_2X)$ are parallel. This case is designated by P_1. However, if $A \neq 0$, the lines through $(X,0,0)$ with the same direction as $F(U_2X)$ all pass through the point $(-\frac{E}{A}, -\frac{G}{A}, -\frac{D}{A})$. If such a point exists in a force field, then a force field is said to possess a source or center at this point, and the field is called a central field. The magnitude of F at $(X,0,0)$ is proportional to the distance from $(X,0,0)$ to the source or center. This case is designated by C_1.

3. Two components of force assumed to be identically zero

It is now assumed that $F_2(U_2X) = F_3(U_2X) = 0$. Under these conditions, equations 2.4' are obviously satisfied with no further restriction on $F(U_2X)$. However, equations 2.3' require that

$$X_c = G_1^*(\sum_{i=1}^{n} \frac{M(U_1X_i)G_1(X_i)}{\sum_{i=1}^{n} M(U_1X_i)})$$

where G_1^* is the inverse of G_1. Quite clearly, if $G_1(X)$ is continuous for all X, then X_c is uniquely defined if and only if $G_1(X)$ is strictly monotone. This case is designated by L_1. However, X_c is also uniquely defined if $G_1(X)$ is infinite at the one point X_1, provided $G_1(X)$ is strictly monotone.
in each of the two intervals $-\infty < X < \alpha$, and $\alpha < X < \infty$, and provided in addition that $G_1(X_1) \neq G_1(X_2)$ whenever $X_1 \neq X_2$. There is danger that the argument of G_1^* in the above equation will lie outside of the range of $G_1(X)$. This difficulty will be dealt with later. This case is designated by L_2.

4. **None of the components of the force are assumed to be constant**

If $F_2(U_1X)$ and $F_3(U_1X)$ are not both identically constant, equations 2.21 give

$$G_i \left(\sum_{k=1}^{n} \frac{M(U_1X_k)G_1(X_k)}{M(U_1X_k)} \right) = G_j \left(\sum_{k=1}^{n} \frac{M(U_1X_k)G_j(X_k)}{M(U_1X_k)} \right), \quad j \neq i. \tag{2.21}$$

If

$$R_{ij}(X) = G_i(G_j^*(X)), \quad i \neq j, \tag{2.22}$$

then equations 2.21 can be written in the form

$$\sum_{k=1}^{n} \frac{M(U_1X_k)G_i(X_k)}{M(U_1X_k)} = R_{ij} \left(\sum_{k=1}^{n} \frac{M(U_1X_k)G_j(X_k)}{M(U_1X_k)} \right), \quad i \neq j. \tag{2.23}$$

If one replaces $Q_j(X_j)$ by Z_k,j, and X_k by $Q_j^*(Z_k,j)$, and then uses equation 2.22, this last equation becomes

$$\sum_{k=1}^{n} \frac{M(U_kX_k)}{\sum_{k=1}^{n} M(U_kX_k)} R_{ij}(Z_k,j) = R_{ij} \left(\frac{\sum_{k=1}^{n} M(U_kX_k) Z_k,j}{\sum_{k=1}^{n} M(U_kX_k)} \right), \quad \text{i} \neq \text{j},$$

If one sets

$$\frac{M(U_iX_i)}{\sum_{k=1}^{n} M(U_kX_k)} = M_i, \quad \text{i} = 1, 2, \ldots, n,$$

equation 2.24 can be rewritten in the form

$$\sum_{k=1}^{n} M_k R_{ij}(Z_k,j) = R_{ij} \left(\sum_{k=1}^{n} M_k Z_k,j \right), \quad \text{i} \neq \text{j}.$$

These equations are of the same type as 2.7. Thus,

$$R_{ij}(Z_k,j) = A_{ij}Z_k,j + B_{ij}, \quad \text{i} \neq \text{j}.$$

But, if the definitions of R_{ij} and Z_k,j are applied, then equations 2.25 become

$$G_i(G^*_j(G_j(X)) = A_{ij}G_j(X) + B_{ij}, \quad \text{i} \neq \text{j},$$

or
2.26 \(G_i(X) = A_{ij}G_j(X) + B_{ij}, \quad i \neq j, \)

where \(A_{ij}, \) and \(B_{ij} \) are constants.

Next substituting from equations 2.4' into 2.3' gives

\[
2.27 \quad G_i \left(\frac{\sum_{k=1}^{n} M(U_{1X_k})G_1(X_k)X_k}{\sum_{k=1}^{n} M(U_{1X_k})G_1(X_k)} \right) = \frac{\sum_{k=1}^{n} M(U_{1X_k})G_1(X_k)}{\sum_{k=1}^{n} M(U_{1X_k})}, \quad i = 2,3.
\]

or

\[
2.28 \quad \frac{\sum_{k=1}^{n} M(U_{1X_k})G_1(X_k)X_k}{\sum_{k=1}^{n} M(U_{1X_k})G_1(X_k)} = G_i \left(\frac{\sum_{k=1}^{n} M(U_{1X_k})G_1(X_k)}{\sum_{k=1}^{n} M(U_{1X_k})} \right) \quad i = 2,3.
\]

After writing \(G_i(X_k) = Z_{k,i}, \quad X_k = G_i^*(Z_{k,i}) \) and multiplying the result by

\[
\frac{\sum_{k=1}^{n} M(U_{1X_k})Z_{k,i}}{\sum_{k=1}^{n} M(U_{1X_k})},
\]

one sees that

\[
2.29 \quad \frac{\sum_{k=1}^{n} M(U_{1X_k})Z_{k,i}G_i^*(Z_{k,i})}{\sum_{k=1}^{n} M(U_{1X_k})} = \frac{\sum_{k=1}^{n} M(U_{1X_k})Z_{k,i}G_i^*}{\sum_{k=1}^{n} M(U_{1X_k})} \left(\frac{\sum_{k=1}^{n} M(U_{1X_k})Z_{k,i}}{\sum_{k=1}^{n} M(U_{1X_k})} \right).
\]
Setting $Z^{*}(Z) = H_1(Z)$, and $M(U_1X_k)/ \sum_{i=1}^{n} M(U_1X_1) = M_k$ changes equations 2.29 to the form

$$2.30 \quad \sum_{k=1}^{n} M_k H_i(Z_k, 1) = H_1(\sum_{k=1}^{n} M_k Z_k, 1), \quad i = 2, 3.$$

These are also equations of the same form as 2.7 and thus they have the solutions

$$H_1(t) = A_1 t + B_1, \quad i = 2, 3.$$

After using the definitions of H_1, one sees that

$$2.31 \quad G_j(X) = \frac{B_i}{X - A_i} = \frac{1}{C_i X + D_i}, \quad i = 2, 3.$$

For $i = 3$, and $j = 2$, equation 2.26 is

$$2.32 \quad G_3(X) = A_{32} G_2(X) + B_{32},$$

which when combined with 2.31 gives

$$2.33 \quad \frac{1}{C_3 X + D_3} = \frac{A_{32}}{C_2 X + D_2} + B_{32}.$$

Equation 2.26 implies that if one of the functions $G_2(X)$ or $G_3(X)$ is not identically constant, then the other is not constant. Thus neither G_2 nor G_3 is zero, and hence equation 2.33 implies
Combining the results of equations 2.26, 2.31, and 2.34 with the definition of \(G_1 \) gives

\[
F_1(U_1 X) = \frac{A_{12}}{C_2 X + D_2} + B_{12} = \frac{S + TX}{C_2 X + D_2}
\]

\[
F_2(U_1 X) = \frac{1}{C_2 X + D_2}
\]

and

\[
F_3(U_1 X) = \frac{E}{C_2 X + D_2}
\]

It remains to be shown that the function

\[
F(U_1 X) = \left(\frac{S + TX}{C_2 X + D_2}, \frac{1}{C_2 X + D_2}, \frac{E}{C_2 X + D_2} \right)
\]

actually satisfies equations 2.3 and 2.4. This is equivalent to showing that \(G_1, G_2, \) and \(G_3 \), as defined in this case, satisfy equations 2.3', and 2.4'. First, \(G_1 \) is substituted into 2.3' with \(i = 1 \). This gives

\[
\sum_{i = 1}^{n} M(U_{i1}X_1) \left(\frac{A_{12}}{C_2 X + D_2} + B_{12} \right) = \sum_{i = 1}^{n} M(U_{i1}X_1) \left(\frac{A_{12}}{C_2 X_i + D_2} + B_{12} \right).
\]
This equation reduces to

\[\sum_{i=1}^{n} M(U_{1}X_{i}) \frac{A_{12}}{C_{2}X_{c} + D_{2}} = \sum_{i=1}^{n} M(U_{1}X_{i}) \frac{A_{12}}{C_{2}X_{1} + D_{2}}. \]

Thus, if \(G_{1} \) satisfies 2.3', so then do \(G_{2} \), and \(G_{3} \). This last equation is satisfied if and only if

\[\sum_{k=1}^{n} M(U_{1}X_{k}) \left(\prod_{i=1}^{n} \frac{(C_{2}X_{1} + D_{2})}{(C_{2}X_{k} + D_{2})} \right) = \sum_{k=1}^{n} M(U_{1}X_{k}) \left(\prod_{i=1}^{n} \frac{(C_{2}X_{1} + D_{2})}{(C_{2}X_{k} + D_{2})} \right), \]

where the symbol \(\cdot \) indicates that the term of the product that would involve \(X_{k} \) is left out. Next, \(G_{3} \) is substituted into 2.4' with \(j = 3 \). This gives

\[\sum_{i=1}^{n} M(U_{1}X_{i}) \frac{EX_{c}}{C_{2}X_{c} + D_{2}} = \sum_{i=1}^{n} M(U_{1}X_{i}) \frac{EX_{1}}{C_{2}X_{1} + D_{2}}. \]

Clearly, if this equation is satisfied by the value of \(X_{c} \) defined above, then 2.4' is also satisfied by \(G_{2} \). This last equation can be written in a different form.

\[\sum_{i=1}^{n} M(U_{1}X_{i}) \left(\frac{E}{C_{2}} \frac{D_{2}E}{C_{2}X_{c} + D_{2}} \right) = \sum_{i=1}^{n} M(U_{1}X_{i}) \left(\frac{E}{C_{2}} \frac{D_{2}E}{C_{2}X_{1} + D_{2}} \right). \]
This is equivalent to

\[\sum_{i=1}^{n} M(u_1x_i) \frac{1}{C_2x_i + D_2} = \sum_{i=1}^{n} M(u_1x_i) \frac{1}{C_2x_i + D_2}, \]

which, it has been shown, is satisfied for \(x_c \) as given by equation 2.38.

This completes the proof of the fact that, if \(F_2(u_1x) \) and \(F_3(u_1x) \) are not both identically constant, and if \(F \) satisfies the required continuity conditions along the \(x \)-axis, then

\[F(u_1x) = (\frac{S + TX}{C_2x + D_2}, \frac{1}{C_2x + D_2}, \frac{E}{C_2x + D_2}). \]

If \(T = 0 \), then \(F \) is a parallel field which is infinite at \(x = -\frac{D_2}{C_2} \).

The magnitude of \(F \) is given by

\[|F(u_1x)| = \sqrt{\frac{E^2 + S^2 + 1}{C_2x + D_2}}. \]

That is, the magnitude of the force at \((x,0,0) \) is inversely proportional to the distance from \((x,0,0) \) to any plane that contains the point \((-\frac{D_2}{C_2},0,0) \) but not the point \((x,0,0) \).

This case is designated by \(P_2 \).

If \(T \neq 0 \), \(F(u_1x) \) has a source located at \((-\frac{S}{T}, -\frac{1}{T}, -\frac{E}{T}) \), and the magnitude of \(F(u_1x) \) is given by
5. **Summary of results obtained by assuming a line distribution of particles**

It is important to realize that considering the case in which all mass-particles are along the X-axis has not restricted the results seriously, for any line in the field could have been taken as the X-axis. It was shown that if \(F \) satisfies the stated continuity conditions, and if there exists a point satisfying conditions i), ii) and iii), then one of the three following conditions holds: \(F \) is continuous everywhere, \(F \) is discontinuous at one point only, where it is infinite, or it is infinite everywhere.

In case \(F(R) \) is continuous at every point of a given line, it is of type \(C_1 \), \(P_1 \), or \(L_1 \). Otherwise \(F(R) \) is of type \(C_2 \), \(P_2 \), or \(L_2 \). The four cases \(P_1, P_2, C_1, \) and \(C_2 \) are tabulated below, and are illustrated by Figures 1, 2, 3, and 4 respectively.

\[F(U_1X) = (AX + B, C, D). \]

The source or center for this case is at the point \(\theta = (\frac{B}{A}, \frac{C}{A}, \frac{D}{A}) \).

\[F(U_1X) = \left(\frac{S + \frac{TX}{C_2X + D_2}}{C_2X + D_2}, \frac{1}{C_2X + D_2} \cdot \frac{E}{C_2X + D_2} \right). \]

The source or center in this case is at the point \(\theta = (\frac{S}{T}, \frac{1}{T}, \frac{E}{T}) \).
Figure 1.

Case F_1: A Parallel Force Field

Values of the vector function that define the force field are shown for various values of X. The equation for F in this case is

$$F(U_1 X) = (C_1, C_2, C_3).$$
Case P2: A Parallel Force Field

Values of the vector function that define the force field are shown for various values of X. The equation for F in this case is

$$F(u_1, X) = \frac{1}{C_2X + D_2} (S, 1, E)$$
Figure 3

Case C₁: A Central Force Field

Values of the vector function that define the force field are shown for various values of \(x \). The equation for \(F \) in this case is

\[
F(U_1x) = (AX + B_1, B_2, B_3)
\]
Values of the vector function that define the force field are shown for various values of X. The equation for F in this case is

$$F(U_1 X) = \frac{1}{C_2 X + D_2} (TX + S, 1, E).$$
\(F_1: \quad F(X) = (B, C, D). \)

\(F_2: \quad F(X) = (\frac{S}{C_2X + D_2}, \frac{1}{C_2X + D_2}, \frac{E}{C_2X + D_2}). \)

C. Arbitrary Distribution of Point-masses in \(E_3 \)

1. **Classification of the force fields**

 It is clear from the above results, that if there exists a force field \(F(R) \) that satisfies the stated continuity conditions, and if there exists a point satisfying condition i), ii), and iii), then on any line, on which \(F \) is not everywhere infinite, the forces are all parallel, or their directions point toward a common point called the source or center.

2. **Force fields consisting of parallel forces only**

 First, the case is considered in which the forces are all parallel on every line on which \(F \) is not infinite at each point. Thus, on such lines, the force is zero or infinite at not more than one point, for the force field on each must be of type \(P_1, P_2, L_1, \) or \(L_2. \) If two lines intersect at a point where the force is neither zero nor infinite, then the forces on these two lines are all parallel as required by the force at the common point of the two lines. Thus the force field consists only of parallel forces, since the direction of \(F \) at points where \(F \) is zero or
3. Force fields possessing a source or center

The case in which there exist lines on which the forces are finite but not all parallel is considered next. In Figure 5, e is such a line, and 0 is the assumed center for the forces on e. On e, the force field F must be of type C1, or C2, and can thus be infinite at not more than one point. Also, R1, R2, and R3 are three points on e at which F is finite but different from zero, and R is any point, different from 0, that is not on e itself. Further, it is assumed that the force at R is finite but different from zero. Now e1 is the line that passes through the points R and R1, e2 is the line that passes through the points R and R2, and e3 is the line that passes through the points R and R3. The forces at R1, R2, and R3 must have directions which point toward 0 as indicated by the arrows at these points. It is easy to see that the forces can not be parallel on as many as two of the lines e1, e2, and e3, for their directions would not agree as they must at the point R. First, it is supposed that the forces on e1 are all parallel, but that the forces on e2, and e3 possess centers. The direction of F at R2 requires the center for e2 to lie along the line through 0 and R2; the direction of F at R3 indicates that the center for e3 must lie along the line through 0 and R3; and the direction of F at R requires that the forces on these two lines have a common center. The common center, of course, is 0. Hence, it is clear that the forces along e1 are not all parallel. This is a contradiction, and thus the forces
Figure 5.

This is a diagram illustrating the case in which there are lines along which the forces are not all parallel.
along e do possess a center which, in fact, must be 0. Thus, the forces on each of the three lines possess a common center. Now 0 is any point at which \(F \) is finite but different from zero, so it has been proved that, if in \(E_3 \) there are lines along which the forces are not all parallel, then at each point \(R \) in space the direction of \(F \) is toward one fixed point, the source or center of the force field. Of course, the direction of \(F \) is defined at a point where \(F \) is zero or infinite in such a way as to be consistent with this statement.

4. **Central force fields which are everywhere finite**

It is next supposed that the field is central but that at no point in \(E_3 \) is the force infinite. Then, the force field is of type \(C_1 \) on every line that does not pass through the source 0. Along such lines the force is proportional to the distance from the center 0. The proportionality constants for two intersecting lines are the same, and thus there is just one constant for all points in \(E_3 \). Hence, in a coordinate system with 0 as the origin,

\[
F(R) = AR, \quad \text{CI.}
\]

where \(A \) is an arbitrary constant. This case is designated by CI.

5. **Central force fields which become infinite at one or more points**

Next it is assumed that the forces are central but that the field is infinite at one point \(R_1 \). Then there must be a second point \(R_2 \) at which
\(F(\mathbf{R}) \) is infinite, for otherwise the field would be finite on any line not passing through \(R_1 \). The field would then be of type CI at all points other than \(R_1 \). Such a case is contradictory, for the absolute value of \(F \) must be arbitrarily large in every neighborhood of \(R_1 \). Hence, on the line through \(R_1 \) and \(R_2 \), \(F(\mathbf{R}) \) is infinite at every point. By an argument similar to that above it is clear that there must be a third point at which the force becomes infinite. Since \(F(\mathbf{R}) \) is infinite at every point of every line that passes through \(R_3 \) and also intersects the line through \(R_1 \) and \(R_2 \), then \(F \) is infinite at every point in the plane \(P \) defined by \(R_1 \), \(R_2 \), and \(R_3 \). However, it is to be noted that, if \(F \) is assumed to be infinite at some point \(R_4 \) that is not in \(P \), then \(F \) is infinite at every point of every line which passes through \(R_4 \) but which is not parallel to \(P \). Thus, under this assumption, \(F \) is nowhere defined. This proves that \(F \) is infinite only on the plane \(P \). Let \(R \) be any point on a line which passes through \(\theta \) but which is not parallel to \(P \). Therefore, the force at \(R \) is directly proportional to the distance from \(R \) to \(\theta \), and inversely proportional to the distance from \(R \) to \(P \). The proportionality constants for two intersecting lines are the same, and hence there is just one proportionality constant for the whole space. If the \(X \)-axis is taken as that line which is perpendicular to \(P \) and passes through \(\theta \), and if the origin is taken in the plane \(P \), then

\[
F(\mathbf{R}) = B \left(\frac{X-D}{X}, \frac{Y}{X}, \frac{Z}{X} \right), \quad \text{CII.}
\]

where \(D \) is the distance from \(O \) to \(P \), and where \(B \) is an arbitrary constant. This case is designated by CII.
6. **Parallel force fields which are everywhere finite**

It is now assumed that \(F(R) \) is a parallel field, but that \(F \) is not infinite at any point in \(E_3 \). In this event, \(F(R) \) is of type \(P_1 \) on every line in \(E_3 \). The force is the same at every point of any given line and hence is the same at every point of any two intersecting lines. Thus, it is constant throughout \(E_3 \), that is

\[
F(R) = (C_1, C_2, C_3),
\]

where \(C_1, C_2, \) and \(C_3 \) are arbitrary constants. This case is designated by \(P_1 \).

7. **Parallel fields which are infinite at one or more points**

Lastly, the case is considered in which the forces are all parallel, but become infinite at one or more points. If there is just one point \(R_1 \) at which \(F(R) \) is infinite, then on any line not passing through \(R_1 \), the field is of type \(P_1 \). This is contradictory for it requires \(F(R) \) to be of type \(P_1 \) at all points other than \(R_1 \). Thus \(F(R) \) is infinite at a second point \(R_2 \), and in fact by a similar argument it is easily shown to be infinite at a third point \(R_3 \). As in case CII, it is easy to see that \(F(R) \) is infinite at every point in the plane \(P \) determined by the points \(R_1, R_2, \) and \(R_3 \), but is continuous elsewhere. On every line not parallel to \(P \), \(F(R) \) is of type \(P_2 \). This means that at any point on a given line the force is inversely proportional to the distance from the point to \(P \). Necessarily, the proportionality constant is the same for all points in
E₃ as required by the fact that it is the same for all points of a pair of intersecting lines. Hence, if the X-axis is taken perpendicular to P and the origin is taken in P, then

\[F(R) = \frac{1}{X} (D₁, D₂, D₃), \]

where \(D₁, D₂, \) and \(D₃ \) are arbitrary constants. This case is designated by PII.

8. **Summary of results obtained by considering point-mass distribution only**

At this stage, it has been shown that if a force field \(F(R) \) satisfies the stated continuity conditions, and if there exists a point satisfying conditions i), ii) and iii) for an arbitrary mass distribution, then \(F \) must be one of the following types.

\[\begin{align*}
2.47 \quad & \text{CI:} \quad F(R) = AR. \\
2.48 \quad & \text{CII:} \quad F(R) = B(\frac{X+D}{X}, \frac{Y}{X}, \frac{Z}{X}). \\
2.49 \quad & \text{PII:} \quad F(R) = (C₁, C₂, C₃). \\
2.50 \quad & \text{PIII:} \quad F(R) = \frac{1}{X} (D₁, D₂, D₃).
\end{align*} \]

It remains to be shown that these force fields actually satisfy the required conditions. It is, however, clear that they satisfy the required continuity conditions.
D. Arbitrary Mass Distributions in E_3

An arbitrary mass system, of total mass M, is now considered. This system is assumed to be contained entirely in a bounded region V, and to consist of particles of mass $M(R_i), i = 1, 2, \ldots$, as well as of piece-wise continuously distributed mass of density function $D(R)$. It is now proved by direct substitution that $F(R)$ may be of type CI, CII, PI, or PII.

First, $F(R)$ is assumed to be of type CI, that is,

\[F(R) = AR. \]

This last expression is substituted into equation 2.1 to obtain

\[\left(\sum_{i=1} M(R_i) + \int_V D(R) dv \right) AR = \sum_{i=1} M(R_i) AR + \int_V D(R) A dv, \]

or

\[MR = \sum_{i=1} M(R_i) R_i + \int_V D(R) R dv. \]

Thus equation 2.1 is satisfied if and only if

\[R = \sum_{i=1} \frac{M(R_i) R_i + \int_V D(R) R dv}{M}. \]

Next, F as given by 2.51, is substituted into 2.2. This gives
2.55 \[M_{AB_c} \times B_c = \sum_{i = 1}^{M(R_1)A R_1 \times R_1 + \int_V D(R)A R_1 \times R_1 dv.} \]

Both sides of this equation are identically zero. Thus it is seen that a force field of type CI does satisfy the stated conditions.

Secondly, it is supposed that \(F(R) \) is of type CII, that is, that

2.56 \[F(R) = B \left(\frac{X - D}{X}, \frac{Y}{X}, \frac{Z}{X} \right). \]

By substituting this last expression into equation 2.1 it is seen that

2.57 \[M_B \frac{X_c - D}{X_c} = \sum_{i = 1}^{M(B)} \frac{X_i - D}{X_i} + \int_V D(R)B \frac{X - D}{X} dv, \]

2.58 \[M_B \frac{Y_c}{X_c} = \sum_{i = 1}^{M(B)} \frac{Y_i}{X_i} + \int_V D(R)B \frac{Y}{X} dv, \]

and

2.59 \[M_B \frac{Z_c}{X_c} = \sum_{i = 1}^{M(B)} \frac{Z_i}{X_i} + \int_V D(R)B \frac{Z}{X} dv. \]

These equations are satisfied if

2.60 \[X_c = \frac{M}{\sum_{i = 1}^{M(R_1)A R_1 \times R_1 + \int_V D(R)dv} \frac{X}{X_i}}, \]
The result obtained by combining equations 2.56 and 2.2 is

\[2.63 \quad Y_c = \frac{\sum M(R_i)}{X} \frac{Y_1}{X_1} + \int_V \frac{D(R)}{X} \frac{Y}{X} \, dv, \]

and

\[2.62 \quad Z_c = \frac{\sum M(R_i)}{X} \frac{Z_1}{X_1} + \int_V \frac{D(R)}{X} \frac{Z}{X} \, dv. \]

This equation is satisfied if \(X_c \) and \(Y_c \) are chosen by equations 2.60 and 2.61. Thus, it has been shown that the force field can be of type CII if and only if such mass distributions are chosen so as to satisfy the condition

\[2.64 \quad \sum_{i=1}^{n} \frac{M(R_i)}{X_i} + \int_V \frac{D(R)}{X} \, dv \neq 0. \]

Next, it is supposed that

\[2.65 \quad \Phi(R) = (C_1, C_2, C_3). \]
This means that the force field is of type PI. Obviously equation 2.1 is satisfied by any \(R_0 \), though equation 2.2 requires
\[
\sum_{i=1}^{M(R)} \frac{M(R)}{X_i} + \int_V \frac{D(R)}{X} \text{d}v.
\]
This proves that \(F(R) \) can be of type PI.

Lastly, if \(F(R) \) is of type PII, equation 2.1 requires
\[
\frac{M}{X_c} = \sum \frac{M(R)}{X_i} + \int_V \frac{D(R)}{X} \text{d}v,
\]
or
\[
X_c = \frac{M}{\sum \frac{M(R)}{X_i} + \int_V \frac{D(R)}{X} \text{d}v},
\]
while 2.2 requires
\[
\frac{M}{X_c} \frac{Y_c}{X} = \sum \frac{M(R)}{X_i} \frac{Y_i}{X_i} + \int_V D(R) \frac{Y}{X} \text{d}v,
\]
and
\[
\frac{Z_c}{X_c} = \sum \frac{M(R)}{X_i} \frac{Z_i}{X_i} + \int_V D(R) \frac{Z}{X} \text{d}v.
\]
Thus, since \(X_c \) must be chosen by equation 2.68, \(F(R) \) can be of type PII provided \(Y_c \) and \(Z_c \) are chosen to agree with 2.61 and 2.62, and provided
that only those mass distributions are accepted which satisfy conditions 2.64.

The following theorem has now been established.

Theorem 2.1. If $F(R)$ satisfies the stated continuity conditions, a necessary and sufficient condition that there exist a point satisfying conditions i), ii) and iii) for an arbitrary mass distribution is that $F(R)$ be one of the following four types.

G I:

2.71 $F(R) = AR,$

2.72 $R_c = \frac{\sum_{i=1}^{n} M(R_i) R_i + \int_{V} D(R) dV}{M}.$

This is a central field with center at $(0,0,0)$.

G II:

2.73 $F(R) = B \left(\frac{X - D}{X}, \frac{Y}{X}, \frac{Z}{X} \right),$

2.74 $R_c = (X_c, Y_c, Z_c),$

2.75 $X_c = \frac{\sum_{i=1}^{n} \frac{M(R_i)}{X_i} + \int_{V} \frac{D(R)}{X} dV}{M}$.
This is a central field with center at \((0,0,0)\).

\[Y_c = \sum_{i=1}^{N} \frac{M(B_i) Y_i}{X_i} + \int_{V} \frac{D(R) Y}{X} \, dv \]

\[Z_c = \sum_{i=1}^{N} \frac{M(B_i) Z_i}{X_i} + \int_{V} \frac{D(R) Z}{X} \, dv \]

This is a parallel field.

\[F(R) = (C_1, C_2, C_3) \]

\[B_c = \frac{\sum M(R) R}{M} + \int_{V} \frac{D(R) R}{X} \, dv \]

In this case the center of gravity is the same as for CII, and the field is a parallel field.
E. Summary of Results

The properties of the four types of fields are summarized as follows:

PI. If \mathbf{F} is of type PI, the forces are everywhere parallel and constant.

PII. If \mathbf{F} is of type PII the forces are again parallel, but they become infinite on an entire plane P. Elsewhere the forces are proportional to the distance from the plane P. Equal forces exist on planes parallel to P. It is to be remembered that in this case, only such mass distributions as will satisfy the relation 2.64 can be allowed. This condition will be satisfied if only such mass systems are considered as lie in that portion of E_3 that lies on one side of the plane P.

CI. If, however, \mathbf{F} is of type CI, then the forces all point toward a center $\mathbf{6}$, and are in magnitude proportional to the distance from $\mathbf{6}$. Forces of equal magnitude lie on circles with center at $\mathbf{6}$.

CII. In case \mathbf{F} is of type CII, the forces all point toward a common point C called the center of the field and are infinite on an entire plane which is called P. At any point not in P the force is proportional to the distance from the point to the source and inversely proportional to the distance from the point to the plane P. Again, mass distributions must satisfy condition 2.64. This condition is clearly satisfied if only such mass distributions as lie entirely on one side of the plane P are considered. In this case the magnitude of F is constant on surfaces of revolution defined by the equation
2.81 \((X-D)^2 + Y^2 + Z^2 = kX^2 \),

where \(k \) is a constant.

It is significant to note that, in cases PI and CII, the center of gravity of a mass system stays fixed in the system under arbitrary rigid body translations and rotations. However, in cases PII and CII the center of gravity stays fixed only for special translations and rotations. In the next chapter there will be investigated force fields for which a center of gravity can be defined which stays fixed in a mass system under arbitrary rigid body motion, but which need not satisfy condition ii).
III. FORCE FIELDS THAT ADMIT OF A CENTER OF GRAVITY IN A SECOND SENSE

A. A Second Definition of Center of Gravity

In this chapter a force field is said to admit of a center of gravity if, corresponding to any mass system placed in the force field, there exists a point called the center of gravity which satisfies the following two conditions.

1) The forces acting on a system have as a resultant the force which would act on a particle placed at the center of gravity, if this particle had a mass equal to the total mass of the system.

2) The center of gravity stays fixed in the system as the system undergoes arbitrary rigid body translations and rotations.

The problem is to find the most general class of functions which is continuous in some open region of \mathbb{R}^3, and for which there exists a center of gravity satisfying conditions 1) and 2) for arbitrary mass distributions.

B. Derivation of Fundamental Functional Equation

A mass distribution consisting of point-masses $M(\mathbf{r}_i)$, $i = 1, 2, \ldots$, and of continuously distributed mass of density function $D(\mathbf{r})$ is now considered. Condition 1) requires that
40.

3.1 \[\sum_{i=1}^{n} F(R_i) + \int_{V} D(R) F(R) d\nu = \left(\sum_{i=1}^{n} M(R_i) + \int_{V} D(R) d\nu \right) F(R_c). \]

Of course \(R_c \) must not only be such as to allow this functional equation to have a solution, but must also satisfy condition 2). The nature of \(F \), along a straight line, is first investigated.

C. Point-mass Distributions in \(E_3 \)

1. Line distribution of particles

In this section it is assumed that the mass system consists of mass-particles only, and that these particles are distributed along the positive \(X \)-axis. The case in which there are just two particles of equal mass is first considered. Let these be \(M(U_1X_1) \) and \(M(U_1X_2) \). It is next shown that \(R_c \) is given by

3.2 \[R_c = U_1 \frac{X_1 + X_2}{2}. \]

To prove this, it is supposed that the center of gravity is at some other point. The mass system is then rotated so as to interchange the two mass-particles. Since the two masses are assumed equal the resulting mass system is in every way equivalent to the original with the exception of the fact that the center of gravity has been reflected through the point \(U_1 \frac{X_1 + X_2}{2} \). This completes the argument. Under these conditions,
equation 3.1 reduces to

3.3 \[M(U_1 x_1) F(U_1 x_1) + M(U_1 x_2) F(U_1 x_2) = (M(U_1 x_1) + M(U_1 x_2)) F(U_1 \frac{x_1 + x_2}{2}). \]

But, since \(M(U_1 x_1) = M(U_2 x_2) \), then

3.4 \[F(U_1 x_1) + F(U_1 x_2) = 2 F(U_1 \frac{x_1 + x_2}{2}). \]

If

3.5 \[F(U_1 X) = G(X) = (G_1(X), G_2(X), G_3(X)), \]

then equation 3.4 becomes

3.6 \[G(x_1) + G(x_2) = 2G \left(\frac{x_1 + x_2}{2} \right). \]

Setting, first \(x_1 = 0 \), and then \(x_2 = 0 \), results in the two equations

3.7 \[G(x_1) = 2G \left(\frac{x_1}{2} \right) - G(0), \quad i = 1, 2. \]

Substituting from equation 3.7 into 3.6 gives

3.8 \[2G \left(\frac{x_1}{2} \right) - 2G(0) + 2G \left(\frac{x_2}{2} \right) = 2G \left(\frac{x_1 + x_2}{2} \right). \]

Subtracting \(2G(0) \) from both sides of equation 3.8 results in the equation

3.9 \[2G \left(\frac{x_1}{2} \right) - 2G(0) + 2G \left(\frac{x_2}{2} \right) - 2G(0) = 2G \left(\frac{x_1 + x_2}{2} \right) - 2G(0). \]

Dividing by two, setting \(\frac{x_1}{2} = z_1 \), and replacing \(G(z_1) - G(0) \) by \(H(z_1) \) gives
3.10 $H(Z_1) + H(Z_2) = H(Z_1 + Z_2)$.

By taking Z_1 and Z_2 equal to zero, it is clear that

3.11 $H(0) = 0$.

If

3.12 $H(z) = (H_1(z), H_2(z), H_3(z))$,

then equation 3.10 is equivalent to

3.13 $H_1(Z_1) + H_1(Z_2) = H_1(Z_1 + Z_2), \quad i = 1, 2, 3$.

This proves that $H_i(z)$ must satisfy Cauchy's functional equation, and thus that

3.14 $H_i(z) = A_i z, \quad i = 1, 2, 3$.

or

3.15 $H(z) = (A_1, A_2, A_3)z = Az$.

That is,

3.16 $u_i(z) = A \frac{z}{2} + \overline{u}(0)$,

or

3.17 $F(u_i(x)) = Ax + B$,

where A and B are constant vectors.
At this point it has been proved that if there exists a force field defined on the X-axis which is continuous on some open interval, and for which there exists a center of gravity which satisfies conditions 1) and 2) for arbitrary mass distributions, then, along the X-axis, the field is given by

\[F(u_1x) = Ax + B. \]

Clearly, \(F \), as defined in this way, satisfies the required continuity conditions. The force \(F \), as defined by 3.18, is now substituted into equation 3.1 for a mass system consisting of particles \(M(u_1x_1) \), \(i = 1, 2, 3, \ldots \). This requires that

\[\sum_{i=1}^{n} M(u_1x_1)(Ax_1 + B) = \sum_{i=1}^{n} M(u_1x_1)(Ax_c + B). \]

Subtracting \(\sum_{i=1}^{n} M(u_1x_1)B \) from both sides of this identity gives

\[\sum_{i=1}^{n} M(u_1x_1)x_1 = \sum_{i=1}^{n} M(u_1x_1)x_c. \]

This equation is satisfied identically if the center of gravity is given by

\[x_c = \frac{\sum_{i=1}^{n} M(u_1x_1)x_1}{\sum_{i=1}^{n} M(u_1x_1)}. \]
2. *Arbitrary distribution of mass-particles*

In this section mass distributions consisting of arbitrary distributions of mass-particles are considered. However, a system consisting of two equal particles \(M(R_1)\) and \(M(R_2)\) is first studied. If \(R_c\), for this two particle system, is to satisfy condition 2) it must be

\[
R_c = \frac{R_1 + R_2}{2},
\]

for, as seen before, the mass system is left unaltered by a rotation that interchanges the two masses, while on the other hand only the point \((R_1 + R_2)/2\) remains fixed. Hence equation 3.1 becomes

\[
M(R_1)F(B_1) + M(R_2)F(B_2) = (M(R_1) + M(R_2))F(R_0^2). \tag{3.23}
\]

But \(M(R_1) = M(R_2)\) and thus equation 3.23 is equivalent to

\[
F(R_1) + F(R_2) = 2F(R_0^2). \tag{3.24}
\]

Setting first \(B_1 = 0\) and then \(B_2 = 0\) results in

\[
F(R_1) = 2F(R_0^2) - F(0), \tag{3.25}
\]

and

\[
F(R_2) = 2F(R_0^2) - F(0). \tag{3.26}
\]
The last three equations can be combined to give

\[3.27 \quad 2F\left(\frac{R1}{2}\right) + 2F\left(\frac{R2}{2}\right) - 2F(0) = 2F\left(\frac{R1 + R2}{2}\right), \]

or

\[3.28 \quad F\left(\frac{R1}{2}\right) - F(0) + F\left(\frac{R2}{2}\right) - F(0) = F\left(\frac{R1 + R2}{2}\right) - F(0). \]

Next \(\frac{R1}{2} \) is replaced by \(T_1 \) and \(F(T_1) - F(0) \) by \(H(T_1) \). Equation 3.28 then is

\[3.29 \quad H(T_1) + H(T_2) = H(T_1 + T_2). \]

This can be considered as a further generalization of Cauchy's functional equation. If \(T_1 \) and \(T_2 \) are set equal to zero then equation 3.29 becomes

\[3.30 \quad 2H(0) = H(0), \]

or

\[3.31 \quad H(0) = 0. \]

If in equation 3.29, \(T_2 \) is replaced by \(T_2 + T_3 \), then this equation becomes

\[3.32 \quad H(T_1) + H(T_2 + T_3) = H(T_1 + T_2 + T_3). \]

Using the property 3.29, this is now written
If one sets

\[H(T_k) = (H_1(T_{1k}, T_{2k}, T_{3k}), H_2(T_{1k}, T_{2k}, T_{3k}), H_3(T_{1k}, T_{2k}, T_{3k})), \]

equation 3.33 becomes

\[H_1(T_{11}, T_{21}, T_{31}) + H_1(T_{12}, T_{22}, T_{32}) + H_1(T_{13}, T_{23}, T_{33}) \]

\[= H_1(T_{11} + T_{21} + T_{31}, T_{12} + T_{22} + T_{32}, T_{13} + T_{23} + T_{33}), \quad i = 1, 2, 3. \]

Next, \(T_{jk} \) is taken equal to zero for each \(j \) and \(k \) such that \(j + k \neq 4 \),
in order to show that

\[H_1(0, 0, T_{31}) + H_1(0, T_{22}, 0) + H_1(T_{13}, 0, 0) = H_1(T_{13}, T_{22}, T_{31}). \]

Returning to equation 3.35 and setting

\[T_{21} = T_{31} = T_{22} = T_{32}, T_{13} = T_{23} = T_{33} = 0, \]
gives

\[H_1(T_{11}, 0, 0) + H_1(T_{12}, 0, 0) = H_1(T_{11} + T_{12}, 0, 0), \quad i = 1, 2, 3. \]

Setting \(T_{11} = T_{31} = T_{12} = T_{32} = T_{13} = T_{23} = T_{33} = 0 \) in equation

3.35 gives
47

3.38 \(H_i(0, T_{21}, 0) + H_i(0, T_{22}, 0) = H_i(0, T_{21} + T_{22}, 0), \quad i = 1, 2, 3. \)

Or finally, if \(T_{11} = T_{21} = T_{12} = T_{22} = T_{13} = T_{23} = T_{33} = 0, \) then

3.39 \(H_i(0, 0, T_{31}) + H_i(0, 0, T_{32}) = H_i(0, 0, T_{31} + T_{32}), \quad i = 1, 2, 3. \)

Each of the above nine functions must satisfy Cauchy's functional equation. Hence their solutions are

3.40 \(H_i(T_{1k}, 0, 0) = A_{11} T_{1k}, \quad i = 1, 2, 3, \)

3.41 \(H_i(0, T_{2k}, 0) = A_{12} T_{2k}, \quad i = 1, 2, 3, \)

and

3.42 \(H_i(0, 0, T_{3k}) = A_{13} T_{3k}, \quad i = 1, 2, 3. \)

Adding equations 3.40, 3.41 and 3.42, in turn, for \(i = 1, 2, 3, \) results in

3.43 \(H_i(T_{1k}, 0, 0) + H_i(0, T_{2k}, 0) + H_i(0, 0, T_{3k}) = A_{11} T_{1k} + A_{12} T_{2k} + A_{13} T_{3k}, \quad i = 1, 2, 3, \)

which with the help of equation 3.36 establishes the fact that

3.44 \(H_i(T_{1k}, T_{2k}, T_{3k}) = \sum_{j=1}^{3} A_{1j} T_{jk}. \)

Or, by using the definitions of \(H_i \) and \(T_{sk} \), one obtains

\[\Pi(T) = \bar{A} \cdot \bar{T}, \]

where
It is to be remembered that

\[u_i \cdot u_j = \delta_{i j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}. \]

By using the definition of H and T, one obtains

\[P(\bar{R}) = \bar{A} \cdot \bar{R} + P(0) = \bar{A} \cdot \bar{R} + \bar{B}, \]

where \bar{A} is a dyadic and \bar{B} is a vector.

It has been shown that, if conditions 1), and 2) along with the stated continuity conditions are to be satisfied for an arbitrary distribution of mass-particles, then P must be given by equation 3.47. Clearly, P, as defined in this way, satisfies the desired continuity conditions, but it remains to be shown that conditions 1), and 2) are actually satisfied.

Substituting this P into equation 3.1 for a mass system consisting of mass-particles $M(R_i)$, $i = 1, 2, \ldots$, gives

\[\sum_{i=1}^{3} M(R_i) (\bar{A} \cdot \bar{R_i} + \bar{B}) = \sum_{i=1}^{3} M(R_i) (\bar{A} \cdot \bar{R_i} + \bar{B}). \]

Subtracting $\sum_{i=1}^{3} M(R_i) \bar{B}$ from both sides of this identity, results in the
equivalent identity.

\[3.49 \quad \bar{A} \left(\sum_{i=1}^{r} M(R_i) R_i - \sum_{i=1}^{r} M(R_i) R_0 \right) = 0. \]

Thus condition 1) will be satisfied if

\[3.50 \quad R_c = \frac{\sum_{i=1}^{r} M(R_i) R_i}{\sum_{i=1}^{r} M(R_i)}. \]

It is to be observed that \(R_c \), as defined by equation 3.50, also satisfies condition 2).

The following theorem has been established.

Theorem 3.1. If \(F(\mathbf{R}) \) is continuous in some open region of \(E_3 \), then a necessary and sufficient condition that there exist a point satisfying conditions 1) and 2) for arbitrary point-mass distributions is that \(F(\mathbf{R}) \) be given by the equation

\[3.51 \quad F(\mathbf{R}) = \bar{A} \cdot \mathbf{R} + B, \]

where \(\bar{A} \) is an arbitrary constant dyadic, and \(B \) is an arbitrary constant vector. In this case the center of gravity may be taken as

\[3.52 \quad R_c = \frac{\sum_{i=1}^{r} M(R_i) R_i}{\sum_{i=1}^{r} M(R_i)}. \]

D. Arbitrary Mass Distributions in \(E_3 \)

It has been shown that if conditions 1) and 2) along with the stated
continuity conditions are to be satisfied for arbitrary mass distribution, then \(F \) must be given by equation 3.51. It is next shown that if \(F \) is given by 3.51 then these conditions are satisfied. The stated continuity conditions are clearly satisfied. Condition 1) is checked by substituting \(F(R) \) from equation 3.51 into equation 3.1, and then establishing the identity that results. This identity is

\[
3.53 \quad \sum_{i=1}^{\infty} M(B_i) (A \cdot R_i + B) + \int_V D(R)(A \cdot R + B) \, dv = \left(\sum_{i=1}^{\infty} M(B_i) + \int_V D(R) \, dv \right) (A \cdot R_c + B).
\]

This identity is equivalent to

\[
3.54 \quad A \cdot \left(\sum_{i=1}^{\infty} M(B_i) R_i + \int_V D(R) \, dv \right) = \left(\sum_{i=1}^{\infty} M(B_i) + \int_V D(R) \, dv \right) A \cdot R_c,
\]

or

\[
3.55 \quad A \cdot \left(R_c - \frac{\sum_{i=1}^{\infty} M(B_i) R_i + \int_V D(R) \, dv}{\sum_{i=1}^{\infty} M(B_i) + \int_V D(R) \, dv} \right) = 0.
\]

Thus if

\[
3.56 \quad R_c = \frac{\sum_{i=1}^{\infty} M(B_i) R_i + \int_V D(R) \, dv}{\sum_{i=1}^{\infty} M(B_i) + \int_V D(R) \, dv},
\]

then conditions 1) and 2) are satisfied for arbitrary \(\bar{A} \), \(A \), and \(B \).

This completes the proof of the following theorem.
Theorem 3.2 If \(F(R) \) is continuous in some open region of \(E_3 \), then a necessary and sufficient condition that there exist a point satisfying conditions 1) and 2) for arbitrary mass distribution is that \(F(R) \) be given by the equation

\[
F(R) = A \cdot R + B
\]

where \(A \) is an arbitrary constant dyadic, and \(B \) an arbitrary constant vector. In this case the center of gravity may be taken as

\[
R = \frac{\sum M(R_i)(R_i) + \int_V D(R)R dv}{\sum M(R_i) + \int_V D(R)dv}.
\]

If \(A \) is a scalar \(K \) times the idemfactor, then equation 3.57 takes a form

\[
F(R) = KR + B,
\]

and, if in this equation \(R \) is replaced by \(R - B/K \), then

\[
F'(R) = KR,
\]

where

\[
F'(R) = F(R - \frac{B}{K}).
\]

This shows that the force field given by 3.59 is central with source at \(-B/K\).

If \(A = 0 \), the force field is a constant parallel field. However, this is not the only parallel field that can be obtained from this rather general class of fields. In fact, if \(B \neq 0 \), then \(F(R) \) is a parallel
field, if and only if,

3.61 \[\mathbf{B} \times (\mathbf{A} \cdot \mathbf{B}) = 0. \]

As an example, this equation is satisfied for

3.62 \[\mathbf{B} = (B_1, B_2, B_3), \]

and

3.63 \[\mathbf{A} = \frac{3}{j=1} \sum_{i=1}^{3} U_i B_i. \]

On the other hand, suppose \(A_{11} = 1 \), but otherwise \(A_{ij} = 0 \), and suppose \(\mathbf{B} = U_2 \). Then

3.64 \[\mathbf{F}(\mathbf{B}) = U_1 X + U_2. \]

On the line \(Y = Z = 0 \), the forces are central, but in the plane \(X = 0 \), the forces are parallel.

Thus, it is seen that force fields which admit of a center of gravity in the sense of this chapter include parallel fields, central fields, and fields that are neither parallel nor central.
In Chapter II it was proved (by a method outlined by Aczél and Fenyö) that, if \(F \) is a force field which satisfies the stated continuity conditions, and for which there exists a center of gravity satisfying conditions i), ii), and iii), then \(F(R) \) is one of the four types:

4.1 \[F(R) = AB, \quad \text{CI}, \]

4.2 \[F(R) = B\left(\frac{X-D}{X}, \frac{Y}{X}, \frac{Z}{X}\right), \quad \text{CII}, \]

4.3 \[F(R) = (C_1 C_2 C_3), \quad \text{PI}, \]

or

4.4 \[F(R) = \frac{1}{X} (D_1, D_2, D_3), \quad \text{PII}. \]

Conversely it was proved that, if \(F \) is one of these four types, then it satisfies the stated continuity conditions and there exists a center of gravity which satisfies conditions i), ii), and iii). Of these four types, CI and PI are the only ones that satisfy conditions 1) and 2) along with the desired continuity conditions of Chapter III.

In Chapter III it was proved that, if \(F \) is a force field (continuous in some open region of \(E_3 \)) for which there exists a center of gravity satisfying conditions 1) and 2), then \(F(R) \) is of the form
and conversely. For convenience, this case is designated by \(G_1 \). If \(\mathbf{A} \) is a scalar \(A \) times the identity tensor and if the origin is translated by replacing \(\mathbf{R} \) by \(\mathbf{R} = \mathbf{R}/A \), then \(G_1 \) takes the form

\[F(\mathbf{R}) = \mathbf{A} \cdot \mathbf{R} + \mathbf{B} \]

Next, if \(\mathbf{A} = 0 \), and \(\mathbf{B} = (C_1, C_2, C_3) \), \(G_1 \) is

\[F(\mathbf{R}) = \mathbf{C} \]

This shows that \(C_1 \) and \(P_1 \) are special cases of \(G_1 \). However, it is clear that there are no other special cases of \(G_1 \) which satisfy conditions i), ii), and iii), for \(C_1 \) and \(P_1 \) are the only functions that remain bounded and still satisfy these last conditions.

A center of gravity is now defined in a third way. A force field is said to admit of a center of gravity in this third sense if, for an arbitrary mass distribution, there exists a point called the center of gravity for which the following four conditions are satisfied.

a) The forces acting on a mass system have as a resultant the force which would act on a particle placed at the center of gravity, if this particle had a mass equal to the total mass of the system.

b) The center of gravity stays fixed in a mass system as the system undergoes arbitrary rigid body translations and rotations.

c) A mass system, if thought of as rigid, has no tendency to rotate about its center of gravity.
d) The center of gravity of two point mass-particles lies on the line joining the particles.

The following theorem has been proved.

Theorem 4.1 If \(F \) satisfies the continuity conditions stated in Chapter III, then a necessary and sufficient condition that there exist a point satisfying conditions a), b), c) and d) is that \(F(R) \) be

\[
4.8 \quad F(R) = AR + B,
\]

where \(A \) is an arbitrary scalar, and \(B \) is an arbitrary vector. In this case the center of gravity is

\[
4.9 \quad R_c = \frac{\sum M(R_1)R + \int D(R)Rdv}{\sum M(R_1) + \int D(R)dv}
\]

In order to prove that the condition d) and the stringent continuity conditions of this theorem can be eliminated, a mass system consisting of two identical particles located at the points \(R_1 \) and \(2R_1 \) is now considered. As previously demonstrated, if this mass system is to satisfy condition b) above, then \(R_c \) must be given by

\[
4.10 \quad R_c = \frac{R_1 + 2R_1}{2} = \frac{3}{2} R_1.
\]

Next, \(F \) is taken as

\[
4.11 \quad F(R) = \bar{A} R + B.
\]
It is desired to find conditions on \mathbf{A} and \mathbf{B} that will allow condition c) to be satisfied. This condition requires that

\begin{equation}
(\mathbf{A} \cdot \mathbf{B}_1 + \mathbf{B}) \times \mathbf{B}_1 + (\mathbf{A} \cdot 2\mathbf{B}_1 + \mathbf{B}) \times 2\mathbf{B}_1 \equiv 2\mathbf{A} \cdot (\frac{3}{2} \mathbf{B}_1 + \mathbf{B}) \times \frac{3}{2} \mathbf{B}_1
\end{equation}

Subtracting $3\mathbf{B} \times \mathbf{B}_1$ from both sides shows that the identity 4.12 is equivalent to

\begin{equation}
(\mathbf{A} \cdot \mathbf{B}_1) \times \mathbf{B}_1 + 4(\mathbf{A} \cdot \mathbf{B}_1) \times \mathbf{B}_1 \equiv \frac{9}{2} (\mathbf{A} \cdot \mathbf{B}_1) \times \mathbf{B}_1.
\end{equation}

In turn, this is equivalent to

\begin{equation}
(\mathbf{A} \cdot \mathbf{B}_1) \times \mathbf{B}_1 \equiv 0.
\end{equation}

Hence it has been shown that, if condition c) is to be satisfied for this mass system, then

\begin{equation}
\mathbf{A} \cdot \mathbf{B}_1 = \mathbf{A} \mathbf{B}_1,
\end{equation}

where \mathbf{A} is a scalar. But if

\begin{equation}
\mathbf{F}(\mathbf{R}) = \mathbf{A} \mathbf{B}_1 + \mathbf{B},
\end{equation}

and, if

\begin{equation}
\mathbf{R}_c = \frac{\sum_{i=1}^{N} M(\mathbf{R}_i) \mathbf{B} + \int_{V} D(\mathbf{R}) \mathbf{B} d\mathbf{v}}{\sum_{i=1}^{N} M(\mathbf{R}_i) + \int_{V} D(\mathbf{R}) d\mathbf{v}},
\end{equation}

then, as shown earlier, condition c) is satisfied for arbitrary mass distributions.
This result along with Theorem 3.2 establishes the following theorem.

Theorem 4.2. If \(F(\mathbf{R}) \) is continuous in some open interval of \(E_3 \), then a necessary and sufficient condition that there exist a point which satisfies conditions a), b), and c) is that \(F(\mathbf{R}) \) be given by the equation

\[
F(\mathbf{R}) = A\mathbf{R} + \mathbf{B},
\]

where \(A \) is an arbitrary scalar and \(\mathbf{B} \) is an arbitrary vector. In this case the center of gravity may be chosen as

\[
B_c = \sum_{i=1}^{\infty} \frac{M(R_i)R_i + \int_V D(R)Rdv}{\sum_{i=1}^{\infty} M(R_i) + \int_V D(R)dv}.
\]
V. ACKNOWLEDGMENT

Grateful recognition is given to Dr. H. P. Thielman who introduced
the writer to the problem solved in this thesis, made many valuable
suggestions as the writing progressed, and gave untiringly of his time in
reading the manuscript. The writer also wishes to express his appreciation
to Dr. H. D. Block and Dr. C. E. Langenhop for their helpful suggestions
and their careful reading of the manuscript.