1951

Cloud chamber measurement of electron pairs for determination of synchrotron spectrum

Richard Hivling Stokes
Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Nuclear Commons

Recommended Citation
Stokes, Richard Hivling, "Cloud chamber measurement of electron pairs for determination of synchrotron spectrum" (1951). Retrospective Theses and Dissertations. 12976.
https://lib.dr.iastate.edu/rtd/12976

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
NOTE TO USERS

This reproduction is the best copy available.

UMI®
CLOUD CHAMBER MEASUREMENT OF ELECTRON PAIRS FOR
DETERMINATION OF SYNCHROTRON SPECTRUM

by

Richard H. Stokes

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject: Physics

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major Department

Signature was redacted for privacy.

Dean of/Graduate College

Iowa State College

1951
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A. Statement of Problem</td>
<td>1</td>
</tr>
<tr>
<td>B. Review of Literature</td>
<td>2</td>
</tr>
<tr>
<td>C. Description of Experiment</td>
<td>4</td>
</tr>
<tr>
<td>II. APPARATUS</td>
<td>6</td>
</tr>
<tr>
<td>A. Cloud Chamber</td>
<td>6</td>
</tr>
<tr>
<td>B. Magnetic Coils</td>
<td>11</td>
</tr>
<tr>
<td>C. Circuits and Collimation</td>
<td>12</td>
</tr>
<tr>
<td>III. PROCEDURE</td>
<td>18</td>
</tr>
<tr>
<td>IV. RESULTS AND CONCLUSIONS</td>
<td>23</td>
</tr>
<tr>
<td>A. Spectrum</td>
<td>23</td>
</tr>
<tr>
<td>B. Energy and Quantum Flux</td>
<td>27</td>
</tr>
<tr>
<td>V. LITERATURE CITED</td>
<td>30</td>
</tr>
<tr>
<td>VI. ACKNOWLEDGMENTS</td>
<td>31</td>
</tr>
<tr>
<td>VII. APPENDIX</td>
<td>32</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

A. Statement of Problem

Since 1941, the development of the betatron and synchrotron accelerators have made possible studies of the interaction of nuclei with high energy x-radiation. In these accelerators the electron beam usually is intercepted by a target of high atomic number to produce a continuous x-ray or bremsstrahlung spectrum which is the useful output of the machine. To interpret most experiments in which these electron accelerators are used, it is necessary to know the distribution in energy of the quanta and to have a measure of the number of quanta in a given energy interval so that absolute determinations of the cross section for nuclear processes can be made. Aside from these considerations, the fundamental process of decelerating electrons to produce continuous x-radiation is of interest. The target conditions under which betatrons and synchrotrons usually operate are those giving greatest x-ray output and these are somewhat incompatible with the situation in which a direct comparison with the theory is possible. Some comparison with the theoretical results can be made, however.

Early in 1950, the Iowa State College synchrotron was
operating successfully at energies up to 70 Mev. A cloud
chamber system which had been under construction for some
time was being completed and it was thought that a cloud
chamber study of the synchrotron x-ray spectrum could be made.
It was expected that the process of electron pair production
could be observed in the cloud chamber under rather ideal
conditions, which would allow the theory of pair production
to be used directly in deducing the x-ray energy spectrum
from a measurement of the energy distribution of electron
pairs. Two recent experimental investigations of the pair
production process at high energies were used as a guide to
the reliability of the theory under various conditions.

B. Review of Literature

The bremsstrahlung process has been described theoretically
by Bethe and Heitler (1) and the results are given by Heitler
(2) and by Rossi and Greisen (3). These calculations make use
of the Born approximation, which is valid for light elements
and relativistic energies, and use the Thomas-Fermi atomic
model to describe the screening of the nucleus by the
electronic charge distribution. The spectra predicted by the
Bethe-Heitler theory for thin targets are presented in the form
of curves with the product of cross section and quantum energy
plotted against the quantum energy. These values have been
integrated over the angles of both the decelerated electron
and the outgoing quantum. Calculations have also been made by Parzen (4) and by Bess (5) without use of the Born approximation. In general, where comparisons are possible, these give nearly the same result for the cross section, but indicate differences in the angular distribution of the quanta. Koch and Carter (6) have measured the bremsstrahlung spectrum of a 19.5 Mev. betatron by observing pairs produced in a cloud chamber filled with air. At this low energy, rather large corrections must be made to compensate for the energy discrimination of the cloud chamber system. Their results indicate some disagreement in their mid-energy region.

Powell, Hartsough and Hill (7) have recently measured the spectrum of the Berkeley 322 Mev. synchrotron. Using a cloud chamber to observe pairs produced in a lead foil .001 inch thick, they obtained results agreeing with the Bethe-Heitler theory.

Calculations on the process of electron pair production also have been made in the paper of Bethe and Heitler (1) and a survey of results is given in Heitler (2) and in Rossi and Greisen (3). The Born approximation is used and, where necessary, the Thomas-Fermi atomic model is used to describe the screening. Total cross section as a function of quantum energy is calculated and presented in graphical form. In the low energy range, experimental investigations (8) have indicated good agreement. The total cross section for various elements
has been measured by Walker (9) at 17.6 Mev. and by Lawson (10) at 88 Mev. Both of these investigations indicate good agreement with the theory at low atomic numbers, but differences up to 15% are found in heavy elements. Due to the use of the Born approximation in the theory, such errors are expected and are clearly shown by the experiments.

C. Description of Experiment

The experiment that seemed best in the light of the above considerations was as follows: A single pulse of synchrotron x-radiation was passed through a magnetic cloud chamber immediately following the chamber expansion. Electron pairs formed in the gas of the chamber were photographed and, from curvature measurements on each member of the pair, the quantum energy was determined. The tracks formed under these conditions are not distorted by the expansion, nor is there appreciable diffusion of the ion tracks before vapor is condensed upon them. Thus a sharp, distortion-free track is recorded, from which a reliable value of curvature may be obtained. Air was used as the non-condensible gas in the chamber and as the target for producing pairs. Having a low atomic number target permits direct use of the cross section for pair production, and in the energy range of interest allows the screening to be almost entirely neglected. Thus, any
which would have resulted in an undesirable effect.

Moreover, without the necessity of respecting some tracks,

the minimum percentage error of bubble measurement could be

of a sufficient length of track in all cases so that a repetition

portion of the chamber measurement, thus allowed observation

normal to the measurement track, even with a relatively shallow

breake of the echoes and positions key nearer in a plane

forward-directed orthogonal of the patents, most of the

due to the high energy range and the consequent shorting

have a greater yield of patents per expression of the chamber.

Moreover, these made identification of patents difficult. This

what higher X-ray pulse intensity was usable before over-

- exegesis, since the target was distributed in space, a some-

able and avoids the effects of turbulence present near total-

- Gas tertes has the advantage of making patents easily detec-

errors due to the Thomas-Fermi model are minimized. Also, a
II. APPARATUS

A. Cloud Chamber

The cloud chamber system is shown in Figures 1, 2 and 3. A region 9 inches in diameter and 1 inch high is illuminated and is useful for observing tracks. Accurately regulated air pressure is used to compress the chamber to between 2 and 3 pounds per square inch above atmospheric pressure. The expansion is effected by opening a large capacity valve which rapidly reduces the volume to atmospheric pressure. The actuating air enters the lowest section of the chamber below a rubber diaphragm which is deflected somewhat upward when the chamber is in the compressed condition. Line air pressure is used and is regulated by two stages of pressure reducers, the one nearest the chamber being a special low pressure Hoke reducer, modified for the present application. Expansion of the chamber causes the air in the illuminated section to pass through a black velvet covering and the chamber floor, which consists of a three-eighth inch thick brass perforated plate. The plate and the black velvet act as a high impedance isolating the lower turbulent section from the upper section which must be as free from turbulence as possible. The release valve is
Fig. 2. Cloud Chamber System.
Fig. 3. Cloud Chamber.
of the self sealing type, using the unbalanced area principle to make the sealing force proportional to the pressure. A solenoid is used to trip the valve which is automatically reset after expansion. Tests have shown that there is a constant delay of about one-fiftieth of a second between the electrical impulse to the solenoid and the time that the valve is fully open.

Ions are swept from the upper section of the chamber by an electric field of 70 volts per cm. applied between expansions. A circular piece of Nesa conducting glass forms the top of the chamber, and the clearing field is produced by an 1100 volt potential between this glass and the chamber floor.

Illumination of the chamber is provided by a General Electric FT-422 flashtube having an 18 inch lighted length. This tube is at the focus of a parabolic cylindrical reflector having an attached collimator. A 10 kilovolt pulse from a transformer initiates the flashtube, discharging a 200 microfarad capacitor charged to 2000 volts. An inductance in series with the discharge circuit was used to lengthen the light flash, avoiding difficulties from the failure of the photographic reciprocity law at short time intervals.

Tracks were recorded with a 35 mm. automatic camera having an f/3.5 lens. The camera was built around a University of Illinois design which allowed each frame to be clamped accurately in a reproducible position. A three-dimensional
description of the tracks was obtained by using a commercial stereoscopic attachment on the camera lens. To obtain curvature measurements, the tracks were projected through the optical system of the camera used to record them. A translucent screen arrangement similar to one used by Brueckner et al (11) allows the curvatures to be measured.

B. Magnetic Coils

A magnetic field was produced in the cloud chamber by a pair of coils similar to the Helmholtz type. The mean radius of the coils was 30 cm., and the cross section of the windings was 14.25 cm., radially, by 15.25 cm., axially. These are approximately in the ratio of the square root of 31 over 36, a uniformity condition suggested by the field expansions of Ruark and Peters (12). Ference, Shaw and Stephenson (13) have shown that a separation between coils less than that given by the Helmholtz condition is useful in producing a field of great uniformity over a considerable volume. With the measurements of Ference as a guide, calculations were made using the expansions of Ruark. These showed that a 5% reduction of the separation was best for uniformity over the useful volume of the cloud chamber. The calculated field was uniform to one-half per cent over this volume and had a constant of 16.95 gauss per ampere. Fluxmeter measurements confirmed the calculations excellently, both as to magnitude and
uniformity. A 60 kilowatt D.C. generator produced a field of 2500 gauss with a current of 150 amperes. The field of the generator was connected to an amplitidyne which in turn was energized by a small relay and battery.

Figure 4 shows the method of constructing the magnetic coils and Figure 5 shows a coil after the winding operation was completed. Each coil was constructed of 550 turns of 0.25 inch diameter, 0.065 inch wall, copper tubing. The tubing had glass fiber insulation bonded with silicone varnish and was wound on brass coil forms. Silicone varnish was applied between successive layers and the varnish was cured after the winding was completed by constructing a brick furnace around each coil and passing current through the conductors. The windings were thus bonded into a solid mass, preventing movement due to magnetic forces. The elimination of all organic insulation in the coils enables them to be operated at high current values in spite of the higher temperatures involved. Cooling of the coils was done by passing soft water at 500 pounds per square inch through the hollow conductors in 12 parallel paths. The paths were electrically separated by rubber hose sections.

C. Circuits and Collimation

The control system of the cloud chamber is shown in block diagram form in Figure 6 and in detail in Figure 7. One
Fig. 5. Magnetic Coil.
Fig. 6. Cloud Chamber Control Circuit — Block Diagram
Fig. 7. Cloud Chamber Control Circuit.
of the main problems was that of synchronizing the cloud
chamber expansion with the pulse of x-radiation from the
synchrotron. As shown in the block diagram, after the mag-
etic field had been turned on, the cloud chamber interrogates
the synchrotron and receives an answer in the form of a pulse
that is in phase with the time of the x-radiation. This
pulse, after delays in both the synchrotron and the cloud
chamber circuits, enabled the chamber to be just expanded
when the x-ray pulse occurs. The quality of the data is very
sensitive to this timing and the delays must be reproducible.
Delays in non-critical points in the circuit were produced by
simple arrangements similar to those described by Getting (14),
using OA4 gas triodes and relays.

To eliminate difficulties with a high background of pair
electrons, a collimated beam of radiation was allowed to
enter the chamber through a thin window of low atomic number.
The collimator was a stack of lead bricks 18 inches thick
with a five-eighth inch diameter hole. The collimator was
110 inches from the synchrotron target and the beam entered
the chamber at 170 inches through a .005 inch beryllium
window. No exit window was used and no electrons were observed
where the beam left the chamber through the three-eighths
inch thick glass wall.
III. PROCEDURE

Figure 8 is a photograph of the experimental arrangement, showing the cloud chamber with the collimator and the synchrotron in the background. A mixture of two parts ethyl alcohol and one part water was introduced into the chamber to provide the condensable vapor. Data were taken over a period of one month during which about 4,000 photographs were obtained. A typical pair having an 18.6 Mev. total energy is shown in Figure 9. The synchrotron beam pulse intensity was reduced by a factor of 50 to 100 from its peak value and was monitored by an ionization chamber. Since only a single pulse of radiation was used, the ballistic deflection of the ionization chamber monitor was observed. Some difficulty was experienced in the interaction of the cloud chamber magnetic field with the synchrotron. With the synchrotron operating, turning on the cloud chamber field reduced the x-ray beam intensity by an amount dependent upon the exact tuning conditions of the synchrotron. By first tuning with the cloud chamber field off, it was found that a single adjustment of the synchrotron compensation coils would counteract completely the effect of turning the field on. For monitoring that part of the data used to determine the number of quanta, a Victoreen thimble ionization chamber in a one-eighth inch thick lead
Fig. 8. Experimental Arrangement.
Fig. 9. Electron-Positron Pair.
cylinder with closed end was used. Since the Victoreen chamber measures only large dosages of radiation, it was exposed to the machine when operating continuously. The ionization chamber monitor was used, over a portion of its range known to be linear, to determine the ratio between the x-ray beam intensity at the high level of continuous operation and the low level beam intensity used to produce pairs in the cloud chamber.

Some difficulty was experienced with temperature drifts due either to changes in room temperature or to slight heating of the magnetic coils. Since the chamber must operate without visual monitoring when the x-ray beam is on, the changes in proper expansion ratio with thermal drifts were somewhat troublesome. Usually data could be obtained over intervals of 40 to 50 minutes, before it was necessary to interrupt for expansion ratio adjustment.

Linagraph Ortho film exposed in lengths of 35 ft. was developed in a tank using D-19. For curvature measurements the tracks were projected through the camera used to record the data. The quantities measured were: the apparent radius of curvature of a segment of the helical electron track as determined by matching a circle at each end and the midpoint, the length of the chord of this segment, and the angle between the chord and a plane normal to the magnetic field. Using these three quantities the momentum of each member of the
pair is obtained (See Appendix) and the total energy of the pair is computed. Only pairs originating in the forward portion of the chamber were selected. A small enough portion was used to enable almost all tracks to have a ratio of the chord squared to the radius of curvature greater than one centimeter, corresponding to about 15% maximum allowable percentage error in the curvature determination. Only a negligible number of tracks were such that this condition was impossible to fulfill. A majority of the tracks had chord lengths which gave curvature measurements with an accuracy of 3 to 10%.
IV. RESULTS AND CONCLUSIONS

A. Spectrum

After measuring curvatures and computing the total energy of all pairs, the pairs were grouped according to energy into intervals 5 Mev. wide. The number of pairs in the various intervals is shown in Table 1. For the mid-energy, E, of

Table 1

<table>
<thead>
<tr>
<th>Energy Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Total Energy of</td>
</tr>
<tr>
<td>Pair in Mev.</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>5 - 9.9</td>
</tr>
<tr>
<td>10 - 14.9</td>
</tr>
<tr>
<td>15 - 19.9</td>
</tr>
<tr>
<td>20 - 24.9</td>
</tr>
<tr>
<td>25 - 29.9</td>
</tr>
<tr>
<td>30 - 34.9</td>
</tr>
<tr>
<td>35 - 39.9</td>
</tr>
<tr>
<td>40 - 44.9</td>
</tr>
<tr>
<td>45 - 49.9</td>
</tr>
<tr>
<td>50 - 54.9</td>
</tr>
<tr>
<td>55 - 59.9</td>
</tr>
<tr>
<td>60 - 64.9</td>
</tr>
<tr>
<td>65 - 67.4</td>
</tr>
</tbody>
</table>

$\chi^2 = 44.2$

each of these intervals the relative cross section for pair production, σ, was read from the curve given in Bethe and
Heitler (1). The curve used was the one for H_2O, which gives a slight difference from the unscreened case at the higher energies. In each energy interval the number of pairs is multiplied by E and divided by σ giving the relative value of the x-ray energy spectrum. A plot of these results is shown in Figure 10. The curve is the Bethe-Heitler bremsstrahlung energy spectrum for air as obtained from Rossi and Greisen (3). An upper limit of 65 Mev. was used for this curve, corresponding to the operating conditions of the synchrotron as given by a calibration chart having as a basis the measurement of magnetic field strength at the time the electron beam strikes the target.

All data were taken with the cloud chamber magnetic field at nearly the same value. This causes some discrimination at the lowest energies due mainly to a decreasing ability to identify pairs. When pronounced inequalities in the energy division between members of a pair occur, the low energy positron, a small circle, can be missed, either due to overlapping with other tracks, or because it makes a large angle with a plane normal to the magnetic field. This effect causes the lowest energy experimental point to fall somewhat below the theoretical curve. The lowest energy interval is very greatly affected in this way and no attempt was made to obtain data in this interval.

The experimental data were obtained by observing a portion
of the center of the synchrotron beam having an angular width small with respect to the total beam width. Comparison of this spectrum with the Bethe-Heitler curve giving the spectrum integrated over all angles may seem improper. Schiff (15) has shown, however, that the x-ray beam width of electron accelerators is usually determined not by the characteristics of the radiation process, but by the multiple scattering in the target before the electron radiates. This produces an effective integration over the angles of the quanta. In the present case calculation and measurements indicate that the angular spread due to multiple scattering is at least as large as the angular width of the beam for an infinitely thin target.

When a comparison of the experimental points with the solid curve is made, two facts should be recognized. First, it is clear that one should compare the experimental points with the average value of the curve over the 5 Mev. energy interval. The difference between the averaged value and the value of the curve at the center of the 5 Mev. intervals is small, however, except for the interval 60-65 Mev. In this interval the averaged value is about 15% lower than the value at the center, but still falls within the statistical accuracy of the experimental point. The second point is the effect arising from the finite energy resolution of the cloud chamber. The general magnitude of this resolution has been indicated,
Fig. 10. SYNCHROTRON ENERGY SPECTRUM
but an exact determination is difficult due to the variety of chord lengths contributing to each energy interval. The energy resolution effect causes the greatest distortion at the upper end of the energy spectrum and, if corrected for, would tend to raise slightly the experimental point at 62.5 Mev. The effect of both these corrections would be in the direction of making the spectrum have a sharper falling off at the upper limit. This agrees with the suggestion that if the correct wave functions were used in the theory, the upper end of the spectrum would probably tend to a finite value (Reference 2, page 171).

B. Energy and Quantum Flux

From that part of the data which was accurately monitored, values were obtained for the flux of quanta and energy. The following symbols are used:

\[N_p \] Observed number of pairs in the range 10-65 Mev. per square cm. per r unit of the Victoreen thimble chamber. Measured value is \(9.8 \times 10^3\).

\[N \] Number of atoms per c. c. in expanded cloud chamber.

\[l \] Length of path over which observed pairs originated.

\[E \] Quantum energy in Mev.

\[\sigma(E) \] Total cross section for pair production at quantum energy \(E\).
\[n(E) \] Number of bremsstrahlung quanta per energy interval per square cm. per r unit.

\[n_\gamma \] Total number of quanta in range 10-65 Mev. per square cm. per r unit.

\[E_\gamma \] Total energy of radiation in range 0-65 Mev. per square cm. per r unit.

Using the approximations (See reference 2)

\[
\sigma(E) = \frac{1}{E} \left[\frac{28}{9} \log hE - \frac{216}{27} \right]
\]

(1)

and

\[n(E) = \frac{A(130-E)}{E} \]

(2)

the value of the constant \(A \) is determined from

\[
N_p = N_1 \int_{10}^{65} \sigma(E) n(E) \, dE. \quad (l = 15.3 \text{ cm.})
\]

(3)

Then \(n_\gamma \) as calculated from

\[n_\gamma = \int_{10}^{65} n(E) \, dE, \]

(4)

has a value of \(6.6 \times 10^7 \) quanta per square cm. per r unit.

From

\[E_\gamma = \int_{0}^{65} E \, n(E) \, dE, \]

(5)

the value of \(E_\gamma \) obtained is \(2.2 \times 10^9 \) Mev. per square cm. per r unit. The above values of \(n_\gamma \) and \(E_\gamma \) have a statistical error of 20\%, but errors in monitoring may increase this.

McMillan (16) has recently obtained results from the
Berkeley synchrotron which can be used for a general comparison with the value of E_γ determined in this experiment. McMillan’s Victoreen chamber was in a one-eighth inch thick open-ended cylinder of lead, while our value was obtained with a similar cylinder having an eighth inch thick end. For the peak energies of 320 and 160 Mev., McMillan’s values respectively are 3.3 and 2.2×10^9 Mev. per square cm. per r unit. Our value of E_γ shows remarkable agreement considering the magnitude of the expected errors.
V. LITERATURE CITED

VI. ACKNOWLEDGMENTS

The author wishes to express his unbounded appreciation to Dr. L. J. Laslett, whose continued assistance and valuable suggestions have greatly facilitated this work. Much credit is due Dr. James Palmer, Mr. Robert McKenzie and Mr. I. Coleman for their part in the construction of the equipment. The cooperation of many members of the Department of Physics and in particular of the synchrotron group is gratefully acknowledged.
VII. APPENDIX

The technique of making measurements and corrections of the electron track curvatures will be described. The method is exact in the sense that tracks making large angles with a plane normal to the magnetic field can be measured and their momentum calculated making no small angle approximations.

The path of a charged particle in a uniform magnetic field is a helix, a segment of which we measure. Figure 11 shows a helical segment denoted by r'. We define the following quantities, the first three of which are those measured when projecting the image of the electron track:

- r': Apparent radius of curvature determined by matching a circle to both ends and the midpoint of a segment of the helix,
- K: Length of chord of the helical segment used to measure r',
- a: Angle the chord makes with plane P, normal to magnetic field,
- s: Sagitta distance of helical segment or of helical segment projected on plane P, these having equal values,
- a': Pitch angle of helix,
d Length of arc of helical segment projected on to plane P.

Using the sagitta formula, but not the sagitta approximation, we can write

\[K^2 - 8rs + 4s^2 = 0, \]
\[K^2 \cos^2 a = 8rs + 4s^2 = 0. \]

Eliminating \(s \) gives

\[r^2 = rr'(1 + \cos^2 a) + \frac{K^2(1 - \cos^2 a)^2}{16} + r^{'2}\cos^2 a = 0. \]

Solving and choosing the sign corresponding to segments smaller than semicircles, one obtains

\[\frac{r}{rr'} = \frac{1}{2} \left[1 + \sqrt{1 - \left(\frac{K}{2rr'}\right)^2} \right] \cos^2 a + \frac{1}{2} \left[1 - \sqrt{1 - \left(\frac{K}{2rr'}\right)^2} \right]. \]

A plot of this function for various values of \(K/2rr' \) is given in Figure 12. This enables the determination of the curvature corresponding to the momentum component in the plane normal to the magnetic field. To obtain the curvature corresponding to the momentum in the original direction of the electron, we note from Figure 11 that

\[\tan a' = \frac{K \sin a}{d} \]
\[d = 2br \]
\[\sin b = \frac{K \cos a}{2r}. \]

This gives

\[\frac{\tan a'}{\tan a} = \frac{K \cos a}{2r} \sin^{-1} \left(\frac{K \cos a}{2r} \right). \]
from which a' may be determined. The correction factor by which one multiplies the measured radius of curvature r', to obtain the radius of curvature corresponding to the magnitude of the electron momentum, is

$$F = \frac{r}{r' \cos a'} \quad \text{(9)}.$$
helical segment with measured "radius" \(r' \)

projection of helix on plane \(\perp \) to \(H \) - radius \(r \)

Fig. 11. Helix Geometry

Fig. 12. Curvature Correction Function

\[
\frac{k}{2r'} = \frac{1}{2} \left[1 + \sqrt{1 - \left(\frac{k}{2r'} \right)^2} \right] \cos^2 a + \frac{1}{2} \left[1 - \sqrt{1 - \left(\frac{k}{2r'} \right)^2} \right] \]