Chemical investigations of the effect of fertilizer ratios and green manures on yields and composition of crops and the organic matter in Norfolk sand

James Edward Adams
Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Biogeochemistry Commons, and the Soil Science Commons

Recommended Citation
Adams, James Edward, "Chemical investigations of the effect of fertilizer ratios and green manures on yields and composition of crops and the organic matter in Norfolk sand" (1936). Retrospective Theses and Dissertations. 13267.
https://lib.dr.iastate.edu/rtd/13267
NOTE TO USERS

This reproduction is the best copy available.

UMI®
CHEMICAL INVESTIGATIONS OF THE EFFECT OF FERTILIZER RATIOS AND GREEN MANURES ON YIELDS AND COMPOSITION OF CROPS AND THE ORGANIC MATTER IN NORFOLK SAND

BY

James Edward Adams

A Thesis Submitted to the Graduate Faculty for the Degree of DOCTOR OF PHILOSOPHY Major Subject Soil Chemistry

Approved:

Signature was redacted for privacy.

In charge of Major work:

Signature was redacted for privacy.

Head of Major Department:

Signature was redacted for privacy.

Dean of Graduate College

Iowa State College

1936
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform DP12185
Copyright 2005 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346
ACKNOWLEDGMENT

Acknowledgment is made to the Officials of the Bureau of Plant Industry who have kindly allowed these data to be presented as a thesis to Iowa State College; to Dr. J. J. Skinner, who formulated the basic outline of the work and has been officially responsible for it; to Drs. W. M. Quattlebaum Jr. and E. M. Roller, and Messrs. H. M. Boggs and A. B. Bowen who were associated in the work for variable lengths of time; to Messrs. A. S. Laird, R. B. Carr, and A. Carnes, who, as representatives of the Office of Forage Crops and Diseases, have helped to conduct the plat work; and to the Officials of the South Carolina Experiment Station who have co-operated in many ways.

The kindly and sustained interest of Drs. Norman A. Clark and P. E. Brown has been a stimulation during the several years of endeavor represented by this thesis. Dr. Clark has extended a commendable professional courtesy in allowing these data to be presented in lieu of a problem which would have received his personal supervision; his criticism of this work has been very helpful, and is appreciated.
- 3 -

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>A GREEN MANURE-FERTILIZER STUDY WITH A ROTATION OF</td>
<td>8</td>
</tr>
<tr>
<td>LEGUMES, CORN AND COTTON</td>
<td></td>
</tr>
<tr>
<td>A. Literature Cited</td>
<td>8</td>
</tr>
<tr>
<td>B. Experimental</td>
<td>25</td>
</tr>
<tr>
<td>C. Methods</td>
<td>29</td>
</tr>
<tr>
<td>D. Yields Data</td>
<td>30</td>
</tr>
<tr>
<td>E. Carbon and Nitrogen Data</td>
<td>38</td>
</tr>
<tr>
<td>F. Nitrate-Nitrogen Data</td>
<td>43</td>
</tr>
<tr>
<td>G. Residual Carbon and Yields</td>
<td>45</td>
</tr>
<tr>
<td>H. Conclusions</td>
<td>45</td>
</tr>
<tr>
<td>THE EFFECT OF FERTILIZER RATIOS ON THE YIELD AND</td>
<td>49</td>
</tr>
<tr>
<td>COMPOSITION OF SOYBEAN HAY</td>
<td></td>
</tr>
<tr>
<td>A. Literature Cited</td>
<td>49</td>
</tr>
<tr>
<td>1. The triangle system of fertilizer study</td>
<td>63</td>
</tr>
<tr>
<td>B. Experimental</td>
<td>66</td>
</tr>
<tr>
<td>1. Flat outline</td>
<td>66</td>
</tr>
<tr>
<td>2. Methods</td>
<td>68</td>
</tr>
<tr>
<td>C. Discussion</td>
<td>68</td>
</tr>
<tr>
<td>1. Yields data</td>
<td>69</td>
</tr>
<tr>
<td>2. Composition of hay</td>
<td>81</td>
</tr>
<tr>
<td>a. Nitrogen content</td>
<td>87</td>
</tr>
<tr>
<td>b. Phosphoric acid content</td>
<td>97</td>
</tr>
<tr>
<td>c. Potassium oxide content</td>
<td>100</td>
</tr>
<tr>
<td>d. Calcium oxide content</td>
<td>103</td>
</tr>
<tr>
<td>e. Averages relative to (a), (b), (c) and (d) produced by fertilizers high in nitrogen, phosphate and potash</td>
<td>104</td>
</tr>
<tr>
<td>f. The CaO:FeO ratio</td>
<td>108</td>
</tr>
<tr>
<td>g. The CaO:K O ratio</td>
<td>108</td>
</tr>
<tr>
<td>h. Soluble-ash, FeO3, MnO4, sulphur and MgO contents</td>
<td>111</td>
</tr>
<tr>
<td>D. Conclusions</td>
<td>125</td>
</tr>
</tbody>
</table>
INTRODUCTION

The evaluation of soils in terms of their potential agricultural value has assumed considerable importance in recent years. Sandy soils vary greatly in fertility; their widespread occurrence in the United States, even in regions of fertile soils, stresses the necessity for information with regard to their agricultural capacity.

The coarser-textured sandy soils are usually of low fertility; many factors are frequently involved, and this statement is to be modified according to the derivation of the particular soil, the nature of the subsoil, natural drainage, and extrinsic factors. These soils are responsive to good management, but their low capacity to hold moisture limits their productiveness. It is generally conceded that the improvement of the organic matter supply helps to improve this condition, and to increase the nitrogen supply which is usually quite low. The need for additions of phosphate, lime and potash is variable.

Soils of similar texture and derivation have many properties and problems in common; variations of these are generally of degree rather than kind. This is exemplified by the soils of the sand-hill area of South Carolina which is a portion of the region extending from
south-central North Carolina into Alabama. It lies between
the Coastal Plains and the Piedmont Regions, and marks the
old shore of the Atlantic Ocean. The portion which lies in
South Carolina comprises approximately ten per cent of the
area of the state. The area, to a considerable extent, was
covered originally with longleaf pine. Deforestation re-
sulted in a very different cover so that at present there
is a mixture of dwarf oak, sedge and other plants generally
adapted to a soil of coarse and open texture, and of low
available and potential fertility. The cultivated areas
are used principally for the production of corn and cotton.
In recent years small areas have been used for peaches,
grapes, dewberries, and to a smaller extent, asparagus.

The soils of the sand-hill region are principally of
the Norfolk and related series. A considerable variation
in texture is to be found, ranging from coarse sand to
sandy loams, with a like variation in fertility. The pro-
duction of crops without the use of fertilizers is
hazardous. These soils are responsive to good management
and with the proper amount of rainfall, well distributed,
will produce beyond expectation. The open texture mili-
tates against a high potential fertility. Practices
which are instrumental in combating leaching, and those
helping to improve moisture conditions, are of utmost
importance. The maintenance and the improvement of the quality of the organic matter would appear to be a logical approach to the problem. Although the need for all the more common plant-food elements is distinct, any system must be based upon the addition and conservation of nitrogen, the element lost in greatest quantities by leaching. The soil approximates the conditions of "sand cultures" with many of the factors of plant nutrition beyond control.

This investigation deals with the effect of fertilizer practices and crop management on the quantity and quality of the crops produced on Norfolk sand. The residues of the crops are used to determine their relative effects on the quantity and quality of the organic matter, and the pH of the soil.
A GREEN MANURE-FERTILIZER STUDY WITH A
ROTATION OF LEGUMES, CORN AND COTTON

Organic matter is the component which differentiates soil from inert, disintegrated rock material. The functions of this material in microbial and plant life are many and varied. Although this work deals with a limited phase of the relations of organic matter to soil fertility, associated functions are briefly reviewed.

Literature Cited

The Symposia on Soil Deterioration (151), Soil Organic Matter (152) and Soil Organic Matter and Green Manuring (153), which were held during the years 1926, 1927, and 1929, respectively, have done much to focus attention upon the pertinent relations of organic matter to soils and crops. Its effects are both physical and chemical. Page (111) points out that the tendency to draw conclusions from inconclusive evidence has been greater in this than any other phase of soil work, as it leads one into the more difficult phases of organic and physical chemistry. In that work organic matter is discussed as existing in the soil in two forms: (a) "humus matter", or the dark-colored component of high molecular weight and colloidal in nature; and (b) "non-humic matter" which is made up of
colorless substances, mostly soluble, and the undecomposed, refractive portions of plant and microbial remains. This is a theoretical separation and not completely attainable in the laboratory. The humic portion is an acidoid belonging in the same category as clay acids. It is pointed out that up to the present time there is no definite evidence that any of the preparations made from this fraction can be classified as chemical individuals, even though it can be fractionated into groups with well-defined properties. The investigation of the non-humic fraction has been more fruitful, the "brilliant work" of Schreiner and co-workers being cited.

It is the gel-like humic matter which affects the physical properties of the soil. Page (110) concludes that one of the principal actions of the gel is to act as a buffer, using the term in its broadest sense, thus serving as a stabilizer; it thereby reduces markedly the variations in the responses of soils. Russell (120) states that as much as twenty per cent of organic matter will reduce other soil factors to a minimum. The presence of the gel also increases the water-holding capacity, improves the tilth, increases the pore space, and helps to regulate the availability of plant nutrients. Alway and Neller (8) compared plots of widely different organic matter content which
carried cultivated crops; they found that the water-holding capacity of only the upper layer of the soil was affected. This effect was noticeable in wet but not in dry seasons. There was little effect upon productivity. Baver (13) found that the plasticity and mechanical structure of soils are affected by this component, and that it constitutes a large portion of the exchange complex of the surfaces of soil. This latter fact is emphasized by McGeorge (96) who found a definite correlation between the organic matter and exchange values of soil. Brown and O'Neal (24) found that the color of dark-brown to black soils is associated with a relatively high carbon and nitrogen content. Lipman and Waynick (87) give in detail the effects of a change of climate upon some of these properties. The color may be darkened or lightened; the hygroscopic and moisture equivalents, which are associated with the water-holding capacity, may be changed; and the destruction of the non-humic fraction may be accelerated.

Keen (81) in summarizing the physical effects of organic matter states: "Direct study of the material apart from the soil, of which it forms an intimate part, is not possible at present, and its physical properties must be inferred from direct observations on the soil itself."

The chemical nature of the organic fraction of the soil has claimed the attention of investigators since the early
part of the nineteenth century. This early work was summa-
rized in 1909 by Schreiner and Shorey (127) who pointed out
the discordant results which had been obtained. They (128)
isolated some twenty organic compounds which by their nature
indicated a complex parent source. A very complete survey
of the literature was made in 1926 by Waksman (161).

The equilibrium between the various factors affecting
soil fertility is described by Schreiner (126) as being
dynamic rather than static. This equilibrium under virgin-
soil conditions tends toward the up-building of soil. The
effect of cultivation is to establish a new equilibrium
which is accompanied by the destruction of organic matter.
Inasmuch as the organic matter is the source of energy for
micro-organic life, and of nitrogen for plant growth, the
conditions affecting its decomposition are of much im-
portance. Soil organisms may compete with plants for
available nitrogen as shown by Doryland (39); this is a
normal process in the metabolism of the organism. The ratio
of carbon to nitrogen in the plant material, the type of
organism involved in the decomposition, and the reaction
(pH), as well as the carbon-nitrogen ratio of the soil
itself are factors which determine the nitrogen balance
during and at the end of the decomposition.
Wakeman (150) lists fungi, actinomycetes, bacteria and possibly protozoa as the organisms active in the decomposition of organic matter. In acid soils the action of the fungi predominates, while under alkaline conditions, that of bacteria. The energy requirement of the fungi is the greater. A plant material containing 2.5 to 3.0 per cent nitrogen, such as alfalfa, will be decomposed by fungi with the liberation of little or no free ammonia. With the same material under favorable conditions the metabolic needs of bacteria will be met and they will liberate considerable quantities of nitrogen as ammonia, this being subsequently oxidized to the nitrate form. A nitrogen content greater than that mentioned results in an increased liberation of ammonia, the amount being greater for the bacteria than for fungi. These conditions hold for soils in which the carbon-nitrogen ratio is comparatively narrow; i.e., 10:1 to 12:1. If the soil ratio is wide, the nitrogen liberated from materials containing a large percentage of nitrogen will be utilized to accompany the energy needs of the organism, with a depletion of the nitrogen which otherwise would be available to plants. Russell (120) states that nitrogen can appear in the nitrate form only when the ratio is 12:1. These statements apparently apply to the processes within the body of the organic matter, for if
organic material of a high-nitrogen content were intimately mixed with soil of a wide ratio no free nitrate would be found until the entire mass was reduced to the stated ratio. An intimate mixture of organic matter and soil is not attained in field practice.) Thom and Smith (156) found that the increased micro-biological activity due to turned and mulched materials was confined to the materials themselves, without greatly affecting or being affected by the surrounding soil. Thom and Humfeld (155) studied the decomposition of roots and found an increase in the numbers of organisms in the soil adjacent to the roots, but much larger numbers were present on the roots themselves. The root material resisted much change of the pH value. The total variation was from pH 6.0 to pH 7.5; in acid soil the root material was more alkaline than the soil, and in alkaline soil more acid. In view of this it would seem that it would be impractical to postulate exact conditions for the decomposition of organic materials. That the ratio of the organic matter in the soil may enter into the situation is indicated for some soils, but it would seem to be an influence depending upon the infiltration of the products of decomposition into the surrounding soil.

Brown and Allison (23) called attention to the increased interest attached to the carbon-nitrogen ratio. They
considered a narrow ratio to be an indication of the lack of fresh organic matter, and a ratio of 12:1, or above, a more satisfactory condition for the production of soluble plant food.

Anderson and Byers (9) found a wide variation in the carbon-nitrogen ratios of the great soil groups, and also within most of the groups. The ratio decreased in general with the depth of the soil. The variation in the ratio indicated an essential difference in the composition of the organic matter of soils. A more constant ratio was found in the soils where it is narrow. Saksman and Hutchings (162) stress this point, showing that podsol soils are characterized by a high cellulose, a high hemicellulose, and a low protein content. The carbon-nitrogen ratio is wide; it varies from 41.7:1 for a heath podsol, to 22.5:1 for a Michigan podsol. A soil group with a ratio of 10:1 contains organic matter of high lignin and protein content. Leighty and Shorey (85) found a wide variation in the ratio in a study of one hundred and seventy-six samples of soil from twelve states; the range was from 3.5:1 to 35.1:1, with a limited number lying beyond the range of 7.1:1 to 15.1:1. They considered a ratio of 20:1 as conducive to micro-organic activity, while a 10:1 ratio represents an advanced stage of
ratios, but at the end of the experiment the ratio returned
solt. Read that at the end of 74 years following the
recession the ratio of Jordan (74) working with an irrigated
sewerage and Holtz (74) give data to show that the corre-

sponding and denery

mgredacted, was pointed out by Tettgny and Schoehy,

introduction contained of the soil; as has been so frequently

admitted the percentage of carbon from the

with a variation from 2 to 22 for Jordan soil, 6.6 to 10.6.
to 10.11 and Jordan (74) for 20 pitition soils, 6.6 to 10.6.

to 20.4; Issac and Geraniol (74) for semi-arid soils, 6.0.
sorte of 2 to 29; Issac (74) for south african soils, 11.2.

forage (74) found a variation in the rate of Texas

vegetation motility

they concluded that the ratio is not entirely dependent

temperature attains to be lower than under tropical conditions.

ate: (1) arid climate, (2) vegetation, and temperate and

soil formation, treated in order of decreasing importance.

first to the temperature. The factors which control

ature, the amount of organic matter bearing an increase in temper-

Jenney (74) stated that in the great plains there seems

decomposition.
to that of the virgin soil. There was a decrease in the carbon and nitrogen of the soil during the first period, and an increase at the end of the experiment. Calculations of the ratio from data given by: (a) Mooers (104) show a slight widening during twenty years with a rotation management; and (b) from those of Shutt (136), very little change in cases where there were gains in carbon and nitrogen, or losses, under prairie conditions. Under irrigation, the data of Shutt show that more appreciable changes in the ratio take place; there were cases of a widening of the ratio as well as a narrowing. From observations of Oveson and Powers (109) cases of both increases and decreases occur, but the changes are comparatively small under a wide variety of treatments. The data of Powers and Lewis (118), who obtained marked increases in carbon and nitrogen under irrigated conditions, show no variation. Data by Snider 1/, supplementing those given in (143), show that lime has had more effect than various fertilizer treatments in a sixteen-year test. Moderate quantities of lime show a slight but consistent decrease in the ratio,

1/ Data, supplementing that given in the literature cited, were kindly furnished by Dr. H. J. Snider, Assistant Chief, Soil Experiment Fields, Illinois Agricultural Experiment Station. Soil analyses for November, 1932, and for 1916, allow a sixteen-year study to be quoted.
while heavier applications have produced a slight, but equally consistent increase in the ratio. There have been decreases in both carbon and nitrogen during the sixteen years.

Salter (122), using a soil with a ratio of 15.3:1, studied the changes in materials of varying carbon-nitrogen ratios. Those with ratios wider than 10:1 caused losses of organic matter from the soil, but with ratios less than 10:1 there was a conservation of carbon. There was a rapid convergence, even though the original ratios varied from 15:1 to 5:1, so that the value of approximately all the ratios at the end of one month approached 10:1. A ratio of 1:1 for material at the beginning of the experiment was changed to 6:1 in twelve months. A wide ratio in the original material decreased nitrate-nitrogen, while a narrow ratio favored nitrate formation. Jensen (78), using wheat straw, leguminous materials, manure, and fungus mycelium, with ratios varying from 84:1 to 10.2:1, found that a ratio above 25.9:1 limited nitrate formation. The conclusion was reached that the carbon-nitrogen ratio exerted as profound an influence as the pH of the medium. The effect of materials of varying carbon-nitrogen ratios on nitrate formation has been investigated by Blair and Prince (17, 19), Hutchings and Martin (71), Jensen (78), McKinley (96),
Conrad (32), Murray (105), Starkey (145), Sturgis (150), and others. The general conclusion is that the nitrate-nitrogen content is depressed by a wide carbon-nitrogen ratio. Collison and Conn (30) attributed a part of the effect of straw to the presence of toxic substances. Brown and Allison (23) consider that there is little influence exerted by the ratio on nitrification. It was found that nitrification of legumes was greater than that of manures, but the rate of ammonification was less. Hutchings and Martin (71) accelerated the decomposition of wide-ratio materials by the addition of available nitrogen, which is in accord with the work of Starkey (145), Sturgis (150), and others. Bell (15), using Norfolk sand, found that manure and cowpeas produced accumulations of nitrates. Some legumes and Natal grass depressed nitrates for varying periods of time.

A soil may be well supplied with nitrogen, and of a fairly low ratio, and still the nitrogen will be comparatively unavailable as reported by Bizzell (16). The average ratio r for this Volusia soil is 10.3:1. McKibbin (97) has reported carbon and nitrogen data for

\[r = \frac{\text{carbon}}{\text{nitrogen}} \]

The ratio varies from 6.8 to 12.1:1. This information was furnished through correspondence with Dr. J. A. Bizzell.
three long-cultivated, upland-podsol soils of Quebec which were considered the least fertile of the soils reported. Calculations of the ratio from the data presented give values of 13.5 for two soils, and 15.3 for the third. Nitrate-nitrogen during the growing season is reported as usually inadequate. Further calculations give ratios as follows: (1) for relatively fertile soils, 15.8; (2) for the "brown earths of intermediate fertility", 12.7; (3) for upland podsols, 17.8, and (4) for lowland podsols, 21.9:1; the last was considered the least fertile. These data would indicate that a soil may be infertile when associated with either a medium or wide ratio, and also when the total supply of nitrogen is abundant.

Potter and Benton (116) show that materials of a wide ratio applied to soils produce an organic residue lower in nitrogen than that from legumes or manure. Comparatively large amounts of phosphorus may be present in the organic form; soil organic matter from legumes is higher in phosphorus content than that from non-legumes.

Data are available regarding the effect of cropping upon the organic matter content of the soil, in addition to the citations made. DeTurk (37) states that the acceleration of the oxidative processes of the soil, with the consequent decline in organic matter, is one of the
important effects of bringing the soil under the plow. Also, it is that portion of the organic matter undergoing decomposition, rather than the residuum, which affects crop yields; this is a restatement of the dynamic conception. A fair correlation was obtained between organic carbon and crop yields. Salter and Green (123) found that organic carbon and organic nitrogen were highly and positively correlated with total crop production. Crops vary considerably in their effects upon soil organic matter; corn is least effective for conservation while hay is very effective. Carr (26) found a close correlation between the humus content of soil and the growth of corn.

That the nitrogen of organic materials can be utilized by plants has been shown by Schreiner and Skinner (130), and by Hutchinson and Miller (72).

It has been indicated that both pH and the carbon-nitrogen ratio influence markedly the decomposition processes in soil. Starkey (146), after an exhaustive search of the literature, states that the growth of higher plants affects the soil population, and that marked increases in the numbers of certain organisms frequently occur. Aberson et al. (1) state that the acidity of sands is due to humic acid and that this has great influence upon the development of lower organisms. Conner (31) attributes the acidity of
Arises a notion under which decomposition depends on the concentration of organic matter. Apparent to the results of decomposition are the constants, resistances and the constants between reaction and decompositions. While at 100°C found a close
departure decomposition. It is generally accepted that the 100°C decomposition of organic materials, which were followed by an increase.
non-decomposing materials were found to increase and green the samples. Typically, the
report of decomposing in 10°C. The decomposition and concluded that they decomposed the materials.
experimentation (167) need a whole variety of organic materials.
The pH on a solid was supplied with caution and
to further be concentrated on 10°C. The experiment (167) just ETT 10°C materials and
showed (171) 10°C. It was concluded that the use of ETT 10°C
five-year test. It was concluded that the use of ETT 10°C
black wheat and red cover cleared on watered soil in a
when it was turned under but decomposing were rapid. Opinions
Hill (69) in 1979 found an initial increase in soil
evaporation 6.6 to 7.0.

6.6 to 7.0.

matter is known from peroxides and the pH changes from
hydroxides of minerals. However, these show that more oxygen
ions, and to the decay of the organic matter and
humid soil to the leaching of bases and their removal.
the prevalent practice of "planting" over the series of the sand which are contained there... that to the growth of the same plant in natural nutrition comparatively so... growth or heme matter and other water plants. The production of nitrogen-fixation, observed in the presence of extracts of peat and...
that is quite strange. It is of great interest that the form of
soon as it is made available has resulted in an elaboration
now in nitro-gen. The rapid teaching of the nitro-gen as
nurses for prompt decomposition. The cover is essential
of sand-units easily be the type of decomposition which precedes
another factor which contributes to the wide effects.

Give十足 information.

The soil, viewed by management and other characters, should
are discussed. However, changes in the carbon content of
taken into consideration when specific quantities of carbon
contributed to the wide carbon-fixation ratio and must be
of forest products were doubled. Changes in these soils
of amount. This means that the quantity of carbon
are seen in organic matter and a fifty per cent increase in
excess of the soil. A green finding is sixty per cent in-
addition to one hundred and one per cent, and de-

The burning increased the amount of the exchanged
the nitro-gen content of the soil as great as it is presently
the nitro-gen content of the soil. The change of cover caused an increase in
the soil content. The change of which we see in the coastal plains of
and burned areas in the burned yielding more
heavily forested conditions. The former studied problems
have found this practice to be beneficial under more
spring season. Hardwood and barren (66) and green (67)
— 22 —
leguminous materials, manures, or as inorganic fertilizers is probably used to a great extent in the destruction of this reserve of low-nitrogen material; i.e., hemicellulose and cellulose, as shown by Waksman and Hutchings (162).

Williams et al. (169) rate the lighter Norfolk soils of the lower Piedmont and upper Coastal Plains with a value of 1 to 7, the best soils of North Carolina having a value of ten. The particular value assigned depends upon the crop to be grown and the fertilizer used. It is thought that the factors influencing the fertility of the Norfolk soils of the sand-hill area differ in degree rather than in nature from those of the Coastal Plains. Skinner (138) has found that cotton grown on Norfolk fine sandy loam responds best to a fertilizer of a 5:8:2 ratio, while on Norfolk sandy loam the ratio averaged 6 to 7 per cent nitrogen; 6-8 of P2O5; and 1 to 3 per cent of K2O. Relatively greater amounts of nitrogen increased the yields of corn. Eighteen to thirty pounds of nitrogen (139) in addition to the basic application is recommended for the lighter sandy soils. The source of nitrogen used in the fertilizer affects the yields of cotton. Skinner and Buie (140) obtained best results with a fertilizer having two-thirds of the nitrogen derived from nitrate of soda, and one-third from sulphate of ammonia. This was superior to
having one-half derived from an organic source. On the sand-hill phase of Norfolk fine sand, Skinner and Williams, et al. (142) have found that marked increases in yields of early cotton were obtained from fertilizers which contained organic nitrogen, and it appeared that the lighter soils should receive nitrogen in the slowly available form.

The use of a continuous cover in a pecan grove by Skinner and Demaree (141) increased the organic matter content of Norfolk soils very appreciably in spite of the many factors working toward a decrease. Stokes et al. (149) compared the relative efficiencies of crotalaria, velvet beans and cowpeas as measured by citrus growth. Crotalaria was the only green manure which increased the nitrogen content of the soil; it also produced the greatest growth response on Norfolk medium fine sand.

Peters and Illinois (115) suggested that under some conditions a smaller quantity of organic matter may be equally as beneficial as a larger amount, depending upon the capacity of the following crop to utilize the nitrogen.

Punchee, in 1935, (52) states that although the highest recorded yields of corn are those of the South: "It is probably true that the relatively low yields of all farm crops in the South are due more to a deficiency of available plant nutrients than to any single factor"; and
further: "The deficiency of nitrogen is greater from a relative standpoint". As cited from the field tests, the value of nitrogen, both in mineral form and from legumes, is striking.

A program for the improvement of the Norfolk sand would seem to be concerned principally with factors controlling the increase in the quantity and quality of organic matter. This would appear to be the proper approach toward improved moisture conditions, and a more labile nitrogen content. There are indications that organic materials serve as an efficient source of nitrogen. The increasing cost of organic nitrogen when derived from either concentrates or plant residues, however, makes desirable a study, under a rational cropping and fertilizer system, of the extent to which organic materials can be replaced by mineral sources of nitrogen.

Experimental

The area of Norfolk sand used was cleared in 1919\(^1\). It was cropped to corn during the years 1920, 1921, and 1927, the last season mentioned being the first year it was under the supervision of the state of South Carolina.

\(^1\) History of area furnished by Mr. J. A. Riley, Superintendent, Sandhill Experiment Station, Columbia, S. C.
In 1929, the entire area was cropped to cotton.

The twenty-four plates are represented once.

After the lemmas are planted, the cotton is sown over to corn and

noted. The forty-four plates are repeated are the lemmas of each series remaining

or lemmas and the cottons which are followed by a winter cover

in each color. Series E, cotton beans; series C, cotton;

wheat and oats. Series J, released soybeans as the

trees are lettered from a time. During any one year, the trees of each section of each of the two

have the same crops on the second round. The plates are
the beginning of the second round. The plates are 150 feet

the beginning of the rotation in 1929, and again in 1932.

The diagram shows the relative positions of the plates at

have been used in a rotation of lemmas, cotton and corn.

Twentv-four plates (1/20 acre) as shown in Figure 1.

some amount of nutriment of soda as for the corn

hundred pounds of fertilizer of the same formula, and the

the cottons were grown from 1929 to 1932. Illustrative. The corn
Figure 1. Flat diagram of green manure-fertilizer experiment.

<table>
<thead>
<tr>
<th>F</th>
<th>Soybeans</th>
<th>Velvet Beans</th>
<th>Cowpeas</th>
<th>Cowpeas Rye-Vetch</th>
</tr>
</thead>
<tbody>
<tr>
<td>400# 2-8-4</td>
<td></td>
<td></td>
<td>Turned as Green Manure</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Soybeans</td>
<td>Velvet Beans</td>
<td>Cowpeas</td>
<td>Cowpeas Rye-Vetch</td>
</tr>
<tr>
<td>400# 6-8-4</td>
<td></td>
<td></td>
<td>Stubble Turned</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>Corn</td>
<td></td>
</tr>
<tr>
<td>400# 2-8-4</td>
<td></td>
<td>Green Manure Tier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>Corn</td>
<td></td>
</tr>
<tr>
<td>400# 6-8-4</td>
<td></td>
<td>Stubble Tier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td>Cotton</td>
<td></td>
</tr>
<tr>
<td>800# 2-8-4</td>
<td></td>
<td>Green Manure Tier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>Cotton</td>
<td></td>
</tr>
<tr>
<td>800# 6-8-4</td>
<td></td>
<td>Stubble Tier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N-P₂O₅-K₂O 1 2 Series 3 4 5 to 8
Tiers A, B, E and F, while the stubble was turned on C and D.

In 1929, the first year of the experiment, the legumes grown with the 6-8-4 fertilizer on Tier E were harvested and the stubble turned, while on Tier F the legumes grown with the 2-8-4 were turned as a green manure. Tiers A and B, Series 1 to 4, were cropped to cotton using a 6-8-4 and a 2-8-4 fertilizer, respectively. In like manner Tiers C and D were cropped to corn. With reference to the plat diagram, the rotational direction is from A-B toward E-F and E-F to A-B.

The year 1934 marked the end of the second round of the rotation.

Methods

Soil samples were taken in May, 1928, March, 1929, and semi-annually thereafter. Twelve "cores" per plat were taken with a garden trowel and composited. The portion taken from the composite was air-dried, passed through a sieve with 2 mm. openings, and ground in a ball mill to pass an 80-mesh sieve. These ground samples were used in the determination of total carbon and nitrogen. The total carbon was determined by the wet
oxidation method of Adams (2) \(^1\), and the nitrogen by the Gunning-Hibbard Method as given in the Official Methods of the Association of Official Agricultural Chemists. The pH values were determined according to the hydrogen-electrode procedure of Snyder (144) using the modified Gillespie electrode vessel.

Yield Data

Figures 2, 3 and 4 show the growth of soybeans, corn and cotton in 1932. The plots on the left received the 6-6-4 fertilizer, and those on the right the 2-8-4 fertilizer. The row in the center is an unfertilized buffer row.

The average yields for all crops for the first round (1929-1931), the second round (1932-1934) of the rotation, and for the six years are given in Table 1. The average yields for corn and cotton, the indicator crops, are portrayed graphically in Figure 5. The 6-6-4 and stubble system has produced yields of all crops greater than those of the 2-8-4 and green manure. The most outstanding increases are those of seed cotton,

\(^1\) Dr. W. M. Quattlebaum Jr. should receive equal credit for this method, but due to a ruling of the Company with which he was employed at the time of publication it was thought best to give credit in the manner used.
Table 1. Average yields of crops grown on legume-stubble plots, with 5-8-4 fertilizer, and on green-manure plots with 2-8-4 fertilizer, on Norfolk sand: 1929-1931; 1932-1934; 1929-1934.

<table>
<thead>
<tr>
<th>Summer Crop and Winter Management</th>
<th>Stubble Turned Plus 5-8-4</th>
<th>Green Manure Turned Plus 2-8-4*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Green Hay</td>
<td>Corn Bushels</td>
</tr>
<tr>
<td>Soybeans; Fallow:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Av. 1929-31</td>
<td>2.15</td>
<td>10.77</td>
</tr>
<tr>
<td>Av. 1932-34</td>
<td>2.04</td>
<td>11.81</td>
</tr>
<tr>
<td>Av. 1929-34</td>
<td>2.10</td>
<td>11.14</td>
</tr>
<tr>
<td>Velvet beans; Fallow:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Av. 1929-31</td>
<td>3.68</td>
<td>9.49</td>
</tr>
<tr>
<td>Av. 1932-34</td>
<td>3.22</td>
<td>10.72</td>
</tr>
<tr>
<td>Av. 1929-34</td>
<td>3.45</td>
<td>10.11</td>
</tr>
<tr>
<td>Cowpeas; Fallow:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Av. 1929-31</td>
<td>2.09</td>
<td>10.15</td>
</tr>
<tr>
<td>Av. 1932-34</td>
<td>2.49</td>
<td>10.94</td>
</tr>
<tr>
<td>Av. 1929-34</td>
<td>2.29</td>
<td>10.55</td>
</tr>
<tr>
<td>Cowpeas, rye and velvet:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Av. 1929-31</td>
<td>2.45</td>
<td>11.53</td>
</tr>
<tr>
<td>Av. 1932-34</td>
<td>3.06</td>
<td>15.12</td>
</tr>
<tr>
<td>Av. 1929-34</td>
<td>2.76</td>
<td>15.33</td>
</tr>
</tbody>
</table>

* Legumes and corn received 400 pounds per acre; cotton, 500 pounds.
Figure 2. Soybeans on the left grown on stubble plat with 6:8:4 fertilizer; the right, on the green manure plat with 2:8:4 fertilizer. Buffer row in center received no fertilizer treatment.
Figure 3. Corn on the left grown on stubble plus 6:8:4 plat, following cowpeas, rye and vetch. The right is the green manure plus 2:8:4 plat, with the same winter cover crop. An unfertilized buffer row is in the center.
Figure 4. Cotton on the left grown following corn shown in Figure 3. The left is the stubble plus 6:8:4 series of plots, while the right is the green manure plus 2:8:4 series. An unfertilized buffer row is in the center.
Figure 5. Average yields (1929-1934) of corn and cotton grown on legumes stubble and supplemented with a 6-8-4 fertilizer, as compared with those following legumes are turned as green manures and receiving a 2:6:4 ratio as a supplement.
which are, following: (1) soybeans, 230 pounds; (2) velvet beans, 201 pounds; (3) cowpeas (fallow), 227 pounds; and (4) cowpeas, rye and vetch, 318 pounds per acre per year.

The increases in yields of corn assume more significance, however, when one considers that the corn received only a four hundred-pound application of fertilizer as compared with the eight hundred-pound application made to the cotton. No nitrogen was applied to the side of either crop as is customary in general practice.

The cash value of the crops produced under the 6-8-4 system are appreciably greater than those of the 2-8-4. This is due not only to the increased yields of corn and cotton, but also the hay which is handled as a cash crop. This source of revenue, of or forage, is of importance in farm management. Using a uniform cash-basis for the materials used and for the crops produced, the following increased values, per acre per year, are obtained, following: (1) soybeans, $5.61; (2) velvet beans, $7.29; (3) cowpeas, $5.60; (4) cowpeas, rye and vetch, $7.32.

The comparatively high value of velvet beans in the rotation is due to the yields of hay rather than to unusual increases in the yields of corn and cotton. The use of a winter cover following cowpeas has, however,
slightly more than equalled that value due to increased yields of corn and cotton.

An additional value should be attached to the use of the winter cover as it has been outstanding in the conservation of organic nitrogen, as will be shown.

The pH of all plots decreased from 5.5 to 4.8 during the first round of the rotation, the values given being approximate. An application of hydrated lime to overcome the increased acidity was made at the rate of three hundred pounds per acre each spring of the second round to the two tiers of plots on which the legumes were to be grown. This allowed the full effect of the lime to be exerted upon the legumes rather than upon the corn and cotton. The lime changed the pH from 4.8 to 5.8, approximately. The yield data, therefore, reflect the effect of lime for three years on the legumes; corn, two years; and on cotton, one year only.

The average yields of soybeans and velvet beans decreased during the second round of the rotation. Those of cowpeas, for both winter fallow and winter cover, were increased. Apparently the cowpeas were benefitted by the use of hydrated lime, while soybeans and velvet beans were not. It is possible that seasonal effects play a part here, as well as for all comparisons of
yields of the second and first rounds. Corn yields show slight but consistent increases during the second round, for both systems of management, and those of cotton are appreciably greater. The average increase of seed cotton for the second round is 263 pounds per acre for the 6-6-4 and stubble series, and 84 pounds for the 2-6-4 and green manure. It is doubtful if lime influenced the yields of corn and cotton. The largest increases, as well as total yields, were obtained from the cowpea-stubble, rye and vetch plat.

Carbon and Nitrogen Data

The presence of charcoal in these soils has already been discussed. The type of vegetation and the coarse texture of the soil, which allows excessive leaching, give rise to organic matter of a wide ratio and low in amount. The soil is analogous to "sand cultures" to which material of a wide carbon-nitrogen ratio has been added. The management supplying the greatest quantity of nitrogen available to the indicator crops should be indicated by increased yields. The data indicate that the extra four per cent of nitrogen in the fertilizer used with the stubble management supplies the greater quantity of available nitrogen.

The carbon and nitrogen data are given in Table 2.
Table 2. Carbon and nitrogen relationships of Norfolk sand, with legume stubble turned and crops grown with a 6-8-4 fertilizer, as compared with legumes turned as green manures and crops grown with a 2-8-4 fertilizer, in a rotation of legumes, corn, and cotton.

<table>
<thead>
<tr>
<th>Summer Crop and Winter Management</th>
<th>Stubble Turned Plus 6-8-4 fertilizer Total C</th>
<th>Total N</th>
<th>C/N</th>
<th>total 1928</th>
<th>total 1934</th>
<th>1928</th>
<th>1934</th>
<th>1928</th>
<th>1934</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybeans; fallow</td>
<td>0.54 0.40</td>
<td>0.020</td>
<td>0.018</td>
<td>27.0</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velvet beans; fallow</td>
<td>0.48 0.38</td>
<td>0.020</td>
<td>0.018</td>
<td>24.0</td>
<td>21.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowpeas; fallow</td>
<td>0.52 0.38</td>
<td>0.020</td>
<td>0.019</td>
<td>26.0</td>
<td>20.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowpeas, rye and vetch</td>
<td>0.54 0.43</td>
<td>0.019</td>
<td>0.020</td>
<td>26.8</td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Crop and Winter Management</th>
<th>Green Manures Turned Plus 2-8-4 Fertilizer Total C</th>
<th>Total N</th>
<th>C/N</th>
<th>total 1928</th>
<th>total 1934</th>
<th>1928</th>
<th>1934</th>
<th>1928</th>
<th>1934</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybeans; fallow</td>
<td>0.51 0.36</td>
<td>0.020</td>
<td>0.017</td>
<td>25.5</td>
<td>21.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velvet beans; fallow</td>
<td>0.50 0.34</td>
<td>0.020</td>
<td>0.018</td>
<td>25.0</td>
<td>21.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowpeas; fallow</td>
<td>0.51 0.38</td>
<td>0.020</td>
<td>0.017</td>
<td>25.5</td>
<td>22.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cowpeas, rye and vetch</td>
<td>0.50 0.42</td>
<td>0.019</td>
<td>0.020</td>
<td>26.5</td>
<td>22.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leighty and Shorey (85), Anderson and Byers (9), and McLean (99) have shown that the variable carbon-nitrogen ratio of soils makes unreliable the use of a factor to convert organic carbon to organic matter. For this reason, and due to the presence of charcoal in the soil, the term carbon is used except where the term organic matter is applied in the broadest sense.

In the six years of the experiment a very appreciable loss of carbon has occurred on each of the forty-eight plats irrespective of treatments and management; consequently the averages show only losses. These losses represent from sixteen to twenty-seven per cent of the total carbon present at the beginning of the experiment. The use of rye and vetch has resulted in a smaller loss under both systems of management. There are losses of nitrogen on all plats which were left fallow during the winter season; these were slightly greater where the crops were turned as green manures. Cowpeas followed by a winter cover show a slight gain in nitrogen, the gain being the same for the two systems of management.

When winter fallow is practiced, the stubble and 6-8-4 system is slightly superior to the green manure system in regard to the conservation of organic carbon and nitrogen. The two systems are of equal value when a winter
applicable to commercial fertilizer rates, while comparable
stimulation of growth conditions and hence increased moderate
rise, better and better the crops have been applied to
summer drop of peat mixture and a mixed winter cover of
in September tangle where percentage have been used with an
appreciable decrease in the ratio have been exhausted

itself.

with probability of error will have been
at which the ratio of decrease in ratio that some years
covery of nitrogen fertilizer for plant growth. The latter
ratios. The reduction in ratio should result in a greater
are associated, in a general way, with the decreased
coast and action during the second round of the rotation
management. It is thought that the increased yield of
show that there is no appreciable difference due to
systems upon the ratio for the years 1926 to 1924, and
give a direct comparison of the effect of each of the
plates (fig.) interestingly of the above shown. The data
need, as compared with the 2-6-g and green manure
plates (fig.) on which the 2-6-g and stubble management was
the change in the ratio observed as an average of all

cover is needed.
Figure 6. Change in carbon-nitrogen ratios for average of all plats of the 6-8-4 and stubble series vs. 2-8-4 and green manuring series, for original samples of May, 1928, to samples of March, 1924. Intermediate dates represent samples taken during October of the preceding year indicated.
treatment has resulted in an increase in the carbon and nitrogen of the soil which has been accompanied by a decrease in the ratio of the two. Although the amount of total nitrogen added has been beyond that encountered in ordinary fertilizer practice, there still exists a decided tendency toward nitrogen starvation, especially with the summer crop. It is interesting to note that a reduction in the ratio can be accomplished at the same time the organic matter content of the soil is increased. If the same ratio can be established at two different levels of organic matter content then the true effects of the organic matter on soil problems may be obtained.

Nitrate-Nitrogen Data

Determinations of the nitrate-nitrogen for the plots throughout the summer season of each year, for which tables are not given, showed a low average content. Figure 7 depicts the average nitrate-nitrogen content during 1933 for the 6-8-4 and the 2-8-4 combinations; these have been calculated in the same way as the carbon-nitrogen ratios. The 1933 season was chosen because leaching was not pronounced. Experience during other seasons has shown that the differences exhibited are minimized greatly when excessive rainfall occurs. The generally increased supply of available nitrogen due to
Figure 7. Nitrate-nitrogen in soil of 6-8-4 and stubble plots vs. 2-8-4 and green manure plots during 1933. Last half of fertilizer applied June 15. Stubble and green manures turned August 18.
the use of the 6-8-4 fertilizer has produced larger average yields of all crops.

Residual Carbon and Yields

Salter and Green (123), and White (167), have found that the yields of crops are correlated with the organic matter content of the soil. Figure 8 presents the relations between the carbon content of the plats at the end of the second round of the rotation and the average yields of corn and cotton for the particular plat. Each plat is treated separately. Tabular data are not given. The relations are masked by the influence of the nitrogen of the fertilizer, but there is a loose correlation between yields and carbon content; it is somewhat better for the green manure and 2-8-4 system than for the stubble and 6-8-4.

Conclusions

A comparison has been made of legumes stubble with the full crops turned as green manures when used in a rotation with corn and cotton. Crops grown on stubble plats received a fertilizer of a 6:8:4 ratio, while those grown on the green manure plats received a 2:8:4 fertilizer. From data obtained on the Norfolk sand, under the conditions of the experiment, the following conclusions are drawn:

(1) A 6:8:4 fertilizer applied to crops, with the
Figure 8. Relation of yields of corn and cotton, to residual total carbon content of plats, when grown on legume stubble and supplemented with 6-8-4 fertilizer, as compared with legumes turned as green manure and fertilized with 2-8-4.
stubble of soybeans, velvet beans, and cowpeas turned, produced larger yields than a 2:8:4 fertilizer supplementing the same crops used as green manures, all plats being left fallow during the winter.

(2) The use of a winter cover of rye and vetch, following either cowpea stubble or cowpeas turned, has increased the yields of the succeeding crops; i.e., corn and cotton. The yields are appreciably greater than following winter fallow. The cowpea stubble-winter cover-6:8:4 combination has produced the highest average yields of all crops.

(3) The use of the stubble and 6:8:4 combination results in a slightly greater conservation of carbon and nitrogen than does the green manure and 2-8-4. The two systems are practically of equal efficiency where a winter cover follows both cowpea-stubble and cowpeas turned as a green manure.

(4) Yields of corn and cotton are but loosely associated with the carbon content of the soil at the end of the second round of the rotation. This correlation becomes less apparent when increased quantities of nitrogen are applied in the form of commercial fertilizer.

(5) There has been a considerable reduction in the
carbon-nitrogen ratio of the soil. This is thought to be associated with an increase in the availability of the nitrogen present.

(6) Yields are influenced more by the nitrogen of the fertilizer than by the management of the legumes.

(7) A winter cover of rye and vetch plays an important part in obtaining the greatest effect from legume residues.

When winter fallow is used, the 6:8:4-stubble system is superior to the 2:8:4-green manure system in the following respects: (a) greater yields of legumes, corn, and cotton are produced, and (b) a slightly better conservation of carbon and nitrogen is attained. The systems are essentially of equal value when a winter cover crop of rye and vetch follows the legume residues. The winter cover apparently is of greater value in the conservation of organic matter than is the summer legume. Both systems have effected a marked reduction in the carbon-nitrogen ratio of the Norfolk sand. A larger cash return accompanies the use of the 6:8:4-stubble system.
THE EFFECT OF FERTILIZER RATIOS ON THE YIELD AND COMPOSITION OF SOYBEAN HAY

The data which have been presented indicate that a system of fertilization and crop management can be employed for the Norfolk sand which allows the use of the summer legume as a forage crop rather than as a green manure. This system apparently increases the capacity of this soil for crop production. It is desirable that the forage which is made available be of good quality. It is reasonable to assume that fertilizers will affect the composition of the plant to a greater extent on a sandy soil than on one of heavier texture.

Literature Cited

The effect of fertilizers upon the quality of crops has been of much interest in recent years. The survey (106) entitled "American Fertilizer Practices" led to a resume of the literature by Hartwell (62), in 1932. In the former work, 75.2 per cent of the farmers interviewed stated that fertilizers improved the market quality of crops and 54.7 per cent agreed that fertilizers improved the feeding quality.

Maynard (94) gives an excellent review of the literature on the relation of mineral deficiencies to the
an interpretation of results only if they are concluded
conclusions to be conclusions while the study
advantages: identification and sand cultures. Each medium has the
outlines and sand cultures and soils. In the
in which the plants have been grown. 1.0. Solution
plants can be described by a medium of the

The interpretations-deciding with the notation of

have been done

for the many experiments encountered in the work which
influence the interpretations of plant growth, or in yield. The many factors which
compensation at various stages of growth, in the phytometer
the plant may be affected as to the rate of growth, in the
influence are the factors which influence plant growth.

support, temperature, light intensity factors, and the supply of

nutrients (120) states that the soil supply water

160,000 acres in 1927 to 2,600,000 acres in 1939.

an increase in the area where to the crop
and needs purposes is shown by the
The growing importance of soybeans for both

appropriate supplements of feed and the

As recommended by the chief of the crop to be red and

that the troubles due to minor or detrimental can be

diseases and abnormal growth of animals. He concludes

- 50 -
for a period of years in order to obtain the average effects of all factors. Miller (101) states that nutrient solution studies are preferable to soil studies, but also points out the necessity for controlling the conditions under which the work is done. Bakke and Brämmann (43) found that wheat plants exhibit a different nutrient requirement when grown in water cultures as compared with sand cultures. Miller (101) points out the difficulty of applying results obtained from such studies to soils.

The number of elements conceded to be needed by chlorophyll-bearing plants for normal growth has been increased within recent years. Thatcher (154) lists carbon, hydrogen, oxygen, nitrogen, sulphur, phosphorus, potassium, calcium, magnesium, and iron as the elements necessary for a plant to reach maturity. It is pointed out that nearly all the elements functioning in plant nutrition appear in the first four series of the Periodic Table. The elements are classified by groups, according to their primary functions in the plant, but with some overlapping due to multiple functions. The various headings are: (1) energy exchange elements, (2) energy storers, (3) translocation regulators, (4) oxidation-reduction regulators, and (5) those whose functions are as yet unknown.
In 1927, Cooper and Wilson (35) found good agreement between the electrode potentials of the elements and their absorption by plants. A classification of plants can be made on this basis. Some common legumes, such as alfalfa and sweet clover, belong to the class requiring the elements of high voltage, and cotton is an example of an important crop belonging to the class adapted to poor soils where elements of lower voltage predominate. More recently (36) it has been stated that plants requiring high-potential elements; i.e., potassium and calcium, in large amounts are capable of synthesizing organic compounds which can supply large amounts of energy. The reverse is likewise true. Cooper (33) states that large amounts of metallic elements below calcium in the electromotive series are not to be found in plants grown on non-saline soils. Analyses of thirty-four samples of pasture grasses give an average content as follows: K₂O, 1.35 per cent; CaO, 0.22 per cent; and MgO, 0.14 per cent. The absorption of strong ions may limit that of weak ions, even of essential elements such as magnesium, manganese, and iron. Legumes contain more Ca than K while the reverse is true for cereals. The quality of radiant energy utilized by the plant may control the absorption of ions.
Thomas (157) explains a preponderance of cations or anions in a plant on the basis of the nature of the electric charge residing on the roots. In "normal soils"; i.e., those of pH 5.5 to 7.0, the roots are negatively charged which results in an abundant absorption of positive ions, and the order of absorption is that of the Hofmeister lyotropic series; the order of decreasing absorption for the most important positive ions being H, K, Na, Mg, and Ca; the order for the anions is: NO₃, Cl, PO₄, and SO₄. The series does not hold beyond the range indicated. Below a pH value of 5.5 the anions are absorbed to a greater extent than cations due to a positive charge on the roots. This would explain the variable results of investigations with ammonium sulphate and nitrate of soda.

The citations offered emphasize the complexity of the processes of plant nutrition. Apparently the results obtained are specific only under the conditions pertaining to the particular experiment, and an application of the results can be made to other conditions only in a very general way.

The nutrition of a leguminous plant is further complicated by its ability to obtain nitrogen through symbiotic relations. The many factors influencing
nodulation in turn affect the relation of nitrogen fertilizers to the plant, and secondarily the absorption of other elements. Albrecht (3, 4) and Albrecht and Horner (6) find the function of calcium is that of a plant nutrient rather than for the control of reaction, and that it is more important in nodulation than is the control of the pH. Lipman and Blair (90) found that liming increased nodulation ten times, and that the yields of seed and hay, and the nitrogen content of the hay were increased in this way. That sulphur stimulates nodulation has been demonstrated by Miller (102), Rudolphs (119), Neller (107), and others. Stewart (146) attributes the effect of sulphur to an increased availability of the phosphorus of the soil. Helz and Whiting (63) found that potassium and phosphorus increased the nodulation of soybeans, and Allison (7) points out that the carbohydrate supply of the plant also has an effect; if the supply in the roots is low, due to rapid growth induced by nitrogen fertilizers, then inoculation is retarded. This explains the inhibitory effect of an abundance of available nitrogen in the soil as recorded by many workers. Under some conditions a nitrogenous fertilizer may increase nodulation; this was shown by Hartwell (60) who obtained positive results with sodium nitrate, and by Göbel (56) who
called with a decreased intake of nitrogen. A generalization is that an increased absorption of phosphates and potash are beneficial for the production of growth. Though there is an increase in the potassium content, it is not economically applied to agriculture to increase the potassium content. Therefore, it is not greatly increased. The effect may be a direct one.

The effect associated with increased nutrition, ammonia synthesis due to limiting the absorbed ammonium and its the nitrate content of the plant and certain other parameters. It varies with the age of the plant, and the red and granulom are decreased by ammonium and increased by nutrition and ammonium. But larger amounts were considered harmful.

Grant (80) found small amounts of nitrate beneficial. Read and Smith (69) found small amounts of nitrate with ammonium. Read and
and Bartholomew (75) report that a high nitrogen content is associated with a low potassium content of the cowpea plant. Kelly (82) in a review of researches on fertilization indicates that the application of nitrogen fertilizers may be of benefit to legumes. An increased nitrogen content is associated with nitrogen fertilization by MacTaggart (92), although the percentage was not influenced as much as the total nitrogen produced by the crop. Potassium decreased the nitrogen content while phosphorus increased it markedly. In a statistical treatment of results obtained with mangolds, Kalamaker (80) found a close correlation between nitrogen and potassium, the response from one being dependent upon the other. Austin (10) found that the influence of fertilizer treatment upon the soybean plant varied with the type of soil; on one soil type all treatments increased the nitrogen content of the soybean plant. In general, the soil type influenced the composition of the hay more than did the fertilizer treatment. Kornfeld (82) found that phosphates tended to overcome the effect of inoculation upon the soybean plant.

Cockeafair (29), in discussing the role of phosphorus in plant nutrition, lists five functions proposed in recent years: (1) the reduction of nitrates in the roots,
(2) as an aid in the synthesis of starch, (3) control of respiration, (4) nuclear division, and (5) selective adsorption. There is a definite linkage with the hexose sugars; thus it functions in the energy changes of the plant.

Using magnesium in common with all treatments, Austin found that sulphur reduced the phosphorus content of soybean hay while the addition of potassium, or potassium and nitrogen, increased the content appreciably. Blair and Prince (18) obtained an increased phosphorus content of mixed hay by a phosphate application. Summarizing various experiments, they concluded that phosphorus fertilization had but little effect upon the phosphorus content of crops. Eisenmenger (42) states that magnesium and phosphorus availability are closely associated. Phosphates increased nodulation and the protein content of soybeans, as shown by Fellers (46) who obtained increased hay yields with various combinations of phosphorus, nitrogen and potassium. Hartwell (61) has shown that applications of phosphorus to the soil result in an increased concentration of the element in the juices of plants. Hoagland (69) and Parker (112) conclude that a very low concentration of phosphorus will suffice for plant growth if the supply is continuous. Parker (112)
has shown that the concentration of carbon dioxide in the soil may influence the intake of this element. Hartwell (60) states that soybeans have a relatively high feeding power for phosphorus and a high feeding power for potassium. Brown and Skinner (22) found a correlation between the citric acid-soluble phosphorus in soils and the yields of crops.

Mitchell et al. (103), in 1928, found no increase in the P₂O₅ content of soybean hay with a fertilizer containing four per cent P₂O₅ but obtained an increase when the fertilizer contained ten per cent.

The presence of calcium in superphosphate complicates the study of the effect of this material on plant growth. The relation of calcium to nodulation and nutrition and the effect of lime has been pointed out. Thatcher classifies calcium as one of the translocation regulators; it takes part in the synthesis of fats and proteins and helps to control rates of reactions and permeability. Burrell (25) cites the tendency of roots to lose the epidermis when the element is deficient, and also the tendency for nitrate accumulation, indicating that it plays a part in the reduction of nitrates in the plant. This latter point is also pointed out by Nightingale et al. (108). Danne (40) states that calcium is not
Tncrease force was associated with an increase in the ratio
heat of At. (9) found that a lack of patibility of
a large amount of attention in studies of natural
ion. The osidmophosphate ratio to force has increased

Kurtin by Tius (192)
the osidm or osidmum supplied through having been set
show that osidmum or osidmum is dependent upon
studies that there is abundant evidence to
function. It reduces the absorption of nitrogen.

Measurement done in addition to the own physiological
the extent of osidmum amounts of the ammonium and
important which element is not as it counter-balances
need domonite. With (1910) these osidmum are the most
various osidmum-bearring materials as the most
which in the osidmum content of soles and other algae with
need for osidmum, which (192) obtained a direct increase
found in protein formation were thought to increase the
coalition and the nutrition content of plants. Plant foods
Harlkm and Kuxe (194) found a close relation between the

and coalition in the plant, according to Koeter (65)

a high concentration of sodium with decrease both possession
that osidmum correlates the amount of possession absorbed.

possession can function in the place, according
increases in the buffer system of the plant, as

- 69 -
and this was due to an increase in the calcium content and a decrease in the phosphorus content. Eckles et al. (41) associated mineral deficiency symptoms with a wide ratio in alfalfa, timothy and prairie hay; this was due to a low phosphorus content. Bonemeal as a supplement overcame the resulting deprived appetite. Evans (45) found a low ash content associated with calcium deficiency in the skeletons of young pigs. The calcium-phosphorus ratio in the bones was practically the same for normal and deficient animals. Mineral deficiencies in range cattle have been corrected by Schmidt (124) by supplemental feeding. From data given by Mitchell et al. (103), it can be shown that increasing amounts of phosphorus in the fertilizer cause a decrease of both the CaO and P₂O₅ content of oats, and also causes a reduction in the CaO:P₂O₅ ratio; with soybeans, however, they are accompanied by increases of both CaO and P₂O₅, with the ratio remaining the same. Variations in the ratio for soybeans range from 1.84 to 4.03, by some calculations made from the data given; this depended upon the variety, and the location at which they were grown.

Magnuson (93) has found that the amount of P₂O₅ in the blood of range cattle is a reflection of the P₂O₅ content of the feeds consumed.

Lipman (86) reviewed critically the question of the
soppression due to the position in manner of

sophisticated (i.e. it is necessary to the significance of
soppression may be interpreted by the interaction cochlear
which have been investigated experimentally and therefore
function in cardiodynamics and been

out as a component of the buccal system

serve in perception the sense of

function in the connection of attention and positions, and to

animals are interpreted by cooper and willson (1962) potassiasm.

exists of in the posession of excessive arsenic affected

reason * a high potassiasm common among the same

in potassiasm them castration while the reverse is true for

cooper (1957) points out that caesarean section are in

in plants almost exclusively in the water soluble form.

in plants almost exclusively in the manner of growth. It exists

depends upon that factor alone. It serves as a very potent agent of possible

important physiological function of potassiasm by promoting and

consideration of potassiasm by plants is described as an

exactly, * it is seen that the amount supplied in the soil

that the concentration within the plant depends on a great

which wide, and much evidence has accumulated to show

the variation in the potassiasm content of plants.

support the theory

and concluded that there was little or no evidence to

existence of an optimum concentration ratio for plants

- 91 -
necessary for the production of crops of quality (62).

There is an inverse relationship between the calcium and potassium contents of plants. This is described by Fonder (47) as a physiological balance, and is supported by the work of Dunne (40), and others. Hoagland (70) points out that magnesium is also involved in this relation; there is also a reciprocal relation between light and potassium.

Potash deficiency is a problem of increasing importance in some sections of the United States and abroad. Cooper (34), McMurtrey (100), and Kornfeld (84) have described the symptoms induced by a deficiency of this element for a wide variety of crops. Liming reduced the availability of the potash in the soil, as shown by MacIntire et al. (91). Gilbert et al. (54) created a manganese deficiency by liming a soil to neutrality; the addition of a manganese salt to overcome the manganese deficiency in turn induced a potash deficiency.

The crops grown on the sand-hill phase of Norfolk sand develop symptoms of potash, magnesium, and calcium deficiencies under special conditions of rainfall and fertilizer treatment. The existence of a magnesium deficiency on a related but more fertile area at the
Sandhill Station was established by Mr. J. H. Hunter, working under the direction of Dr. T. S. Buie. Subsequent investigations by Dr. E. P. Cooper, and his associates of the South Carolina Experiment Station, have done much to make the station outstanding in that line of work in the Southeast.

The effect of the fertilizers upon the composition of soybean hay and seed is complicated by the turning of the crops as green manures. It was desirable that a study be made of the effect of the soybean plants, produced with different ratios, upon the organic matter and the pH of the soil. The literature resume, as given for the green manure-fertilizer experiment, is pertinent to this phase of the work.

1. The triangle system of fertilizer study.

The triangle system, as applied to fertilizer investigations by Schreiner and Skinner (129) (elaborated upon in 131), is of particular value in pioneer investigations. It has been used by Tottenham (158), Shive (135), Harris (58), McCall (95), Bear (14), and others. A favorable critical review
has been made by Espino (44). Hibbard (66) concluded that the triangular system is inadequate as an aid in determining the best nutrient ratio for wheat, oats, and corn grown in soil cultures.

A triangular diagram is shown in Figure 9. The apices of the equilateral triangle represent a fertilizer containing one element only; i.e., nitrogen, phosphoric anhydride, or potassium oxide. Each side is divided into five equal parts with lines connecting the points of the three sides. The eighteen points and three apices are numbered giving a total of 21. This is called a twenty-one point triangle and represents as many fertilizer ratios. In this experiment the total amount of plant food is fifteen per cent. Thus the apices starting with P₂O₅ represent the 0:15:0, 0:0:15, and 15:0:0 ratios. As one proceeds from the P₂O₅ apex (No. 1) each successive parallel line represents a decrease of three per cent in the P₂O₅ content, but an increase of the same percentage for nitrogen and potash. Flats 2 and 3 contain twelve per cent P₂O₅; 4, 5 and 6 contain 9 per cent, and so on. The base lines consequently represent a mixture of P₂O₅ and K₂O with varying quantities of the two, but no nitrogen. The side of
Figure 9. Triangle giving the twenty-one fertilizer ratios, of fifteen percent plant food, as used in the experiment.
the triangle opposite the A2O apex gives ratios of only P2O5 and nitrogen, and that opposite the P2O5, a mixture of nitrogen and K2O. The points of intersection inside the triangle represent ratios containing all three of the elements; e.g., No. 5 represents a 3:9:3 ratio; No. 14, a 9:3:3; and No. 12, a 3:3:9. Figure 9 gives the number of the "plat" and corresponding ratio.

A presentation of data by means of the triangular diagram allows one to follow variations in yields or changes in composition due to small variations in the ratio. By averaging the data from plats along a particular line, one obtains an average value attributable to the percentage of plant food represented. Both methods will be used in this treatment.

Experimental

1. Plat outline.

Figure 10 is the plat diagram. Each plat receiving a particular fertilizer treatment is 433 feet long and nine feet wide. The area is divided into three sections so that each fertilizer treatment and the checks are represented in each section. The plants grown on the central section furnished samples for
Figure 10. Flat diagram of triangle fertilizer experiment with soybeans.

<table>
<thead>
<tr>
<th>Section A</th>
<th>Section B</th>
<th>Section C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed threshed and hay returned to the plat.</td>
<td>Samples of hay taken for analysis. Turned as green manure.</td>
<td>Hay removed and stubble turned.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>0-15-0</th>
<th>0-0-0</th>
<th>10</th>
<th>9-6-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0-12-5</td>
<td>0-0-0</td>
<td>11</td>
<td>0-3-12</td>
</tr>
<tr>
<td>3</td>
<td>5-12-0</td>
<td>0-3-9</td>
<td>12</td>
<td>5-3-9</td>
</tr>
<tr>
<td>4</td>
<td>0-9-6</td>
<td>6-3-6</td>
<td>13</td>
<td>9-3-3</td>
</tr>
<tr>
<td>5</td>
<td>5-9-3</td>
<td>6-3-6</td>
<td>14</td>
<td>12-3-0</td>
</tr>
<tr>
<td>6</td>
<td>6-9-0</td>
<td>0-0-15</td>
<td>15</td>
<td>0-0-15</td>
</tr>
<tr>
<td>7</td>
<td>0-6-9</td>
<td>5-0-12</td>
<td>16</td>
<td>6-0-9</td>
</tr>
<tr>
<td>8</td>
<td>5-6-6</td>
<td>9-0-6</td>
<td>17</td>
<td>9-0-6</td>
</tr>
<tr>
<td>9</td>
<td>5-6-7</td>
<td>12-0-3</td>
<td>18</td>
<td>15-0-0</td>
</tr>
<tr>
<td>10</td>
<td>9-6-0</td>
<td>0-0-0</td>
<td>Ck-1</td>
<td>0-0-0</td>
</tr>
<tr>
<td>Ck-2</td>
<td>15-0-0</td>
<td>0-0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$N-P_2O_5-K_2O$
analysis, and the crops were turned as a green manure. This was done each year when the plants were in the late bloom and early pod stage. At the same time Section B was handled, the hay was removed from an end-section and the stubble turned. The plants on the other end-section were allowed to mature, were cut, the seed threshed and the threshed hay returned to the proper plat. Samples of seed were preserved for analysis, nitrogen and oil being determined.

The 1928 crop was grown for yields only but the management of the crops was as indicated. Soil samples were taken semi-annually starting in the spring of 1929, and were analyzed for total carbon, nitrogen, and the pH value determined; the methods used are those outlined in the green manure-fertilizer experiment.

The hay samples were analyzed by the methods of the Association of Official Agricultural Chemists, except for potash which was determined according to Treadwell and Hall, Vol. II (Seventh Edition, 1928), pages 64 to 66.

Discussion

A study of the quality of a forage is necessarily associated with the quantity factor. The production of
quality may be accompanied by a reduction in yield such as to render it prohibitive. Yield data are of value in indicating the plant-food elements which are lacking in the soil. It is reasonable to assume that a rational program would be to strive for a balance between quantity and quality of forage plants.

1. Yields data.

The yields of hay are given in Table 5 for each year of the period 1928 to 1933. The average yields for the six years are also included.

During the first season the 9:3:3 ratio produced the highest yield; in 1929, the 6:3:6 ratio; in 1930, 1931, and 1932, the 3:9:3; and in 1933, the 0:12:3 ratio. The yields, in general, were lowered from attacks of Sclerotium rolfsii. They are shown graphically in Figures 11 to 16, inclusive.

The average yields are given by means of the triangle, in Figure 17. It is thought that these averages should be discussed rather than the yearly data, except to point out the general tendency toward an increased need for phosphate with a decreased need for potash. Moisture has been a limiting factor in forage production from 1930 to 1933, owing to sub-normal rainfall during those years. The largest
Table 3. Yearly and average yields of hay produced on Norfolk sand with incomplete and complete fertilizers for the period 1928 to 1932. Data obtained from Section B.

<table>
<thead>
<tr>
<th>Plat</th>
<th>N-P<sub>2</sub>O<sub>5</sub>-K<sub>2</sub>O</th>
<th>1928</th>
<th>1929</th>
<th>1930</th>
<th>1931</th>
<th>1932</th>
<th>1933</th>
<th>Av.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-15-0</td>
<td>5158</td>
<td>2110</td>
<td>972</td>
<td>1040</td>
<td>1072</td>
<td>940</td>
<td>1882</td>
</tr>
<tr>
<td>2</td>
<td>0-12-3</td>
<td>5158</td>
<td>2580</td>
<td>1224</td>
<td>1600</td>
<td>2472</td>
<td>2620</td>
<td>2609</td>
</tr>
<tr>
<td>3</td>
<td>3-12-0</td>
<td>6264</td>
<td>2848</td>
<td>1620</td>
<td>2140</td>
<td>2412</td>
<td>2160</td>
<td>2907</td>
</tr>
<tr>
<td>4</td>
<td>0-9-6</td>
<td>6624</td>
<td>2646</td>
<td>1404</td>
<td>1680</td>
<td>1742</td>
<td>1900</td>
<td>2666</td>
</tr>
<tr>
<td>5</td>
<td>3-9-3</td>
<td>6532</td>
<td>2915</td>
<td>1944</td>
<td>2580</td>
<td>2613</td>
<td>1980</td>
<td>3094</td>
</tr>
<tr>
<td>6</td>
<td>6-9-0</td>
<td>6624</td>
<td>2714</td>
<td>1584</td>
<td>2280</td>
<td>2077</td>
<td>1540</td>
<td>2803</td>
</tr>
<tr>
<td>7</td>
<td>0-6-9</td>
<td>4752</td>
<td>1608</td>
<td>1152</td>
<td>1140</td>
<td>871</td>
<td>940</td>
<td>1744</td>
</tr>
<tr>
<td>8</td>
<td>3-6-6</td>
<td>6110</td>
<td>1910</td>
<td>1296</td>
<td>1500</td>
<td>1843</td>
<td>1820</td>
<td>2412</td>
</tr>
<tr>
<td>9</td>
<td>6-6-3</td>
<td>5610</td>
<td>2111</td>
<td>1764</td>
<td>1840</td>
<td>2178</td>
<td>2060</td>
<td>2594</td>
</tr>
<tr>
<td>10</td>
<td>9-6-0</td>
<td>5530</td>
<td>2211</td>
<td>1548</td>
<td>1880</td>
<td>2010</td>
<td>1100</td>
<td>2430</td>
</tr>
<tr>
<td>11</td>
<td>0-3-12</td>
<td>3240</td>
<td>1943</td>
<td>396</td>
<td>980</td>
<td>670</td>
<td>540</td>
<td>1295</td>
</tr>
<tr>
<td>12</td>
<td>3-3-9</td>
<td>4464</td>
<td>3250</td>
<td>1260</td>
<td>1780</td>
<td>1809</td>
<td>1800</td>
<td>2394</td>
</tr>
<tr>
<td>13</td>
<td>6-3-6</td>
<td>5190</td>
<td>3284</td>
<td>1620</td>
<td>2490</td>
<td>2546</td>
<td>2260</td>
<td>2914</td>
</tr>
<tr>
<td>14</td>
<td>9-3-3</td>
<td>6696</td>
<td>2814</td>
<td>1692</td>
<td>2580</td>
<td>2412</td>
<td>1860</td>
<td>2975</td>
</tr>
<tr>
<td>15</td>
<td>12-3-0</td>
<td>6408</td>
<td>2848</td>
<td>1872</td>
<td>2520</td>
<td>2512</td>
<td>1260</td>
<td>2840</td>
</tr>
<tr>
<td>16</td>
<td>0-0-15</td>
<td>3090</td>
<td>1709</td>
<td>288</td>
<td>880</td>
<td>570</td>
<td>580</td>
<td>1155</td>
</tr>
<tr>
<td>17</td>
<td>3-0-12</td>
<td>4104</td>
<td>2714</td>
<td>540</td>
<td>1200</td>
<td>972</td>
<td>720</td>
<td>1708</td>
</tr>
<tr>
<td>18</td>
<td>6-0-9</td>
<td>4104</td>
<td>5049</td>
<td>1116</td>
<td>2040</td>
<td>1742</td>
<td>1520</td>
<td>2229</td>
</tr>
<tr>
<td>19</td>
<td>9-0-6</td>
<td>6048</td>
<td>3273</td>
<td>1440</td>
<td>2200</td>
<td>2178</td>
<td>1520</td>
<td>2777</td>
</tr>
<tr>
<td>20</td>
<td>12-0-3</td>
<td>6120</td>
<td>1407</td>
<td>936</td>
<td>2000</td>
<td>21</td>
<td>1040</td>
<td>1921</td>
</tr>
<tr>
<td>21</td>
<td>15-0-0</td>
<td>6264</td>
<td>1709</td>
<td>576</td>
<td>1340</td>
<td>9</td>
<td>220</td>
<td>1666</td>
</tr>
<tr>
<td>Av. of Checks</td>
<td>0-0-0</td>
<td>2556</td>
<td>1156</td>
<td>194</td>
<td>300</td>
<td>74</td>
<td>310</td>
<td>765</td>
</tr>
</tbody>
</table>
Figure 11. Yields of soybean hay in pounds per acre produced on Norfolk sand for the year 1928. Data are for section B.
Figure 12. Yields of soybean hay, in pounds per acre, on Norfolk sand for the year 1929. Data are for Section E.
Figure 13. Yields of soybean hay, in pounds per acre, produced on Norfolk sand for the year 1930. Data are for Section B.
Figure 14. Yields of soybean hay, in pounds per acre, produced on Norfolk sand for the year 1931. Data are for section B.
Figure 15. Yields of soybean hay, in pounds per acre, produced on Norfolk sand for the year 1932. Data are for Section B.
Figure 16. Yields of soybean hay, in pounds per acre, produced on Norfolk sand for the year 1933. Data are for Section B.
Figure 17. Average yields of soybean hay, in pounds per acre, produced on Norfolk sand for the period 1928 to 1933, inclusive. Data are for Section B.
average yield for the six years has been produced on the 3:9:3 plat; the next highest has been from the use of the 9:3:3 ratio, with the 6:3:6 and 3:12:0 ratios of equal standing.

The most definite reflection of the effect of the fertilizers used upon the yields, as depicted in Figure 17, is shown with those containing no nitrogen or a small amount of this element. If one follows the base line of the triangle from the 0:0:15 ratio to the left, or along the three per cent nitrogen line. starting with the 3:0:12 ratio, it is seen that increased yields are obtained until the 0:12:3 and 3:9:3 ratios are reached; i.e., the three per cent potash line. This indicates that, when the nitrogen content of the fertilizer is held constant, a decrease in K_2O accompanied by an increase in P_2O_5 in the fertilizer results in larger yields. With mixtures of nitrogen and potash only, the yields converge upon the 9:0:6 ratio. When the P_2O_5 content is held at three per cent the convergence is toward the 9:3:3 ratio; at six per cent the direction is toward the 6:6:3; and at nine per cent P_2O_5 the yields converge upon the 3:9:3 ratio. These data point toward a ratio low in potash for maximum production of forage.
For mixtures containing nine per cent potash the high yielding plat was the 3:3:9; for six per cent, 6:3:6; for three per cent, 3:9:3; and for 0 per cent potash, the best ratio is the 3:12:0. This last ratio ranked third with the 6:3:6 for yield and was only slightly inferior to the 3:9:3 and 9:3:3 ratios.

The triangular analysis of the average yield of hay is given in Table 4. When the yields are averaged according to the percentage of the element in the fertilizer; i.e., 15, 12, 9, 6, 3 or 0 per cent, which includes both complete and incomplete ratios, it is seen that the ratio indicated for highest yields is 9:9:6 or 9:9:3. When reduced to the fifteen per cent basis this becomes a 5.6:5.6:3.7 or 5.6:5.6:2.9. This ratio is a little higher in nitrogen and potash, and lower in phosphoric acid than that obtained by averaging the four highest-yielding ratios used in the experiment.

That the need for phosphorus is greatest, with nitrogen and potash following in the order given, is shown by the yields of 3094, 2976, and 2394 pounds, respectively, for the 3:9:3, 9:3:3, and 3:3:9 ratios.

The average yield for all the complete fertilizers is 2731 pounds as compared with 765 pounds for the average of the checks. The greatly diminished yields
Table 4. Yields of soybean hay, seed and oil in pounds per acre, produced on Norfolk sand by incomplete and complete fertilizers; also averages according to the percentage of a particular fertilizer ingredient. Data are for the period 1928 to 1933.

<table>
<thead>
<tr>
<th>Effect of:</th>
<th>Plates Averaged</th>
<th>Average Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pounds Per Acre</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hay Seed Oil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Per Cent:</th>
<th>21</th>
<th>1686 128 23.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15.20</td>
<td>2361 181 33.10</td>
</tr>
<tr>
<td>12</td>
<td>10.14</td>
<td>2728 178 31.66</td>
</tr>
<tr>
<td>9</td>
<td>6,9,13,18</td>
<td>2635 171 29.10</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>3.5,8,12,17</td>
<td>2594 169 29.62</td>
</tr>
<tr>
<td>0</td>
<td>1,2,4,7,11,16</td>
<td>1892 154 26.70</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1882 107 18.40</td>
</tr>
<tr>
<td>12</td>
<td>2,3</td>
<td>2758 194 32.95</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>4,5,6</td>
<td>2855 137 32.00</td>
</tr>
<tr>
<td>6</td>
<td>7,6,9,10</td>
<td>2825 179 51.60</td>
</tr>
<tr>
<td>3</td>
<td>11,12,13,14,15</td>
<td>2435 158 27.96</td>
</tr>
<tr>
<td>0</td>
<td>16,17,18,19,20,21</td>
<td>1912 153 27.66</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1152 137 24.60</td>
</tr>
<tr>
<td>12</td>
<td>11,17</td>
<td>1502 150 23.20</td>
</tr>
<tr>
<td>Potash</td>
<td>9</td>
<td>7,12,18</td>
</tr>
<tr>
<td>6</td>
<td>4,6,13,19</td>
<td>2692 175 50.60</td>
</tr>
<tr>
<td>3</td>
<td>2,5,9,14,20</td>
<td>2639 198 34.88</td>
</tr>
<tr>
<td>0</td>
<td>1,3,6,10,15,21</td>
<td>2425 155 27.11</td>
</tr>
<tr>
<td>Complete Mixtures:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High N 9-3-3</td>
<td>14</td>
<td>2976 196 34.60</td>
</tr>
<tr>
<td>High P2O5 3-9-3</td>
<td>5</td>
<td>3097 205 35.20</td>
</tr>
<tr>
<td>High K2O 3-3-9</td>
<td>12</td>
<td>2394 129 24.60</td>
</tr>
<tr>
<td>All Complete</td>
<td>5,6,9,12,13,14</td>
<td>2731 150 51.58</td>
</tr>
<tr>
<td>N</td>
<td>9,15</td>
<td>2754 181 51.55</td>
</tr>
<tr>
<td>6</td>
<td>5,6,12</td>
<td>2634 175 36.53</td>
</tr>
<tr>
<td>P2O5</td>
<td>6</td>
<td>8.9</td>
</tr>
<tr>
<td>3</td>
<td>12,13,14</td>
<td>2761 168 29.83</td>
</tr>
<tr>
<td>K2O</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5,9,14</td>
<td>2689 198 34.60</td>
</tr>
<tr>
<td>Av. of Checks</td>
<td>0-0-0</td>
<td>765 60 10.40</td>
</tr>
</tbody>
</table>
of the checks during the last four years of the experiment indicate that the native fertility, which originally was very low, has been further depleted even though the crop has been turned as a green manure each year. The growth of soybeans on the central check plat in 1932, the lowest yield for any of the six years, is shown in Figure 18, and is to be compared with the 3:9:3 plat in Figure 19.

The yields for the 3:9:3, 9:3:3 and 3:12:0 plats are given graphically in Figure 20. There is no indication that the use of the incomplete ratio, 3:12:0, has resulted in a decreased fertility of the soil.

2. Composition of hay.

The hay samples were analyzed for nitrogen, phosphorus, potassium, calcium, the mixed oxides of iron and aluminum, magnesium, sulphur, manganese and the soluble ash. Average data are given for the first four elements for four years, and for the remainder for three years. These data, and the form in which the analyses are reported, are given in Tables 5 and 6. It is thought that only average data should be given as the differences due to seasonal variations would only serve to confuse the presentation.
Figure 18. Central check plat of Section 1, in 1932. The 0:3:12 plat is on the left and the 9:6:0 on the right. The plats are three rows wide.
Figure 19. The central three rows are of the 3:9:3 plat. On the left is the 6:9:0 plat, and on the right the 0:9:6.
Figure 20. Yields for 3-0-3, 3-12-0 and 9-5-3 plots, Section B, for period 1928 to 1933.
Table 5. Average yields of soybean hay, and the nitrogen, P₂O₅, K₂O, and CaO content as produced with incomplete and complete fertilizers on Norfolk sand.

<table>
<thead>
<tr>
<th>No.</th>
<th>Fertilizer Formula</th>
<th>Yield Green Hay Lbs./A</th>
<th>Composition of Hay - Air Dry Basis %</th>
<th>1928-33</th>
<th>1930-33</th>
<th>1930-33</th>
<th>1930-33</th>
<th>1930-33</th>
<th>1930-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-15-0</td>
<td>1862</td>
<td>5.29 2.25 0.58 0.66 2.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0-12-3</td>
<td>2609</td>
<td>5.70 2.10 0.59 0.82 2.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3-12-0</td>
<td>2307</td>
<td>4.88 2.41 0.59 0.70 1.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0-9-6</td>
<td>2666</td>
<td>4.57 2.07 0.64 1.42 1.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3-9-3</td>
<td>3094</td>
<td>5.10 1.90 0.62 1.15 1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6-9-0</td>
<td>2803</td>
<td>5.29 2.12 0.53 0.70 1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0-6-9</td>
<td>1744</td>
<td>4.72 2.05 0.66 2.13 1.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3-6-6</td>
<td>2412</td>
<td>4.93 1.88 0.59 1.59 1.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6-6-3</td>
<td>2594</td>
<td>4.86 2.03 0.57 1.14 1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9-6-0</td>
<td>2450</td>
<td>4.50 2.01 0.58 0.72 1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0-3-12</td>
<td>1295</td>
<td>4.71 1.93 0.65 2.28 1.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3-3-9</td>
<td>2594</td>
<td>5.27 1.72 0.59 1.85 1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6-3-6</td>
<td>2914</td>
<td>5.51 1.60 0.53 1.46 1.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9-3-3</td>
<td>2976</td>
<td>5.69 1.72 0.54 1.14 1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12-3-0</td>
<td>2840</td>
<td>4.85 2.06 0.52 0.68 1.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0-0-16</td>
<td>1153</td>
<td>4.89 1.66 0.61 2.23 0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3-0-12</td>
<td>1708</td>
<td>5.11 1.63 0.62 2.23 1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6-0-9</td>
<td>2229</td>
<td>4.45 1.62 0.55 1.93 0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9-0-6</td>
<td>2777</td>
<td>5.34 1.46 0.49 1.43 1.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>12-0-3</td>
<td>1921</td>
<td>5.41 2.01 0.48 1.25 1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>15-0-0</td>
<td>1586</td>
<td>5.80 2.06 0.45 1.10 1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ov. Av.</td>
<td>0-0-0</td>
<td>765</td>
<td>4.75 2.02 0.57 0.99 1.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Moisture content of air-dried material at 65°C in vacuum.
Table 6. Soluble ash, R2O3, Mn2O4, SO4, and MgO content of the hay, as produced with incomplete and complete fertilizers on Norfolk sand, for the years 1930, 1932 and 1933.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>R2O3</td>
<td>Soluble</td>
<td>H2O</td>
<td>Ash</td>
<td>MgO</td>
<td>Mn2O4</td>
<td>SO4</td>
</tr>
<tr>
<td>1</td>
<td>0-15-0</td>
<td>6.26</td>
<td>5.61</td>
<td>0.21</td>
<td>0.10</td>
<td>0.78</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0-12-3</td>
<td>5.90</td>
<td>4.45</td>
<td>0.38</td>
<td>0.09</td>
<td>0.67</td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2-12-0</td>
<td>5.58</td>
<td>4.79</td>
<td>0.35</td>
<td>0.10</td>
<td>0.77</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9-9-6</td>
<td>5.21</td>
<td>5.16</td>
<td>0.21</td>
<td>0.10</td>
<td>0.92</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3-9-3</td>
<td>6.49</td>
<td>4.91</td>
<td>0.16</td>
<td>0.07</td>
<td>0.98</td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6-9-0</td>
<td>5.55</td>
<td>4.50</td>
<td>0.25</td>
<td>0.07</td>
<td>0.81</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0-6-9</td>
<td>5.10</td>
<td>4.90</td>
<td>0.19</td>
<td>0.08</td>
<td>1.14</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6-6-3</td>
<td>4.74</td>
<td>5.10</td>
<td>0.13</td>
<td>0.08</td>
<td>0.92</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6-6-3</td>
<td>4.74</td>
<td>4.45</td>
<td>0.17</td>
<td>0.09</td>
<td>0.79</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>9-6-0</td>
<td>4.84</td>
<td>4.44</td>
<td>0.15</td>
<td>0.08</td>
<td>0.66</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0-3-12</td>
<td>5.13</td>
<td>5.77</td>
<td>0.21</td>
<td>0.08</td>
<td>0.88</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3-3-9</td>
<td>5.52</td>
<td>5.21</td>
<td>0.14</td>
<td>0.07</td>
<td>0.92</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>6-3-6</td>
<td>5.25</td>
<td>4.78</td>
<td>0.11</td>
<td>0.07</td>
<td>0.86</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>9-3-3</td>
<td>5.84</td>
<td>4.16</td>
<td>0.12</td>
<td>0.07</td>
<td>0.69</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12-3-3</td>
<td>5.22</td>
<td>4.19</td>
<td>0.17</td>
<td>0.08</td>
<td>0.62</td>
<td>0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0-0-15</td>
<td>4.96</td>
<td>5.67</td>
<td>0.25</td>
<td>0.09</td>
<td>0.95</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3-0-12</td>
<td>5.50</td>
<td>5.52</td>
<td>0.17</td>
<td>0.08</td>
<td>0.93</td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>6-0-9</td>
<td>5.13</td>
<td>4.69</td>
<td>0.18</td>
<td>0.08</td>
<td>0.83</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9-0-6</td>
<td>5.42</td>
<td>4.45</td>
<td>0.18</td>
<td>0.06</td>
<td>0.75</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>12-0-3</td>
<td>5.47</td>
<td>3.93</td>
<td>0.25</td>
<td>0.07</td>
<td>0.45</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>15-0-0</td>
<td>5.43</td>
<td>4.04</td>
<td>0.25</td>
<td>0.07</td>
<td>0.56</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ck. Av.</td>
<td>0-0-0</td>
<td>5.08</td>
<td>4.89</td>
<td>0.30</td>
<td>0.09</td>
<td>0.47</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Moisture content of air-dried material at 65° C. in vacuum.
These data are best presented graphically by means of the triangle. Those of nitrogen are given in Figure 21, of \(\text{P}_2\text{O}_5 \) in Figure 22, of \(\text{K}_2\text{O} \) in Figure 23, and of \(\text{CaO} \) in Figure 24.

a. **Nitrogen content.** An inspection of Figure 21 shows that the nitrogen content of the soybean plant has been influenced appreciably by the fertilizer used; the total variation is from 1.46 per cent to 2.41 per cent, the former being produced with a 9:0:6 fertilizer and the latter with a 3:12:0 fertilizer. As given in Table 3, the 3:9:3 ratio produced an average of 3094 pounds green material (619.4 pounds dry weight) per acre; the 9:3:3 ratio, 2976 pounds (595.2 pounds); and the 3:12:0, 2907 pounds (581.4 pounds). Using the nitrogen contents given in Figure 21, the weights of nitrogen per acre recovered in the hay, respectively, are: (1) 11.8 pounds for the 3:9:3; (2) 10.2 pounds for the 9:3:3; and (3) 14.0 pounds for the 3:12:0 ratio. The amounts of nitrogen applied in the fertilizers were: (1) 12 pounds in the 3:9:3, (2) 36 pounds in the 9:3:3, and (3) 12 pounds in the 3:12:0 ratio. Only in the last case does the amount of nitrogen recovered in the hay exceed that applied in the
Figure 21. Average per cent of nitrogen in air-dried soybean hay as produced on Norfolk sand for the period 1930 to 1933.
Figure 22. Average per cent of P₂O₅ in air-dried soybean hay, as produced on Norfolk sand, for period 1930 to 1933.
Figure 23. Average per cent K₂O in air-dried soybean hay, as produced on Norfolk sand, for the period 1930 to 1933.
Figure 24. Average per cent of CaO in air-dried soybean hay, as produced on Norfolk sand, for the period 1930 to 1932.
fertilizer.

That inoculation influences both the nitrogen content and the total nitrogen recovered per acre has been pointed out in the literature cited. The beans used for planting were inoculated for this experiment and examination each year showed the presence of nodules. It is debatable whether the high-nitrogen content of the 3:12:0 samples was due to an increased fixing power of the organisms as induced by this combination of nitrogen and phosphorus, or directly to the plant-food elements.

That the nitrogen content can be interpreted as a reflection of the fertilizer used is apparent from an inspection of Figure 21. When the nitrogen in the fertilizer is held constant at 0 or 3 per cent, and the potash and phosphate contents varied, it is found that an increase in the nitrogen content is obtained as the decrease in the potash of the ratio is accompanied by an increase in the phosphate content. The variation, with ratios containing only potash and phosphate, is from 1.66 to 2.25 per cent. With the nitrogen of the fertilizer held at three per cent, the percentage of nitrogen in the air-dried material is 1.65 for the 3:0:12 ratio, and increases
steadily to 2.41 with the 3:18:0 ratio. A discontinuity develops when the nitrogen content is held at six per cent. A slight decrease, from 1.68 to 1.60 per cent, takes place when the potash of the fertilizer is reduced from 9 to 6, and the K_2O is increased from 0 to 3 per cent. The order observed in the 0 and 3 per cent nitrogen lines is restored when the 6:6:3 ratio is reached, and the percentage of nitrogen for the 6:9:0 ratio is greater than for the 6:6:3. This continuity holds along the 9 and 12 per cent lines.

The variation in the nitrogen content of the hay resulting from a variation in the nitrogen and potash, with the phosphate held constant in the fertilizer, lacks continuity as in the case of the 6 per cent nitrogen line. Starting with the $N-K_2O$ line at the 9:0:6 ratio, one obtains an increase in the percentage of nitrogen by using the 12:0:3 and 15:0:0 ratios. These increases are due, presumably, to increased amounts of nitrogen in the fertilizer. This may be due, however, to the phosphorus or calcium contained in the cottonseed meal used as a source of one-third of the nitrogen, but other data do not substantiate this idea. This
possibility is inferred from the consideration of the effect of phosphate when the amount of K₂O is reduced, with the nitrogen held constant at 0, 3, 9, or 12 per cent. Again the nitrogen content increases as the field is shifted from the 9:0:6 ratio to the 0:0:15 ratio. When the P₂O₅ in the fertilizer is held constant, and the amounts of K₂O and nitrogen vary inversely, there is distinct evidence that the nitrogen exerts its effect when the potash content is below six per cent. This line of demarcation bisects the triangle starting between the 12:0:3 and 9:0:6 ratios and extending toward the base line to a point between the 0:12:3 and 0:9:6 ratios; i.e., between the six and three per cent potash lines. When the amount of potash is three per cent or less, increases in the nitrogen of the fertilizer result in an increased nitrogen content, except at the six per cent P₂O₅ line, while amounts of potash, six per cent or greater, cause increases in the nitrogen content of the hay.

When the potash content of the fertilizer is held constant at 12, 9, or 6 per cent, with the nitrogen and P₂O₅ contents of the fertilizer varying inversely, an increase in the amount of phosphate
applied causes an increase in the nitrogen of the forage produced. There is a break in this continuity when there is three per cent or no K₂O in the ratio, the break occurring on the nine and three per cent nitrogen lines, respectively.

The shift from a 9:3:3 to a 12:0:3 ratio, or from a 9:6:0 to the 15:0:0, results in an increase in the nitrogen of the hay; however, with the shift from the 9:3:3 to the 0:12:3 ratio, it is the increase in the phosphate used which causes an increase in the nitrogen content. This is also true when the change is from the 9:6:0 toward the 0:15:0, a break occurring at the 3:12:0 ratio.

The analysis of the data according to the percentage of the element in the fertilizer that is held constant is given in Table 7. There are two indications in regard to the amount of nitrogen to be used in the fertilizer - an increase in the nitrogen of the forage occurs starting with nine and increasing in the fifteen per cent mixtures, and an increase going from 9 to 0 per cent is obtained.

The indication for a P₂O₅ content of the fertilizer to the extent of twelve or fifteen
Table 7. Percentages of nitrogen, P2O5, K2O and CaO in soybean hay produced on Norfolk sand by incomplete and complete fertilizers; with averages according to the percentage of a particular fertilizer ingredient. Data are for the period 1930 to 1933.

<table>
<thead>
<tr>
<th>Effect of</th>
<th>Plates Averaged</th>
<th>Hay - Air-Dry Basis</th>
<th>N</th>
<th>P2O5</th>
<th>K2O</th>
<th>CaO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Cent:</td>
<td></td>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>2.08 0.45 1.10 1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15,20</td>
<td>2.04 0.50 1.07 1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td>9</td>
<td>10,14,19</td>
<td>1.73 0.54 1.10 1.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6,9,13,18</td>
<td>1.84 0.57 1.56 1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3,5,8,12,17</td>
<td>1.91 0.60 1.50 1.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1,2,4,7,11,16</td>
<td>2.01 0.62 1.59 1.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2.25 0.58 0.66 2.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2,3</td>
<td>2.26 0.59 0.76 1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphoric Acid 9</td>
<td>4,5,6</td>
<td>2.03 0.60 1.09 1.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7,8,9,10</td>
<td>1.99 0.60 1.40 1.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11,12,13,14,15</td>
<td>1.81 0.57 1.62 1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16,17,18,19,20,21</td>
<td>1.74 0.55 1.70 1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1.66 0.61 2.23 0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>11,17</td>
<td>1.78 0.64 2.26 1.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potash</td>
<td>9</td>
<td>7,12,18</td>
<td>1.80 0.60 1.97 1.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4,8,13,19</td>
<td>1.75 0.56 1.48 1.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2,5,9,14,20</td>
<td>1.95 0.56 1.10 1.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1,3,6,10,15,21</td>
<td>2.17 0.54 0.79 1.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Mixtures:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High N 9-3-3</td>
<td>14</td>
<td>1.72 0.54 1.14 1.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High P2O5 3-9-8</td>
<td>5</td>
<td>1.90 0.62 1.15 1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High K2O 3-3-9</td>
<td>12</td>
<td>1.72 0.59 1.86 1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Complete</td>
<td>5,8,9,12,13,14</td>
<td>1.81 0.57 1.39 1.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N 6</td>
<td>9,15</td>
<td>1.82 0.55 1.30 1.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5,8,12</td>
<td>1.83 0.60 1.53 1.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2O5 6</td>
<td>8,9</td>
<td>1.95 0.58 1.27 1.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12,13,14</td>
<td>1.68 0.56 1.48 1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K2O 6</td>
<td>8,13</td>
<td>1.74 0.56 1.53 1.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5,9,14</td>
<td>1.88 0.58 1.14 1.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Av. of Checks 0-0-0</td>
<td>2.02</td>
<td>0.67 0.99 1.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
per cent, for the production of forage of a high-
nitrogen content, is quite definite. A low content
of potash in the fertilizer is also indicated.
Although the exact average of the samples produced
by fertilizers containing no potash is higher than
for those of three or six per cent K₂O content, it
is to be pointed out that the yields for the latter
two as given in Table 4 are somewhat higher.

A comparison of the nitrogen contents of the hay
as produced by the 9:3:3, 5:9:3, and 3:3:9 ratios
shows 1.72, 1.90, and 1.72 per cent, respectively.
This would indicate that a larger per cent of
phosphate with perhaps equal quantities of nitrogen
and K₂O would be most efficient. This is borne out
by the content produced by the 5:9:3 ratio; i.e.,
1.90 per cent.

b. Phosphoric acid content. The triangle presentation
of the P₂O₅ content of the hay samples is made as
Figure 22. By comparison of these data with those
for average yields, as given in Figure 17, it will
be seen that a close inverse relationship exists
between the P₂O₅ contents and yields. Inasmuch as
the yields of all fertilized plats are greatly in
excess of the unfertilized checks, it appears that
the P_2O_5 content may be considered as a true reflection of the fertilizer treatment for the particular plant.

The P_2O_5 content of the hay varies inversely with the amount of superphosphate applied, when no nitrogen is used in the fertilizer. This indicates a direct relation with potash, which is again brought out when no phosphate is used. An increased P_2O_5 content accompanies the shift from the $15:0:0$ or $0:15:0$ to the $0:0:15$ ratio.

When the nitrogen content of the fertilizer is held constant at three per cent, there is no particular regularity in the change of the P_2O_5 content. This irregularity is again apparent for the ratios containing six per cent, but when the nitrogen is held constant at nine per cent a definite trend develops. This holds for the ratios with twelve per cent nitrogen; there is an increase in the P_2O_5 content of the forage going from the $9:0:6$ to $9:6:0$, and from the $12:0:3$ to $12:3:0$ ratios. The addition of phosphate to a high-nitrogen ratio which contains either six or three per cent of potash results in a forage of increased P_2O_5 content.

Potash, rather than nitrogen, dominates the
absorption of phosphoric acid by the plant when no phosphate is present in the fertilizer. The change from the 15:0:0 to 0:0:15 ratio produces an increase from 0.45 to 0.61 per cent P_2O_5, showing a maximum of 0.62 with the 3:0:12 ratio. The supremacy is not so consistent when the ratios containing three per cent P_2O_5 are considered, but nevertheless there is a definite increase as one shifts from the 12:3:0 to the 0:3:12 ratio, the figures rising from 0.52 to 0.66 per cent of P_2O_5 in the hay. There is an apparent discontinuity with ratios containing six per cent P_2O_5, analogous to that of the preceding series, with the indication that nitrogen has exerted a slight effect. With the twelve per cent P_2O_5 ratios, potash again dominates; it is to be concluded that potash has more influence than nitrogen on the P_2O_5 content of soybean hay when the phosphate in the fertilizer is held constant.

There is a distinct and consistent effect of the phosphate of the fertilizer on the P_2O_5 content of the samples when the amount of potash is held constant; the content is increased by an increased amount of phosphate.

The average data, with the three elements held
constant at the six different levels, are given in Table 7. These indicate that a mixture of potash and phosphate, with no nitrogen added, should produce a forage of highest P_2O_5 content. The ratios indicated are the $0:6:12$ and $0:9:12$. The $0:6:12$, when reduced to the fifteen per cent basis, becomes a $0:5:10$ ratio, and lies between the $0:6:9$ and $0:3:12$ ratios both of which have given 0.66 per cent P_2O_5. This content is the maximum that has been obtained.

c. Potassium oxide content. The potassium oxide contents of the forage samples are given in Table 5, and set forth in the triangle form in Figure 23.

The variation in the K_2O content is from 0.66 to 2.28 per cent. Due to the inverse relationship of CaO and K_2O in plant nutrition, the relative amounts of $CaSO_4$, carried by the superphosphate, and of K_2SO_4 should be kept in mind. The per cent of K_2O varies directly with the amount of sulphate of potash in the fertilizer and indirectly with the amount of superphosphate used.

When no nitrogen is used, and the ratio is varied in regular order from $0:15:0$ to $0:0:15$, the variation in K_2O content is from the minimum to the maximum. The maximum, however, is not obtained with
the 0:0:15 ratio but with the 0:3:12 there being a slight drop from the 0:3:12 to the 0:15:0 ratio. This lack of continuity disappears when the nitrogen content is held at successively higher levels. The K₂O content starts at a higher level with each succeeding increase of nitrogen, which also means a steady decrease of phosphate in the ratio. It ends, however, for each higher nitrogen level with a value below the maximum for the ratios of lower nitrogen content.

Samples produced by ratios of nitrogen and potassium sulphate only, contain an amount of K₂O in keeping with the amount of the sulphate applied. This is true for each of the phosphate levels; i.e., 0, 3, 6, 9 and 12 per cent. The rate at which the K₂O content increases with a decrease in the phosphate content of the fertilizer is of interest. The average increases are as follows: (1) from 15 to 12 per cent P₂O₅, 0.10; (2) 12 to 9 per cent, 0.33; (3) 9 to 6, 0.31; (4) 6 to 3, 0.12; and (5) from 3 to 0 per cent, 0.18 per cent K₂O. The rate of increase is not regular for the value rises as the P₂O₅ is reduced to 12 per cent and then tapers off at the 3 per cent level; it increases again
when no phosphate is used.

The effect of the decrease of phosphate becomes more apparent when the potash of the fertilizer is held constant. The change from the 0:15:0 ratio to the 15:0:0 results in an increase in the K₂O content. This relation holds on the three per cent potash line for only the two extremes; i.e., the 0:12:3 and 12:0:3 ratios, as the complete fertilizers are very uniform in content. The direction of the increase is reversed when the potash content is at the six per cent level. The increase in the K₂O content of the hay is regular from the 9:0:6 to the 3:6:6 ratio, but decreases as nitrogen is entirely eliminated from the fertilizer. The 3:3:9 ratio is the point of focus at the nine per cent level. These data indicate that the effect of the phosphate is masked at the low potash levels but becomes evident at the higher levels. The necessity for some phosphorus for the maximum assimilation of potassium is indicated by the content produced by the 0:3:12 ratio.

The average data given in Table 7 show that the highest K₂O content can be expected from the application of sulfae of potash alone. The need for
phosphate is not indicated due to the limited range within which the effect is exerted.

d. Calcium oxide content. The highest calcium oxide content of the hay is obtained with the 0:15:0 ratio, which carries the largest amount of superphosphate in the fertilizer. The lowest content is produced by the 6:0:9 ratio. These data are set forth in Table 5, and Figure 24.

The inverse relation of the CaO and K₂O contents may be observed by comparing Figure 23 with 24. The CaO content varies with the amount of superphosphate used when nitrogen is not present in the fertilizer. A change from the 0:0:15 to 0:15:0 ratio results in a continuous increase from 0.98 to 2.15 per cent CaO. This continuity is apparent at all nitrogen levels. The actual CaO content becomes less as the amount of nitrogen in the ratio is increased and the superphosphate, as represented by P₂O₅, is decreased.

When the K₂O content of the fertilizer is held constant, the CaO content of the hay is in proportion to the amount of phosphate used. This holds for all ratios at all potash levels. Mixtures of nitrogen and potash only, give data for
kermiticure content range 15, 16 and 9 per cent of
potassium, P<0.001 and CaO which have been
phosphate and potash. Figure 26 presents data for
potassium oxide and phosphorous oxide content
potassium oxide and calcium oxide content
over 15% relative to potassium phosphate oxide.
Figure 26 shows the maximum content

4. and these are the results which have obtained
content oxide content by the various data in Table
the 0:16:0 ratio is indicated for a maximum
is twelve per cent P<0.06 in the ratio
6:0:6:0 ratio, the dihydrogen as reversed when these
en increase is obtained from the 0:6:0 to the
ratio of the 0:6:0, at the nine per cent level,
in the opposite direction! 1.e. from the 6:06
ratio, there is also an increase in the CaO content
P<0.06 level extending from the 6:06 to the 9:6:0
12:0:6 ratio, this contours at the six per cent
starting with the 6:06 ratio and extending to the
potassium, therefore, there is an apparent similarity
ratios, however, there is no apparent regularity, the 16:0:0
which there is no apparent regularity.
Figure 25. Average nitrogen, P₂O₅, K₂O, and CaO contents of air-dried soybean hay, as produced on Norfolk sand by high-nitrogen, phosphate, and potash fertilizers, and by all complete fertilizers.
nitrogen, phosphoric acid, and potash, respectively. The central triangle represents the averages for the six complete fertilizers. There is one complete ratio in each of the three corner averages; i.e., the average at the P₂O₅ apex contains the 5:9:3 ratio; that of the nitrogen apex, the 9:3:3; and of the K₂O, the 3:3:9.

The highest average K₂O content of the forage samples is obtained with the fertilizers of high-potash content. The order of decreasing content is: (1) high-potash fertilizers, (2) complete, (3) high-nitrogen, and (4) high-phosphate.

The order for a decreasing P₂O₅ content of the hay is: (1) high-K₂O ratios, (2) high-phosphate, (3) complete, and (4) high-nitrogen.

For the production of a forage of a high-nitrogen content, the average of the high-phosphate fertilizers ranks first; the high-nitrogen is second; complete fertilizers, third; and the high-potash average is fourth.

The order for a decreasing calcium oxide content of soybean hay is as follows: (1) high-phosphate ratios, (2) complete fertilizers, (3) high-nitrogen, and (4) high-potash ratios.
The data which have been cited indicate that sulphate of potash, in conjunction with superphosphate, controls the K_2O content of soybean hay produced on Norfolk sand. This combination in general controls the P_2O_5 content. The superphosphate used in association with nitrogen supplied as a mixture of nitrate of soda, sulphate of ammonia and cottonseed meal, controls the nitrogen content of the plant. Superphosphate controls the CaO content with a reverse effect exerted by the sulphate of potash.

Complete fertilizers tend to equalize the more extreme results of the ratios in which a particular material is present in larger amounts in the fertilizer.

The nutrition of the soybean plant involves a balance between the three main plant-food elements. The associations are involved but it appears that potassium, as furnished by potassium sulphate, is the key element. It influences the K_2O and P_2O_5 contents of the plant. The phosphate content of the fertilizer, in turn, enhances the quantity of nitrogen in the hay. There is an indication that the calcium of the superphosphate enters into the nitrogen picture; a high-calcium content is
associated with a high concentration of nitrogen in the plant.

f. The \textit{CaO:P₂O₅} ratio. The \textit{CaO:P₂O₅} ratio in feeds is considered of importance in animal nutrition. The optimum value is approximately 2:1. The ratios given in Figure 26 show a very large variation; the lowest is 1.61 and the highest is 3.67. The large \textit{CaO} content does away with some of the apparent irregularities observed in the \textit{P₂O₅} data, with the result that the trends for an increase of the ratio are essentially those given for the \textit{CaO} content of the hay.

It is worthy of note that the 9:3:3 ratio, which ranked well in regard to yields, is one of the three which contain \textit{CaO} and \textit{P₂O₅} in a ratio approximately that desired for optimum nutrition. The amount of phosphate required as a supplement to reduce the ratio to the desired value is much less in the case of the 9:3:3 than for the 3:9:3.

\textbf{g. The \textit{CaO:K₂O} ratio.} The relation of \textit{CaO} to \textit{K₂O} in the hay is depicted in Figure 27 as the \textit{CaO:K₂O} ratio. It is the one case in which the changes in content induced by the fertilizer are in perfect order. The variation in the ratio is considerably
Figure 8.

N
15:0:0
2.78

12:3:0 12:0:3
2.52 2.17

9:6:0 9:3:3 9:0:6
2.81 2.15 2.23

5.55 2.63 2.15 1.71

3.34 3.02 2.44 1.93 1.63

P2O5 0:15:0 0:12:3 0:9:6 0:6:9 0:3:12 0:0:15 K2O
3.67 3.47 2.78 2.26 1.70 1.61

Average of checks = 3.11

Figure 26. Average of CaO:P2O5 ratio of air-dried soybean hay, as produced on Norfolk sand, for the period 1930 to 1933.
Figure 27. Average CaO:K2O ratios for air-dried soybean hay, as produced on Norfolk sand, for the period 1930 to 1932.
increased, inasmuch as the CaO content is in proportion to the amount of superphosphate used, and the K2O is in proportion to the sulphate of potash. The CaO:K2O ratio of the forage produced by the 9-3-3 fertilizer is 1.01:1. This is accompanied by a CaO: P2O5 ratio of 2.18:1. The 3:9:3 fertilizer, which gave slightly greater yields than the 9:3:3, produced a forage with values of 3.02:1 and 1.63:1 for the CaO:P2O5 and CaO:K2O ratios. The use of the 3:12:0 fertilizer resulted in ratios of 3.34:1 and 2.32:1. The CaO:P2O5 ratio is entirely too wide for proper nutrition in the case of either the 3:9:3 or 3:12:0 ratios.

h. Soluble ash, R2O3, Mn3O4, sulphur and MgO contents.

The soluble ash, R2O3, Mn3O4, sulphur and MgO contents of forage produced by the twenty-one fertilizer ratios are given in Table 6. These data are averages for the years 1930, 1932 and 1933. They are presented by means of the triangle, as follows: (1) soluble ash, Figure 28; (2) R2O3, Figure 29; (3) Mn3O4, Figure 30; (4) sulphur as SO4, Figure 31; and (5) MgO in Figure 32. These are given individually so that one can follow the
Average of checks = 4.89

Figure 28. Average per cent of soluble ash in air-dried soybean hay, as produced on Norfolk sand, for the years 1930, 1932 and 1933.
Figure 29. Average percent of \(\text{P}_2\text{O}_5 \) in air-dried soybean hay, as produced on Norfolk sand, for the years 1930, 1932 and 1933.
Figure 30. Average per cent of \(\text{K}_2\text{O} \) in air-dried soybean hay, as produced on Norfolk sand, for the years 1930, 1932 and 1933.
Figure 51. Average SO₄ content of air-dried soybean hay, as produced on Norfolk sand, for the years 1930, 1932 and 1933.
Figure 52. Average MgO content of air-dried soybean hay, as produced on Norfolk sand, during the years 1930, 1932 and 1933.
content of the particular material as produced by a variation of the fertilizer ratio.

Although there are some rather definite trends to be observed, the main objective can be reached by averaging these data for the high-phosphate, the high-potash, the high-nitrogen, and the complete fertilizers. For those other than the complete, the fertilizers of 15, 12 and 9 per cent of the particular element or oxide are averaged. Their relative positions in the large triangle are indicated by the smaller ones. These are shown as Figure 33.

The soluble ash of the forage is materially affected by the fertilizer treatment. The highest average ash content is that of the high-potash ratios; the next is from the high-phosphate; and the lowest from the high-nitrogen ratios.

The R₂O₃ and Mg₃O₄ contents are highest in the high-phosphate area of the triangle. The former is considerably larger in that area than in the other two, both of which have equal values. The Mg₃O₄ content shows a gradual increase from the nitrogen to the potash and then to the phosphate apex.
Figure 33. Average MgO, SO₄, soluble ash, R₂O₃ and Mn₂O₄ contents of air-dried soybean hay, as produced on Norfolk sand, for the years 1930, 1932 and 1933.
It is apparent that the sulphate of potash influences the sulphur content of the forage more than does the calcium sulphate of the superphosphate. There is some indication that the sulphur in the hay is not present entirely as protein sulphur. A comparison of Figures 25 and 33 shows that the highest average nitrogen content is produced in the phosphate apex, which also gives the lowest sulphate content. This indicates an inverse rather than a direct relation. The nitrogen apex gives intermediate values in both cases. Inasmuch as the high-nitrogen fertilizers contain sulphate of ammonia to the extent of one-third of the total nitrogen, and these produce a sulphate content intermediate in value, it would appear that the sulphate content, like \(\text{K}_2\text{O}\), is influenced by the amount available in the soil.

The magnesium content is expressed as \(\text{MgO}\) and is of much interest due to the prevalence of magnesium deficiency on Norfolk sand during seasons in which leaching rains occur. The chief source of magnesium in the fertilizer is the cottonseed meal which is used to furnish nitrogen to the extent of one-third of the total. The crops grown in the green
manure-fertilizer experiment (the photographs are
given as Figures 2, 3 and 4) have shown striking
differences; those grown with the 2:8:4 fertilizer
have displayed the symptoms of the deficiency to a
much greater extent than in the case of the 6:8:4.
The amount of sulphate applied in the phosphate and
sulphate of potash has been the same for both plats,
consequently any difference in the retardation or
decrease in the development of the deficiency would
seem to have been due to the magnesium content of
the cottonseed meal. It will be seen from Figure 33
that the average MgO content of samples from the
high-phosphate and high-potash plats is essentially
the same, but that of the high-nitrogen plats is
considerably greater. This is thought to be a
reflection of the magnesium applied in the cottonseed
meal.

Figures 34 and 35 show cotton and corn leaves
which display pronounced symptoms of the magnesium
deficiency. The use of fertilizer materials which
produce magnesium salts of high solubility increase
the tendency toward the development of a deficiency
of magnesium in Norfolk sand.

The average contents of soluble ash, MgO, sulphate,
Figure 34. Cotton leaves which show the pattern developed due to a deficiency of magnesium.
Figure 35. Corn leaves showing the typical striping caused by a deficiency of magnesium.
MgO, and K2O, as influenced by the percentage of
the element in the fertilizer, are given in Table 8.

The soluble-ash content varies inversely with
the nitrogen content of the fertilizer, and directly
with the phosphate and potash contents. The high-
potash ratio, 3:3:9, produces a greater content than
does the high-phosphate; i.e., the 3:9:3 ratio.
These data are corroborated by those for the ratios
containing 5 and 3 per cent, respectively, of
nitrogen, P2O5 and K2O.

The magnesium content of the hay is influenced
more by the nitrogen-bearing materials of the
fertilizer than by the phosphate or potash. This
influence is not brought out well by a comparison
of the data for the 9:3:2, 3:9:3, and 3:3:9 ratios,
for the nitrogen content has to be as great as
twelve per cent to show appreciable differences.

The sulphate content of the hay varies inversely
with the nitrogen applied in the fertilizer. The
average of the contents produced by the high-potash
ratios, as shown in Figure 33, is greater than for
that of the high-phosphate. However, the 3:9:3
ratio induces a content of sulphate which is
greater than that given by the 3:3:9.
Table 8. Composition of soybean hay produced by complete and incomplete fertilizers on Norfolk sand, and average data based upon the percentages of the elements used. Data are for the years 1930, 1932 and 1933.

<table>
<thead>
<tr>
<th>Effect of:</th>
<th>Plates Averaged</th>
<th>Hay - Air-Dry Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sol. MgO SO₄ MnO₄ R₂O₅</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% % % % %</td>
</tr>
<tr>
<td>Per Cent:</td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>10, 14, 19</td>
<td>4.35 0.42 0.70 0.070 0.15</td>
</tr>
<tr>
<td></td>
<td>6, 9, 13, 18</td>
<td>4.61 0.38 0.62 0.077 0.19</td>
</tr>
<tr>
<td></td>
<td>5, 8, 12, 17</td>
<td>5.11 0.38 0.91 0.060 0.19</td>
</tr>
<tr>
<td></td>
<td>1, 2, 4, 7, 11, 16</td>
<td>5.29 0.41 0.92 0.090 0.24</td>
</tr>
<tr>
<td></td>
<td>15% 1</td>
<td>5.11 0.39 0.78 0.100 0.21</td>
</tr>
<tr>
<td></td>
<td>12% 2, 3</td>
<td>4.62 0.42 0.82 0.095 0.56</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>4, 5, 6</td>
<td>4.86 0.58 0.90 0.060 0.21</td>
</tr>
<tr>
<td></td>
<td>7, 8, 9, 10</td>
<td>4.72 0.58 0.88 0.063 0.16</td>
</tr>
<tr>
<td></td>
<td>11, 12, 13, 14, 15</td>
<td>4.32 0.50 0.80 0.074 0.15</td>
</tr>
<tr>
<td></td>
<td>16, 17, 18, 19, 20, 21</td>
<td>4.72 0.43 0.75 0.075 0.21</td>
</tr>
<tr>
<td></td>
<td>15% 16</td>
<td>5.67 0.44 0.95 0.090 0.25</td>
</tr>
<tr>
<td></td>
<td>12% 11, 17</td>
<td>5.65 0.38 0.91 0.080 0.19</td>
</tr>
<tr>
<td>Potash</td>
<td>7, 12, 18</td>
<td>4.93 0.57 0.96 0.077 0.17</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>4, 5, 6</td>
<td>4.37 0.40 0.86 0.078 0.16</td>
</tr>
<tr>
<td></td>
<td>4, 6, 13, 19</td>
<td>4.39 0.42 0.76 0.078 0.22</td>
</tr>
<tr>
<td></td>
<td>2, 4, 7, 11, 16</td>
<td>4.39 0.41 0.70 0.065 0.25</td>
</tr>
<tr>
<td>Complete Mixtures:</td>
<td>1, 3, 6, 10, 15, 21</td>
<td>4.39 0.41 0.69 0.070 0.12</td>
</tr>
<tr>
<td>High N</td>
<td>9-3-3</td>
<td>4.16 0.41 0.69 0.070 0.12</td>
</tr>
<tr>
<td>High P₂O₅</td>
<td>3-9-3</td>
<td>4.91 0.37 0.98 0.070 0.16</td>
</tr>
<tr>
<td>High MgO</td>
<td>3-3-9</td>
<td>5.21 0.40 0.92 0.070 0.14</td>
</tr>
<tr>
<td>all Complete</td>
<td>3-9-3-12</td>
<td>4.77 0.39 0.86 0.075 0.14</td>
</tr>
<tr>
<td>N</td>
<td>9, 13</td>
<td>4.62 0.39 0.83 0.060 0.14</td>
</tr>
<tr>
<td></td>
<td>3, 5, 8, 12</td>
<td>5.07 0.37 0.94 0.073 0.14</td>
</tr>
<tr>
<td></td>
<td>8, 9</td>
<td>4.78 0.38 0.86 0.085 0.15</td>
</tr>
<tr>
<td></td>
<td>12, 13, 14</td>
<td>4.72 0.40 0.82 0.070 0.12</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>3, 8, 13</td>
<td>4.94 0.37 0.89 0.075 0.12</td>
</tr>
<tr>
<td></td>
<td>3, 5, 9, 14</td>
<td>4.51 0.39 0.82 0.077 0.15</td>
</tr>
<tr>
<td>Avg. of Checks</td>
<td>0-0-0</td>
<td>4.89 0.60 0.47 0.090 0.30</td>
</tr>
</tbody>
</table>
The manganese content is influenced by phosphate and potash more than by the nitrogen content of the fertilizer; the differences are rather small in all cases. No symptoms of manganese deficiency have been observed on this soil. A revision of this experiment instituted in 1934, however, showed a considerable response to an application of seventy-five pounds of MnSO₄ per acre in the case of certain plants, with decreased yields in the case of other treatments.

The K₂O₅ content of the forage is larger for the high-phosphate than for the nitrogen or potash ratios. These data show that the content can be varied appreciably.

Conclusions

The data which have been obtained on Norfolk sand show that the composition of soybean hay can be influenced materially by the fertilizer used. The triangle system has been of much value in interpreting the changes induced by relatively small variations in the fertilizer ratio. It is evident that the involved relation of the various plant-food elements allows incorrect interpretations to be made unless the effects are studied simultaneously.

The study of twenty-one fertilizer ratios on Norfolk
sand (which approaches the conditions of sand culture, except that field conditions prevail) indicates that potassium is the "key element" in the nutrition of soybeans. The following relations, as obtained under the conditions of this experiment, appear to be pertinent:

(1) The potash content of the hay is in proportion to the amount of potash furnished to the soil by the sulphate of potash. Under some conditions the phosphate aids in the assimilation.

(2) The P_2O_5 content is a reflection of the potash and superphosphate contents of the fertilizer, with the effect of the former dominating.

(3) The nitrogen content varies directly with the amount of phosphate in the fertilizer. When only the high-phosphate and high-nitrogen ratios are considered, there is an apparent direct relation between the P_2O_5 content of the fertilizer and the nitrogen content of the hay. Inasmuch as the greatest P_2O_5 content is produced by the high-potash ratios, it would appear that the nitrogen content is more directly affected by the calcium content of the fertilizer, and in turn by the calcium oxide content of the plant. The order for a high CaO content, from highest to lowest, is: (a) high-phosphate,
(b) high-nitrogen, and (c) high-potash ratios; this is also the order for the nitrogen content of the forage.

(4) The CaO:P₂O₅ ratio can be varied widely by the fertilizer used. A value approaching the optimum ratio (for feeds) of 2:1 is attained only within a limited range; i.e., by the use of the 9:3:3, 6:3:6, and 3:3:9 ratios. The six-year average of yields of hay obtained with the 9:3:3 was second to the 3:9:3 average. Some sacrifice in yield and nitrogen and phosphate contents had to be made in order to approach an optimum CaO:P₂O₅ ratio.

(5) The CaO:P₂O₅ ratio indicates a physiological balance in the plant. The perfect inverse relation of these two elements is strikingly illustrated.

(6) The highest individual soluble-ash content is produced by the 0:15:0 ratio. The average of the high-potash ratios, however, is greater than that of the high-phosphate, with the nitrogen ratios of lowest average content.

(7) The magnesium content, expressed as MgO, is thought to be a reflection of the amount of cottonseed meal used as one of the sources of nitrogen.

(8) The percentage of manganese contained in the forage can be influenced but slightly by fertilizers.
compounded from ordinary materials. The phosphatic fertilizers induce a higher content than is obtained by the use of the potash or nitrogen ratios. This is true also for the R_2O_3 content.

There is evidence which points to an opportunity for the production of forage of wide variation in composition for nutritional studies with animals, and for the study of the effect of fertilizers on forage crops in general.
THE EFFECT OF FERTILIZER RATIOS ON THE
YIELD AND COMPOSITION OF SOYBEAN SEED

The soybean plant serves a dual purpose in that it is
used as a forage and producer of seed; the acreage used
for the latter purpose has increased appreciably during
the last 25 years. The seed serves as a source of protein
and oil; both of these are of commercial importance. The
relation of fertilizers to the yield, and oil and protein
content should be considered; this experiment was out-
lined with these points in mind.

Literature Cited

Schuster and Graham (133) studied the variation in
the oil content of soybeans; they found that single
elements and a complete fertilizer had no effect.
Statistical treatment of the data gave a very significant
decrease when a combination of nitrogen and phosphorus
was used on unlimed soil, also with phosphorus and
potassium, and with nitrogen and potassium. Lime decreased
the oil content of beans produced on unfertilized soil but
not where fertilizer was used. A decrease in the oil
content was usually associated with an increase in the
protein content. Schuster (132) found a large percentage
of immature beans when potassium was not used. Nitrate of
soda did not favor yield or maturity.

Webster and Kiltz (165) studied the seasonal variation in the oil and protein contents of different varieties, giving four- and five-year averages; a considerable variation in composition was found. The protein and oil content varied inversely. Variations in oil content as great as 3.24 per cent and in protein as great as 12.5 per cent were found in the same variety grown at different locations.

Fellers (46) obtained a decrease of three per cent in the oil content of soybeans due to inoculation; this was accompanied by an increase in protein of seven per cent. Phosphorus and nitrate of soda increased the protein content. Potassium affected oil and protein but slightly. Various combinations of nitrogen, phosphorus and potassium increased yields of both hay and seed. Calcium sulphate applied in large amounts increased the oil content.

Garner et al. (55) state that conditions conducive to carbohydrate formation are necessary during the maturation period for the production of oil. Different varieties show marked differences in oil content. The conclusion is drawn that climate is a more important factor than soil type, and that, within reasonable limits, the relative fertility of the soil is of minor importance in influencing
the oil content of soybeans.

Kornfeld (84) found that fertilizers increased the protein content and decreased the oil content of soybeans. This general relation holds for the investigations which have been cited.

Experimental

The plates used are those described in Section II.

Discussion

1. Yields data.

The yields of soybean seed for the years 1928 to 1933, inclusive, and the average yields for the six-year period are given in Table 9. These average data show that the 0:12:3 ratio has produced the largest yield, and this is followed in order by the 3:9:3 and 9:3:3 ratios. The use of a combination bean, the Biloxi, has resulted in low yields of both hay and seed.

Figure 36 presents the average yields of seed by means of the triangle. The variation in yields, due to variable fertilizer ratios, is from 107 to 212 pounds per acre. The highest yields are along the line representing the ratios containing three per cent of potash. As the phosphate content of the fertilizer increases along this line there is a small increase in the yield of beans.
Table 9. Yields of soybean seed, in pounds per acre, produced on Norfolk sand by incomplete and complete fertilizers, and average data for the period 1928 to 1933.

<table>
<thead>
<tr>
<th>Plat</th>
<th>N-P₂O₅-K₂O</th>
<th>1928</th>
<th>1929</th>
<th>1930</th>
<th>1931</th>
<th>1932</th>
<th>1933</th>
<th>Av.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lbs./A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0-15-0</td>
<td>135</td>
<td>222</td>
<td>85</td>
<td>59</td>
<td>76</td>
<td>65</td>
<td>107</td>
</tr>
<tr>
<td>2</td>
<td>0-12-3</td>
<td>111</td>
<td>210</td>
<td>245</td>
<td>74</td>
<td>247</td>
<td>285</td>
<td>212</td>
</tr>
<tr>
<td>3</td>
<td>5-12-0</td>
<td>136</td>
<td>245</td>
<td>220</td>
<td>82</td>
<td>211</td>
<td>167</td>
<td>175</td>
</tr>
<tr>
<td>4</td>
<td>0-9-6</td>
<td>123</td>
<td>308</td>
<td>243</td>
<td>49</td>
<td>167</td>
<td>212</td>
<td>185</td>
</tr>
<tr>
<td>5</td>
<td>3-9-3</td>
<td>144</td>
<td>314</td>
<td>270</td>
<td>84</td>
<td>207</td>
<td>211</td>
<td>205</td>
</tr>
<tr>
<td>6</td>
<td>6-9-0</td>
<td>118</td>
<td>243</td>
<td>228</td>
<td>84</td>
<td>199</td>
<td>148</td>
<td>170</td>
</tr>
<tr>
<td>7</td>
<td>0-6-9</td>
<td>108</td>
<td>333</td>
<td>198</td>
<td>74</td>
<td>138</td>
<td>182</td>
<td>172</td>
</tr>
<tr>
<td>8</td>
<td>5-6-6</td>
<td>79</td>
<td>273</td>
<td>227</td>
<td>75</td>
<td>214</td>
<td>214</td>
<td>180</td>
</tr>
<tr>
<td>9</td>
<td>6-6-3</td>
<td>90</td>
<td>260</td>
<td>272</td>
<td>82</td>
<td>237</td>
<td>214</td>
<td>193</td>
</tr>
<tr>
<td>10</td>
<td>9-6-0</td>
<td>90</td>
<td>218</td>
<td>247</td>
<td>127</td>
<td>196</td>
<td>146</td>
<td>171</td>
</tr>
<tr>
<td>11</td>
<td>0-3-12</td>
<td>72</td>
<td>152</td>
<td>175</td>
<td>72</td>
<td>102</td>
<td>117</td>
<td>112</td>
</tr>
<tr>
<td>12</td>
<td>3-3-9</td>
<td>90</td>
<td>151</td>
<td>216</td>
<td>74</td>
<td>159</td>
<td>163</td>
<td>139</td>
</tr>
<tr>
<td>13</td>
<td>6-3-6</td>
<td>90</td>
<td>216</td>
<td>255</td>
<td>97</td>
<td>185</td>
<td>167</td>
<td>168</td>
</tr>
<tr>
<td>14</td>
<td>9-3-3</td>
<td>97</td>
<td>218</td>
<td>288</td>
<td>94</td>
<td>265</td>
<td>211</td>
<td>196</td>
</tr>
<tr>
<td>15</td>
<td>12-3-0</td>
<td>79</td>
<td>189</td>
<td>252</td>
<td>125</td>
<td>221</td>
<td>191</td>
<td>176</td>
</tr>
<tr>
<td>16</td>
<td>0-0-15</td>
<td>90</td>
<td>218</td>
<td>211</td>
<td>72</td>
<td>130</td>
<td>99</td>
<td>137</td>
</tr>
<tr>
<td>17</td>
<td>3-0-12</td>
<td>108</td>
<td>268</td>
<td>180</td>
<td>79</td>
<td>127</td>
<td>121</td>
<td>147</td>
</tr>
<tr>
<td>18</td>
<td>6-0-9</td>
<td>97</td>
<td>218</td>
<td>232</td>
<td>77</td>
<td>165</td>
<td>129</td>
<td>151</td>
</tr>
<tr>
<td>19</td>
<td>9-0-6</td>
<td>79</td>
<td>195</td>
<td>252</td>
<td>94</td>
<td>220</td>
<td>159</td>
<td>166</td>
</tr>
<tr>
<td>20</td>
<td>12-0-3</td>
<td>90</td>
<td>176</td>
<td>301</td>
<td>112</td>
<td>264</td>
<td>173</td>
<td>186</td>
</tr>
<tr>
<td>21</td>
<td>15-0-0</td>
<td>97</td>
<td>122</td>
<td>245</td>
<td>103</td>
<td>140</td>
<td>59</td>
<td>128</td>
</tr>
<tr>
<td>Av. of Checks</td>
<td>0-0-0</td>
<td>65</td>
<td>111</td>
<td>74</td>
<td>37</td>
<td>44</td>
<td>29</td>
<td>60</td>
</tr>
</tbody>
</table>
Figure 36. Average yields of soybean seed, in pounds per acre, as produced on Norfolk sand, for the period 1928 to 1933.

Average of checks = 60
Figure 37 shows the average yields of the high-phosphate, high-nitrogen and high-potash ratios. The yields are 176, 171 and 143 pounds per acre, respectively. The average for all the complete fertilizers is 150 pounds.

The yields, averaged according to the percentage of a particular element in the ratio, are given in Table 10. These data indicate a 12:12:3 ratio for the production of soybean seed on Norfolk sand. This becomes a 6.7:6.7:1.6 ratio when reduced to a fifteen per cent basis. It is not in accord with the general conception for such a low amount of potash to be indicated for seed production. The highest yield, as has been mentioned, has been from the 0:12:3 plat with the 3:9:3 ranking second. The latter yield is only slightly superior to that of the 9:3:3 plat, but is considerably above that of the 3:3:9.

2. Composition of seed.

Tables 11 and 12 give the percentages of nitrogen and oil in the seed for each year of the experiment, and also the averages for the five years.

a. Nitrogen content. The average nitrogen content of the seed is presented by means of the triangle as Figure 38. Mixtures of only phosphate and potash
Figure 37. Average per cent of nitrogen and oil, and yields of seed and oil in pounds per acre, as produced on Norfolk sand for the period of 1928 to 1933 for yields and 1929 to 1933 for the percentage composition.
Table 10. Yields of soybean seed and oil and composition of seed produced on Norfolk sand with complete and incomplete fertilizers, with average data based upon the percentages of the elements used. Data are for the period 1928 to 1933.

<table>
<thead>
<tr>
<th>Effect of:</th>
<th>Plate Averaged Soybean Seed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yields %</td>
</tr>
<tr>
<td>Per Cent:</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>16.20</td>
</tr>
<tr>
<td>6</td>
<td>6.9.15.16</td>
</tr>
<tr>
<td>5</td>
<td>3.6.8.12.17</td>
</tr>
<tr>
<td>0</td>
<td>1.2.4.7.11.16</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>2.5</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>4.5.6</td>
</tr>
<tr>
<td>6</td>
<td>7.8.9.10</td>
</tr>
<tr>
<td>0</td>
<td>16.17.18.19.20.21</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>11.17</td>
</tr>
<tr>
<td>Potash</td>
<td>4.8.15.19</td>
</tr>
<tr>
<td>6</td>
<td>7.12.18</td>
</tr>
<tr>
<td>3</td>
<td>2.5.9.14.20</td>
</tr>
<tr>
<td>0</td>
<td>1.3.6.10.15.21</td>
</tr>
<tr>
<td>Complete Mixtures:</td>
<td></td>
</tr>
<tr>
<td>High N 9-3-3</td>
<td>14</td>
</tr>
<tr>
<td>High P2O5 3-9-3</td>
<td>5</td>
</tr>
<tr>
<td>High K2O 3-5-9</td>
<td>12</td>
</tr>
<tr>
<td>All Complete 5,9,12,13,14</td>
<td>180</td>
</tr>
<tr>
<td>K 6</td>
<td>9.12</td>
</tr>
<tr>
<td>3</td>
<td>5.8.12</td>
</tr>
<tr>
<td>P2O5 6</td>
<td>8.9</td>
</tr>
<tr>
<td>3</td>
<td>12.13.14</td>
</tr>
<tr>
<td>K2O 6</td>
<td>8.13</td>
</tr>
<tr>
<td>3</td>
<td>5.9.12</td>
</tr>
<tr>
<td>Av. of Checks 0-0-0</td>
<td>60</td>
</tr>
</tbody>
</table>
Table 12. Average per cent of oil in soybean seed, as produced on Norfolk sand, for the period 1929 to 1933.

<table>
<thead>
<tr>
<th>Plat</th>
<th>N-P₂O₅-K₂O</th>
<th>Per Cent of Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1929</td>
</tr>
<tr>
<td>1</td>
<td>0-15-0</td>
<td>17.65</td>
</tr>
<tr>
<td>2</td>
<td>0-12-5</td>
<td>17.20</td>
</tr>
<tr>
<td>3</td>
<td>3-12-0</td>
<td>17.50</td>
</tr>
<tr>
<td>4</td>
<td>0-9-6</td>
<td>17.40</td>
</tr>
<tr>
<td>5</td>
<td>3-9-3</td>
<td>17.79</td>
</tr>
<tr>
<td>6</td>
<td>6-9-0</td>
<td>18.23</td>
</tr>
<tr>
<td>7</td>
<td>0-6-9</td>
<td>18.54</td>
</tr>
<tr>
<td>8</td>
<td>3-6-6</td>
<td>18.50</td>
</tr>
<tr>
<td>9</td>
<td>6-6-3</td>
<td>18.42</td>
</tr>
<tr>
<td>10</td>
<td>9-6-0</td>
<td>17.86</td>
</tr>
<tr>
<td>11</td>
<td>0-3-12</td>
<td>16.22</td>
</tr>
<tr>
<td>12</td>
<td>3-3-9</td>
<td>16.00</td>
</tr>
<tr>
<td>13</td>
<td>6-3-6</td>
<td>18.60</td>
</tr>
<tr>
<td>14</td>
<td>9-3-3</td>
<td>18.50</td>
</tr>
<tr>
<td>15</td>
<td>12-3-0</td>
<td>18.78</td>
</tr>
<tr>
<td>16</td>
<td>0-0-15</td>
<td>18.78</td>
</tr>
<tr>
<td>17</td>
<td>3-0-12</td>
<td>18.98</td>
</tr>
<tr>
<td>18</td>
<td>6-0-9</td>
<td>19.01</td>
</tr>
<tr>
<td>19</td>
<td>9-0-6</td>
<td>19.08</td>
</tr>
<tr>
<td>20</td>
<td>12-0-3</td>
<td>19.05</td>
</tr>
<tr>
<td>21</td>
<td>15-0-0</td>
<td>18.67</td>
</tr>
<tr>
<td>Ck. 1</td>
<td>0-0-0</td>
<td>18.21</td>
</tr>
<tr>
<td>Ck. 2</td>
<td>0-0-0</td>
<td>18.20</td>
</tr>
<tr>
<td>Av. Cks.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 38. Average per cent of nitrogen in soybean seed, as produced on Norfolk sand, for the period 1929 to 1933.
produce a nitrogen content ranging from 6.52 to 7.22 per cent; the 0:0:15 and 0:15:0 ratios give 6.56 and 7.19 per cent, respectively. There is a tendency toward an increase in the nitrogen of the seed when the phosphate content of the fertilizer is increased at the expense of the potash. This is more pronounced when the nitrogen of the ratio is held constant at three per cent; there is a gradual increase in the nitrogen content from the 2:0:12 to the 3:12:0 ratio. With nitrogen held at six per cent in the ratio, the continuity is evident from the 6:3:6 to the 6:9:0 ratio. The trend is the same at the 9 and 12 per cent levels.

When the phosphate in the fertilizer is held constant at the three lower levels; i.e., at 0, 3 and 6 per cent, an increase in nitrogen, with potash decreasing in the ratio, produces a general increase in the nitrogen content of the seed.

There is a split trend at the nine per cent level as there is a slight increase from the 3:9:3 to the 6:9:0 ratio, and a larger increase from the 3:9:3 to the 0:9:6 ratio. This latter case, and the increases from the 0:3:12 and 3:0:12 ratios to the 0:0:15, are the instances in which an
increase in the potash content of the fertilizer causes an increase in the nitrogen content of the seed.

The highest nitrogen content is in seed produced by the 3:12:0 ratio. This was true also for the hay. Collins has found that the ratio which produces a high-nitrogen content in cotton seed also produces the same in the plant.

Holding potash constant at all levels results in an increase in the nitrogen of the seed when the phosphate of the ratio is increased. This is true, in general, for mixtures of two or more fertilizer ingredients.

The average nitrogen contents produced by the ratios high in phosphate, nitrogen and potash are given in Figure 37. The content is 7.15, 6.80 and 6.64 per cent, respectively. These data are in agreement with those for the nitrogen content of the hay samples, as given in Figure 21, and the relations postulated in that discussion are

1/ From unpublished data obtained by Dr. E. R. Collins of the Soil Fertility Station, Bureau of Plant Industry, Austin, Texas; present location - North Carolina Experiment Station.
pertinent here. The phosphate content of the fertilizer is more effective in influencing the nitrogen content of the seed than the nitrogen of the fertilizer, and nitrogen more than the potash.

The averages given in Table 10 indicate a ratio high in phosphate and low in potash for the production of seed of high-nitrogen content. The complete high-nitrogen ratio (9:3:3) gives a value less than that of the 3:9:3, but greater than that of the 3:3:9 ratio. These values are 6.83, 7.02 and 6.74 per cent, respectively.

b. **Oil content.** The oil contents of the soybean seed are given in Table 12 for each year of the experiment (1929-1933), together with the average for the five years. The five-year averages are shown graphically in Figure 39. The highest oil content is that produced by the 12:0:3 ratio. It is interesting to note that the highest nitrogen content came from the 3:12:0 ratio, inasmuch as an inverse relation between the nitrogen and oil content usually exists for a particular sample. The variations in the oil content are not as great as have been reported for varieties, or for the seasonal variation for the same variety. These
Figure 39. Average per cent of oil in soybean seed, as produced on Norfolk sand, for the period 1929 to 1933.
averages, however, should have considerable weight because of the number of seasons involved.

When the nitrogen of the fertilizer is held constant, there is a tendency for the oil content to increase with an increase in the amount of potash in the fertilizer, especially when the potash content is fairly high. This tendency is greater when the nitrogen in the fertilizer is low in amount. The trend for the mixtures of phosphate and potash varies; the 0:9:6 ratio is the focal point. As the change is made from the 0:9:6 to the 0:15:0 ratio, there is an increase in the oil content which is also true when going from the 0:9:6 to the 0:0:15 ratio; the increase, however, is entirely in proportion to the increase in potash at the three per cent nitrogen level. The trend is again divided at the six and nine per cent levels, but is in favor of the potash at the twelve per cent nitrogen level.

The most definite trends are to be observed when potash is held constant. A decrease in the phosphate content of the fertilizer accompanied by an increase in the nitrogen results in a higher oil content; this is true for all potash levels.
The relative effects of fertilizers of high-phosphate, high-nitrogen and high-potash content are shown by the data given in Figure 37. The average oil content of the high-nitrogen ratios is 18.00 per cent; of high-phosphate, 17.13; and of high-potash, 17.82 per cent. This would indicate that some difference in the oil content of soybeans can be expected as a result of fertilizer treatment.

The nitrogen-oil ratio is 0.42:1 for the high-phosphate plate, 0.37 for the high-potash, and 0.38 for the high-nitrogen ratios.

c. Average relative nitrogen and oil contents produced by high-nitrogen, phosphate and potash ratios. The averages obtained in Table 10 indicate that a fertilizer containing twelve per cent nitrogen, fifteen per cent potash, and no phosphate can be expected to produce the highest percentage of oil. When reduced to a fifteen per cent basis, this becomes a 6.6:0:8.4 ratio. The ratios approaching this value did not, however, give as large an oil content as that of the 3:0:12 ratio. A comparison of the contents for the 9:3:3, 3:9:3, and 3:3:9 ratios shows that the 3:3:9 is
slightly superior, with the 9:3:3 and 3:9:3 in the order given. The data as a whole point to a definite need for nitrogen and potash with little or no need for phosphate for the production of a high percentage of oil.

The average production of oil, in pounds per acre, for which a table is not given, is shown in Figure 40. The largest production is that of the 0:12:3 ratio while the other ratios of the three per cent potash level are but slightly less. The averages given in Figure 37 show that for production, in terms of pounds per acre, the need is for nitrogen and phosphate rather than for nitrogen and potash. The averages given in Table 10 support this conclusion.

Conclusions

The yields of soybean seed have been low throughout the experiment. The data are of interest inasmuch as they indicate the effects to be obtained from fertilizers of various ratios, when used on Norfolk sand.

The need for potash for the production of seed is low, as for the production of hay. Little nitrogen is required but a definite need for phosphate is shown. The data show, however, that if a comparison were made of
Figure 40. Average yield of oil, in pounds per acre, from soybean seed produced on Norfolk sand for the period 1929 to 1933.
high-phosphate and high-nitrogen ratios little difference in yields of seed could be expected.

The factors which control the nitrogen content of soybean hay also operate for the seed. High-phosphate ratios produce a higher content than high-nitrogen, and the high-potash ratios produce the lowest content.

The same fertilizer ratio cannot be used for both oil content and oil production. Nitrogen and potash, with little or no phosphate, favor a high oil content. Nitrogen and phosphate, with a small amount of potash, are indicated for production.
THE EFFECT OF FERTILIZER RATIOS AND CROP
MANAGEMENT ON THE RELATION OF CARBON AND
NITROGEN, AND THE pH OF NORFOLK SAND

The effects of the fertilizer treatments and crop
managements on the soil used in the rotation experiment
are accentuated by some of the less rational treatments
used in the production of soybean forage. The continued
use of fertilizers of varying ratios and the diversified
crop management have modified the original fertility and
other properties of the Norfolk sand. This phase of the
experiment which follows was formulated to obtain
information: (1) in regard to the capacity of this soil
to retain added organic matter, (2) the effect of these
residues on the relation of carbon and nitrogen, and
(3) to study the combined residual effect on the soil
of the residues and fertilizers, under different systems
of crop management.

Literature Cited

The resume given in the green manure and fertilizer
study is applicable here.

Experimental

Attention is again called to Figure 10. The area
was divided into three sections for the soil studies and
these were designated as A, B and C. The seed from the
21 plots of Section A were allowed to mature, threshed, the hay returned to the plot on which it was produced and diced in sufficiently to prevent blowing. Section B received the crop as a green manure, while the hay was removed from C, at the same time it was turned on B, and the stubble turned. These variations in management allow a comparison to be made of their effects upon the soil organic matter and the pH. The crops were grown with the 21 fertilizer ratios already discussed and on two unfertilized checks for each system of management.

Discussion

The gains or losses of carbon or nitrogen, and the change in pH are given in Table 13. This method of presentation is preferable to the statement of actual values. The changes in the carbon-nitrogen ratio are given only in triangle form.

These differences in carbon content, which are assumed to be differences in the organic fraction rather than charcoal, are depicted by Figures 41, 42, and 43 for Sections A, B and C, respectively. They represent the change between the samples of March, 1929, to March, 1934. There is but one gain registered; it is the 3:9:3 plat of Section A. The
Table 13 (Part 1). Gain or loss of organic carbon and nitrogen and change in the pH as influenced by the fertilizer treatment and crop management used on Norfolk sand.

<table>
<thead>
<tr>
<th>Plat</th>
<th>N-P₂O₅-K₂O</th>
<th>Org.C.</th>
<th>Org.N.</th>
<th>pH</th>
<th>Plat</th>
<th>N-P₂O₅-K₂O</th>
<th>Org.C.</th>
<th>Org.N.</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>0-15-0</td>
<td>-0.08</td>
<td>0.001</td>
<td>-0.94</td>
<td>8A</td>
<td>3-6-6</td>
<td>-0.04</td>
<td>0.002</td>
<td>-0.89</td>
</tr>
<tr>
<td>B</td>
<td>-0.08</td>
<td>0.002</td>
<td>-0.90</td>
<td></td>
<td>C</td>
<td>-0.15</td>
<td>-0.002</td>
<td>-0.56</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.15</td>
<td>-0.002</td>
<td>-0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>0-12-3</td>
<td>-0.06</td>
<td>0.000</td>
<td>-1.11</td>
<td>9A</td>
<td>6-6-3</td>
<td>-0.09</td>
<td>0.002</td>
<td>-0.46</td>
</tr>
<tr>
<td>B</td>
<td>-0.07</td>
<td>0.004</td>
<td>-0.91</td>
<td></td>
<td>C</td>
<td>-0.07</td>
<td>-0.004</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.07</td>
<td>-0.004</td>
<td>-0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>3-12-0</td>
<td>-0.09</td>
<td>0.001</td>
<td>-0.68</td>
<td>10A</td>
<td>9-6-0</td>
<td>-0.09</td>
<td>0.001</td>
<td>-0.56</td>
</tr>
<tr>
<td>B</td>
<td>-0.07</td>
<td>0.004</td>
<td>-0.64</td>
<td></td>
<td>C</td>
<td>-0.10</td>
<td>-0.004</td>
<td>-0.45</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.10</td>
<td>-0.004</td>
<td>-0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>0-9-6</td>
<td>-0.09</td>
<td>-0.001</td>
<td>-0.59</td>
<td>11A</td>
<td>0-3-12</td>
<td>-0.10</td>
<td>-0.001</td>
<td>-0.82</td>
</tr>
<tr>
<td>B</td>
<td>-0.06</td>
<td>0.002</td>
<td>-0.57</td>
<td></td>
<td>C</td>
<td>-0.10</td>
<td>-0.003</td>
<td>-0.47</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.10</td>
<td>-0.003</td>
<td>-0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5A</td>
<td>3-9-3</td>
<td>0.03</td>
<td>0.002</td>
<td>-0.64</td>
<td>12A</td>
<td>3-3-9</td>
<td>-0.08</td>
<td>0.001</td>
<td>-0.67</td>
</tr>
<tr>
<td>B</td>
<td>-0.11</td>
<td>0.003</td>
<td>-0.35</td>
<td></td>
<td>C</td>
<td>-0.05</td>
<td>-0.003</td>
<td>-0.21</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.05</td>
<td>-0.003</td>
<td>-0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>6-9-0</td>
<td>-0.09</td>
<td>-0.002</td>
<td>-1.08</td>
<td>13A</td>
<td>6-3-6</td>
<td>-0.03</td>
<td>0.003</td>
<td>-0.56</td>
</tr>
<tr>
<td>B</td>
<td>-0.06</td>
<td>0.006</td>
<td>-1.26</td>
<td></td>
<td>C</td>
<td>-0.16</td>
<td>-0.004</td>
<td>-1.08</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.16</td>
<td>-0.004</td>
<td>-1.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7A</td>
<td>0-6-9</td>
<td>-0.07</td>
<td>0.001</td>
<td>-1.08</td>
<td>14A</td>
<td>9-3-3</td>
<td>-0.14</td>
<td>0.002</td>
<td>-0.44</td>
</tr>
<tr>
<td>B</td>
<td>-0.17</td>
<td>0.001</td>
<td>-1.20</td>
<td></td>
<td>C</td>
<td>-0.19</td>
<td>-0.003</td>
<td>-0.84</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.19</td>
<td>-0.003</td>
<td>-0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 15, (Part 2). Gain or loss of organic carbon and nitrogen and change in the pH as influenced by the fertilizer treatment and crop management used on Norfolk sand.

<table>
<thead>
<tr>
<th>Plot</th>
<th>N-P₂O₅-K₂O</th>
<th>Org.C.</th>
<th>Org.N.</th>
<th>pH</th>
<th>Plot</th>
<th>N-P₂O₅-K₂O</th>
<th>Org.C.</th>
<th>Org.N.</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>15A</td>
<td>12-3-0</td>
<td>0.13</td>
<td>0.003</td>
<td>-0.78</td>
<td>20A</td>
<td>12-0-3</td>
<td>0.06</td>
<td>0.003</td>
<td>-0.27</td>
</tr>
<tr>
<td>B</td>
<td>-0.09</td>
<td>0.001</td>
<td>0.31</td>
<td></td>
<td>B</td>
<td>-0.13</td>
<td>0.003</td>
<td>-0.39</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.15</td>
<td>0.002</td>
<td>0.65</td>
<td></td>
<td>C</td>
<td>-0.15</td>
<td>0.004</td>
<td>-0.35</td>
<td></td>
</tr>
<tr>
<td>16A</td>
<td>0-0-15</td>
<td>-0.11</td>
<td>0.001</td>
<td>-0.69</td>
<td>21A</td>
<td>15-0-0</td>
<td>-0.09</td>
<td>0.002</td>
<td>-0.55</td>
</tr>
<tr>
<td>B</td>
<td>-0.15</td>
<td>0.002</td>
<td>-0.27</td>
<td></td>
<td>B</td>
<td>-0.17</td>
<td>0.002</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.10</td>
<td>0.003</td>
<td>0.20</td>
<td></td>
<td>C</td>
<td>-0.09</td>
<td>0.004</td>
<td>-0.65</td>
<td></td>
</tr>
<tr>
<td>17A</td>
<td>3-0-12</td>
<td>-0.09</td>
<td>0.003</td>
<td>-0.76</td>
<td>CK1A</td>
<td>0-0-0</td>
<td>0.20</td>
<td>0.004</td>
<td>-0.17</td>
</tr>
<tr>
<td>B</td>
<td>-0.12</td>
<td>0.000</td>
<td>-0.29</td>
<td></td>
<td>B</td>
<td>-0.09</td>
<td>0.001</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.13</td>
<td>0.002</td>
<td>-0.46</td>
<td></td>
<td>C</td>
<td>-0.07</td>
<td>0.002</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>18A</td>
<td>6-0-9</td>
<td>0.08</td>
<td>0.003</td>
<td>0.09</td>
<td>CK2A</td>
<td>0-0-0</td>
<td>-0.20</td>
<td>0.000</td>
<td>-0.15</td>
</tr>
<tr>
<td>B</td>
<td>-0.12</td>
<td>0.000</td>
<td>0.22</td>
<td></td>
<td>B</td>
<td>-0.18</td>
<td>0.003</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.12</td>
<td>0.004</td>
<td>0.00</td>
<td></td>
<td>C</td>
<td>-0.19</td>
<td>0.004</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>19A</td>
<td>9-0-6</td>
<td>-0.02</td>
<td>0.002</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-0.15</td>
<td>0.001</td>
<td>0.15</td>
<td></td>
<td>B</td>
<td>-0.08</td>
<td>0.002</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.08</td>
<td>0.002</td>
<td>-0.48</td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 41, Section A - Gain or loss in the percentage of organic carbon in Norfolk sand from March, 1929, to March, 1934. Mature hay turned.
Figure 42, Section B - Gain or loss of organic carbon in Norfolk sand from March, 1929, to March, 1934. Crop turned as green manure.
Figure 43. Section C - Loss in the percentage of organic carbon in Norfolk sand from March, 1929, to March of 1934. Hay removed from plat and stubble turned.
lack of outstanding trends in the change in the carbon content induced by the factors concerned makes Figure 44 particularly useful.

The nitrogen data are given in Figures 45, 46, 47 and 48.

The changes in the carbon-nitrogen ratio are given in triangular form as Figures 49, 50, 51 and 52.

The carbon and nitrogen data are summarized in Table 14 for discussion and are taken from Figures 44, 48 and 52. These average data show that large losses of organic carbon occurred during the 6 years of the experiment. The gain of the 3:9:3 ratio of Section A is masked by the losses for the other high-phosphate plates. All check plates show losses of both carbon and nitrogen, as well as all plates of Section C where only the stubble was turned. There is considerable variation in the amount to which the ratio has decreased; this decrease is accentuated if the loss of carbon has been accompanied by a gain in nitrogen.

The high-nitrogen ratios have produced an average gain of 0.002 per cent nitrogen on Section A, but losses have occurred on Sections B and C. There was neither gain nor loss for the high-phosphate fertilizers
Figure 44. Average loss in the percentage of organic carbon from Norfolk sand, for sections A, B and C resulting from the use of high-nitrogen, high-phosphate, high-potash, and complete fertilizers under the three systems of crop management, for the period 1929 to 1934.
<table>
<thead>
<tr>
<th>N</th>
<th>15:0:0</th>
<th>+0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12:3:0</td>
<td>12:0:3</td>
</tr>
<tr>
<td></td>
<td>9:6:0</td>
<td>9:3:3</td>
</tr>
<tr>
<td></td>
<td>6:9:0</td>
<td>6:6:3</td>
</tr>
<tr>
<td></td>
<td>3:12:0</td>
<td>3:9:3</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0:16:0</td>
<td>0:13:3</td>
</tr>
<tr>
<td></td>
<td>+0.001</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Average of the checks = -0.002

Figure 45, Section A. Gain or loss in the percentage of organic nitrogen in Norfolk sand from March, 1929, to March of 1934. Mature hay turned.
Figure 46, Section B. Gain or loss in the percentage of organic nitrogen in Norfolk sand for the period March 1929 to March of 1934. Crop turned as green manure.
Average of checks = -0.003

Figure 47, Section C. Gain or loss in the percentage of organic nitrogen in Norfolk sand for the period March, 1929, to March of 1934. Hay removed and stubble turned.
Figure 48. Average gain or loss in the percentage of organic nitrogen on Norfolk sand for Sections A, B and C resulting from the use of high-nitrogen, high-phosphate, high-potash and complete fertilizers under the three systems of crop management, for the period 1929 to 1954.
Figure 49. Section A. Reduction in the carbon-nitrogen ratio of Norfolk sand, during the period March, 1929, to March of 1934. Mature hay turned.
Figure 53. Section E. Reduction in the carbon-nitrogen ratio of Norfolk sand, during the period of March, 1929, to March, 1934. Crop turned as green manure.
Figure 51, Section C. Increase or reduction in the carbon-nitrogen ratio of Norfolk sand for the period March, 1929, to March, 1934. Hay removed and stubble returned.
Figure 52. Average reduction in the carbon-nitrogen ratio of Norfolk sand for Sections A, B and C resulting from the use of high-nitrogen, high-phosphate, high-potash and complete fertilizers under the three systems of management, for the period 1929 to 1934.
Table 14. Average increases or decreases in organic carbon and nitrogen, and in the carbon-nitrogen ratio for Norfolk sand, for the period 1929 to 1934.

<table>
<thead>
<tr>
<th>Fertilizers Used</th>
<th>Section A</th>
<th></th>
<th></th>
<th>Section B</th>
<th></th>
<th></th>
<th></th>
<th>Section C</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>N</td>
<td>C/N</td>
<td>C</td>
<td>N</td>
<td>C/N</td>
<td>C</td>
<td>N</td>
<td>C/N</td>
<td></td>
</tr>
<tr>
<td>High Nitrogen</td>
<td>-0.09</td>
<td>0.002</td>
<td>-6.4</td>
<td>-0.12</td>
<td>-0.001</td>
<td>-6.0</td>
<td>-0.12</td>
<td>-0.002</td>
<td>-4.8</td>
<td></td>
</tr>
<tr>
<td>15, 12, 9 %</td>
<td></td>
</tr>
<tr>
<td>High Phosphate</td>
<td>-0.06</td>
<td>0.000</td>
<td>-2.8</td>
<td>-0.06</td>
<td>0.004</td>
<td>-9.0</td>
<td>-0.10</td>
<td>-0.003</td>
<td>-1.4</td>
<td></td>
</tr>
<tr>
<td>15, 12, 9 %</td>
<td></td>
</tr>
<tr>
<td>High Potash</td>
<td>-0.09</td>
<td>0.001</td>
<td>-5.5</td>
<td>-0.13</td>
<td>-0.001</td>
<td>-7.1</td>
<td>-0.14</td>
<td>-0.003</td>
<td>-4.0</td>
<td></td>
</tr>
<tr>
<td>15, 12, 9 %</td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td>-0.06</td>
<td>0.002</td>
<td>-4.6</td>
<td>-0.11</td>
<td>0.001</td>
<td>-8.1</td>
<td>-0.15</td>
<td>-0.001</td>
<td>-5.4</td>
<td></td>
</tr>
<tr>
<td>Checks (Av.)</td>
<td>-0.20</td>
<td>-0.002</td>
<td>-8.5</td>
<td>-0.14</td>
<td>-0.002</td>
<td>-5.5</td>
<td>-0.06</td>
<td>-0.003</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>No Fertiliser</td>
<td></td>
</tr>
</tbody>
</table>
on A, but there has been a loss on C. The largest gain of organic nitrogen registered was obtained with high-phosphate fertilizers on B where the green manure was turned. The averages for the high-potash fertilizers are in accord with those of the high-nitrogen; both have shown gains on A and losses on section B. Those of the complete ratios show a gain for both Sections A and B.

Particular emphasis can be placed upon the gain of organic nitrogen produced by the high-phosphate ratios on section B. It will be seen from Figure 46 that this average gain of 0.004 per cent is equal to that of the 12:3:0 and 0:12:5 ratios. The greatest individual gain, however, is for the 9:6:0 ratio which registers a 0.006 per cent increase in nitrogen. These increases are associated with high-nitrogen and calcium contents of the forage produced on these plots.

The importance of calcium becomes more distinct when one considers the photograph (1932) presented as Figure 53. The barren space outlined by soybean plants is the portion of Section C which received fertilizers containing little or no superphosphate. Considerable difficulty was experienced early in the
Figure 53. Photograph taken in May, 1932, of an area in Section C which had received fertilizers carrying little or no superphosphate. The dying of the seedling soybean plants was thought to be due to a calcium deficiency induced by the removal of the hay during the period 1928 to 1930.
experiment in obtaining a stand on these plats. The conclusion was drawn that the failure was due to a calcium deficiency which had developed incident to the removal of the hay, and to the lack of calcium in the fertilizer. This deficiency developed within the period 1928 to 1931.

The wide variation in the carbon-nitrogen ratios at different dates of sampling is illustrated by Figures 54 and 55. The original uniformity of the ratios, for all three sections for the plats which received the high-nitrogen fertilizers (Figure 54), would allow a direct comparison of actual ratios to be made. There is such a spread between the ratios of A, B and C for the high-phosphate plats (Figure 55), at the beginning of the experiment, that a direct comparison of ratios at the various dates of sampling would hardly be valid. For this reason, the numerical differences between the ratios of the samples of March, 1929, and those of a particular spring season are given. By confining the graphs to samples taken during the spring season of each year, the curves are much smoother, easier to follow, and bring out differences as well as if semi-annual variations are considered. These differences are shown for the high-nitrogen plats (an average of
Figure 55. Change in the average carbon:nitrogen ratio of the high-phosphate plots under the three systems of crop management from March, 1929, to March, 1934.
the plots receiving fertilizers containing 15, 12 and
9 per cent of nitrogen; a total of six plots) in Figure
56. Those for the high-phosphate are shown in Figure
57 and of the high-potash plots in Figure 58. The check
plots are given as Figure 59. As all graphs are on the
same scale, the relative vertical positions give the
proportionate decrease due to a particular fertilizer
treatment.

It is shown in Figure 56 that the reduction of the
ratio by the high-nitrogen fertilizers has been practi-
cally the same for all three sections, and the change
has been rather gradual. The most abrupt change was
during the period of March, 1930, to March, 1931.

The changes on the high-potash plots, as given in
Figure 58, have been at approximately the same rate as
on the nitrogen plots. The decrease between March of
1929 and 1930 was quite large for Sections B and C, but
it was delayed until the succeeding year for the mature
hay of A. There is a tendency for Section C to revert
to a higher carbon-nitrogen ratio level.

The check plots are given as Figure 59. It is to be
recalled that very meager crops have been produced on
these plots since 1931. The rate of decrease for
Section A seems to have been greatly accelerated since
Figure 56. Reduction in the average carbon:nitrogen ratio of the high-nitrogen plots for samples taken in the spring of each year from March, 1929, to March, 1934.
Figure 57. Reduction in the average carbon:nitrogen ratio of the high-phosphate plots for yearly samples taken from March, 1926, to March, 1934.
Figure 58. Reduction in the average carbon:nitrogen ratio of the high-potash plots for yearly samples taken from March, 1929, to March, 1934.
Figure 59. Gain or reduction of the average carbon:nitrogen ratio of the check plats for yearly samples taken from March, 1939, to March, 1954.
March, 1932, and has been greater than for B, which constitutes the green manure plots. Section C has nearly reverted to the original carbon-nitrogen ratio.

The greatest change in the carbon-nitrogen ratio is exhibited in Figure 57 by the high-phosphate plots of Section B, while the change for A is essentially the same as for C. Attention is called to Figure 25 which shows that the hay from these plots of Section B averaged 2.14 and 1.94 per cent of nitrogen and calcium, respectively, while those of the high-nitrogen plots were 1.59 and 1.26; and of the high-potash plots, 1.77 and 1.1. Again it should be pointed out that the changes in the ratio on the check plots is practically of the same magnitude as on other plots which received much greater quantities of nitrogen when the hay crop was turned. Assuming that virtually the same amount of nitrogen was turned for a particular plot of Section A as for B, there is an indication that the turning of the crop of high-nitrogen content as a green manure is very efficacious in reducing the carbon-nitrogen ratio. It is to be observed that the rate of reduction for the period of March, 1930, to March, 1934, is practically the same as for the other sections and for the other fertilizer treatments. The very large reduction in the period 1929 to 1930, and again
from 1930 to 1931, would seem to indicate that there is a portion of the native organic matter which is comparatively readily available as a source of energy for micro-organic life. When this is utilized, the more refractive portion decreases the rate of the reduction of the ratio to a lower value. It would appear that the nitrogen of the hay turned cannot be fully and immediately effective unless the hay is turned into the soil when in the succulent stage of growth.

The comparison of the fertilized plats has been made with respect to each other rather than in regard to the respective checks. The use of unfertilized checks resulted in a meager growth and the crop was virtually a failure, after the first three years, except for a light growth on A.

Figure 69 shows that the rates of decline in the carbon-nitrogen ratio of Sections B and C of the check plats are comparable. Following the 1931 sampling there has been a tendency to revert to the original ratio; this is more pronounced for C than for B. This is thought to be in keeping with the cropping management and the very small amounts of leguminous material turned. The tendency toward a decrease in the ratio is apparent for Section A until February of 1932, but since then the
rate has increased appreciably.

2. Data regarding pH.

The change in the pH of each plat is given in Table 12. These data are presented for Section A as Figure 60; for Section B as Figure 61; and for C as Figure 62. Averages as calculated for the other data which have been given are not made, due to the lack of significance to be attached to averages of logarithmic values. Comparisons of the data by means of the figures, or as given in Table 12 will suffice.

A comparison of the six plats of the high-phosphate area of the triangle shows that for each individual plat the reduction in pH has been greatest on Section A, followed in order by Sections B and C. This order does not hold for all plats in the high-potash area as there has been an increase for the 6:0:9 ratio on Sections A and B with neither increase nor decrease for C. The plat receiving the 9:0:6 fertilizer has also shown an increase for Sections A and B, but there has been a decrease for C. The smallest change in pH has been along the N-K2O line, and for the complete fertilizers. The 15:0:0 ratio has induced a smaller increase in acidity on Sections A and B than have the 0:15:0 and 0:0:15 ratios. The 0:0:15 ratio has taken the place
Average of check No. 1 = -0.17
Average of check No. 2 = -0.15

Figure 60, Section A. Changes in the pH of Norfolk sand induced by the fertilizer ratio and crop management used for the period March, 1939, to March of 1934.
Figure 61. Section B. Changes in the pH of Norfolk sand induced by the fertilizer ratio and crop management used for the period March, 1929, to March of 1934.
Figure 62, Section C. Changes in the pH of Norfolk sand induced by the fertilizer ratio and crop management used for the period March, 1929, to March of 1934.
of the 15:0:0 ratio for Section C.

Conclusions

Soybean residues, which have been produced by fertilizers of varying ratios, have been used under three systems of management; i.e., (1) the mature hay was returned to the plat on which it was produced, after the seed were threshed; (2) the crop was turned in the succulent stage of growth; and (3) the hay was removed from the plat, and the stubble turned. The combined effect of fertilizer treatment and crop management on the quantity and quality of the residual soil organic matter, and the pH, was studied. The results obtained on Norfolk sand, under the conditions of the experiment during a six-year study, seem to justify the following conclusions:

(1) There has been a decrease in the quantity of organic carbon on 68 of the 69 sub-plats; the turning of the mature hay produced by the 3:9:3 ratio resulted in the one increase (0.03 per cent).

(2) Both gains and losses of organic nitrogen have occurred. The gains of nitrogen have generally been more numerous on Section A, where the mature hay has been turned, than on B. Losses from Section C have occurred on 21 of 23 plats, with neither gain nor loss on the remaining two plats.
(3) A comparison of the averages of the high-nitrogen, high-phosphate, and high-potash plots brings out the following points: (a) the turning of mature hay produced by either the high-nitrogen or potash ratios has resulted in a slightly better conservation of nitrogen than from the use of the high-phosphate ratios, but the losses of carbon have been somewhat larger; (b) the turning as a green manure of the crop produced by the high-phosphate ratios has resulted in a greater conservation of both nitrogen and carbon than in the case of either the nitrogen or potash ratios, and (c) an average of the complete ratios occupies an intermediate position.

(4) The changes in the relative amounts of carbon and nitrogen (C/N) have varied considerably. When produced with high-phosphate fertilizers and turned in the succulent stage, soybean hay has been very effective in reducing the carbon-nitrogen ratio. This reduction took place early in the history of the experiment, and would seem to indicate that a part of the native organic matter is readily available as a source of energy for micro-organic life. The portion left apparently is not utilized so readily. The rapid and large reduction in the carbon-nitrogen ratio should be conducive to a more labile fertility for Norfolk sand. When incorporated in the mature stage of growth,
this same material does not have an effect of the same magnitude, but there is an indication that the rate of change has become greater during the later years of the experiment. The outstanding change mentioned is for a crop of high-average nitrogen and calcium content.

(5) The effect of the fertilizer ratio and crop management upon the pH of Norfolk sand is variable. The turning of mature hay produced with fertilizers has decreased the pH more than the unfertilized hay. The reverse is generally true for the green manure and stubble managements. Complete fertilizers and those composed of nitrogen and potash have effected the smallest decrease; certain of the latter combinations have actually increased the pH. These changes have taken place on Norfolk sand which has a pH value from 5.2 to 5.5 when the native cover is removed.
DISCUSSION

Some of the characteristics of the Norfolk sand used in this experiment have been discussed. The desirability of improving the moisture and nitrogen status of the soil by an increase of the organic matter content is in accord with the general principles of soil fertility. The quality of organic matter in a soil of this type is perhaps equally as important as the quantity; the soil texture and climatic conditions would appear to preclude a large increase in quantity, except as the result of an unusual crop-management program.

The wide carbon-nitrogen ratio which exists in this Norfolk sand indicates a condition analogous to a "sand culture" to which material of a wide ratio has been added. The assumption that such a condition exists allows the application of certain general principles which have been evolved from a large number of investigations, as have been cited in the literature resume. The necessity for establishing a narrower ratio would seem to take precedence over that for quantity. A full availability of added fertilizer materials, especially nitrogen, apparently cannot be expected until this reduction has been effected. The findings in the investigations cited
are at variance in that different limits are set for the ratio at which it is considered that the nitrogen is available for plant growth. It is thought that there should be a variance, and that availability depends on the particular soil type, the extent to which the nitrogenous material is mixed with the soil, the moisture content, and probably other factors.

The reductions in the carbon-nitrogen ratio which have occurred in these experiments which have been presented are probably due to a combination of factors; these have taken place where appreciable amounts of legume residues have been turned to the soil. It is possible that cultivation has been a factor, but the change in the ratio on the check area of Section C does not uphold this possibility; practically no residues have been returned to this soil since 1930 and there has been a rapid reversion toward the original carbon-nitrogen ratio. The nitrogen of the fertilizer probably enters into the process. In spite of these complicating factors, it would seem that the rate and amount of the reduction depends to some extent on the composition of the hay as induced by the fertilizer treatment; and the maturity of the plant at the time it is incorporated with the soil.

The pH of the soil has been reduced on most of the plots by the turning of legume residues; some differences
are to be observed due to the condition of the residues when turned. There have been increases in the pH for a limited number of plots receiving green manure, or mature hay, as the case may be. This indicates that the composition of the hay and fertilizer is involved.

The hay and seed data obtained from the studies conducted on Norfolk sand show the extent to which the composition of these plant parts has been affected by the fertilizers used. This soil develops deficiencies of potash, magnesium and calcium under special conditions of rainfall, fertilizer treatment and crop management. It would seem that the influence of the soil should be at a minimum under these conditions; this should allow an accurate reflection of the effect of the treatment, from both the theoretical and practical standpoints. The results obtained might have been altered considerably had a more fertile soil been used.

Potassium has been described as the "key element" in the nutrition of the soybean plant. It has been intimated, however, that calcium may be fully as important. This latter suggestion would do away with an apparent anomaly in that little potash is needed for the production of either soybean hay or seed, yet it appears to be most important when only the three fertilizer ingredients are
recognized. Superphosphate ordinarily contains three-fourths CaSO₄ and one-fourth phosphate. This warrants a serious consideration of the probable effects of calcium in the nutrition of the soybean plant. Some of the effects are: (1) the CaO content is in proportion to the CaSO₄ applied; (2) the nitrogen content of the forage parallels, generally, the CaO content; (3) the potash content is inversely proportional to the CaO content which indicates control by the CaSO₄ applied; and (4) the P₂O₅ content is proportional to the CaO of the fertilizer. This last point would indicate indirect control of the P₂O₅ content by the calcium content of the superphosphate. This line of reasoning leaves but little doubt in regard to the classification of calcium as the "key element".

The effects of fertilizer treatment on the composition of soybeans, as cited in the literature resume, represent investigations conducted under a wide range of soil and climatic conditions. Consideration of the data from this viewpoint would allow for a lack of harmony in such studies; for this reason no attempt has been made to reconcile differences which are apparent.
CONCLUSIONS

The average data obtained on the Norfolk sand, under the conditions of the various experiments, can be interpreted to allow the following conclusions to be drawn:

(1) Larger yields of legumes, corn and cotton have been obtained in the green manure-fertilizer experiment from plots to which legumes stubble was turned and the crops grown with a 6-8-4 fertilizer, as compared with those yields from plots which received the full legume crop as a green manure and a 2:8:4 ratio used as a supplement. These results were obtained under both a winter-fallow and a winter-cover management. The largest yields were obtained by using a winter cover of rye and vetch following the legume stubble and 6-8-4 combination.

(2) The use of the stubble and 6:8:4 combination resulted in a slightly greater conservation of organic carbon and nitrogen than was obtained from the green manure-2:8:4 system, under winter fallow. There was no appreciable difference between the two systems when a winter cover crop was used.

(3) A considerable reduction of the carbon-nitrogen ratio occurred under both systems of management. This is thought to be conducive to a more desirable soil-nitrogen
status.

(4) Yields are apparently influenced more by the nitrogen of the fertilizer than by the management of the legume residues.

(5) The largest average yield of soybean hay was obtained by using a 3-9-3 fertilizer. These data, as a whole, indicate that only a small amount of potash is needed when the total amount of plant food is 15 per cent, and the fertilizer is applied at the rate of 400 pounds per acre.

(6) The quality of a forage is related to its composition, both mineral and organic; the mineral content of the soybean hay was materially influenced by the fertilizer used. The nitrogen content varied from 1.46 to 2.41 per cent; the P2O5 content from 0.45 to 0.66; the K2O, from 0.66 to 2.28; and the CaO content ranged from 0.98 to 2.13 per cent. The content of the other ingredients varied to a smaller extent.

(7) The following fundamental relations are indicated: (a) the K2O content of the hay is in proportion to the amount of potash applied in the fertilizer; (b) the P2O5 content is a reflection of the potash and phosphate used, with the former dominating; (c) the nitrogen varies directly with the superphosphate, and indirectly with the
potash contained in the fertilizer. The contents of soluble ash, R_2O_3, MgO_4, sulphur, and MgO are also discussed. The effect of the calcium of the fertilizer can be demonstrated as overshadowing that of potash.

(8) The yield of seed can be influenced by the fertilizer treatment; conditions favorable to the production of forage are generally conducive to greater yields of seed.

(9) Fertilizer ratios conducive to the yields of seed have not produced the greater oil content, but have effected the greatest nitrogen content.

(10) The same fertilizer ratios cannot be used for both oil content and production; nitrogen and potash favor a high oil content, while nitrogen and phosphate favor production.

(11) A gain in the organic carbon of the soil was registered on but one of the 69 sub-plots. This was obtained by the use of the 3:9:3 ratio where the mature hay was turned. All other plots suffered losses which were variable, but appreciable.

(12) Both gains and losses of organic nitrogen have occurred. Gains are apparent on more plots of Section A (mature hay turned) than on B (green manure turned); however, where gains have been secured for the same ratio on both sections, that for B is usually the larger. Losses of nitrogen are recorded for 21 of the 23 sub-plots of Section
C, where only the stubble was turned.

(13) The effect of the three systems of management on the carbon and nitrogen status of the soil depends to a large extent on the fertilizer used to produce the plant material. A comparison of the averages of the high-nitrogen, high-phosphate, and high-potash plots seems to indicate the following: (a) the use of mature hay produced by either the nitrogen or potash ratios has resulted in a slightly better conservation of nitrogen than from the phosphate ratios, but the losses of carbon have been somewhat larger; (b) when turned as a green manure, the hay produced by high-phosphate ratios induces a greater conservation of both carbon and nitrogen than that resulting from the use of the residues from the nitrogen and potash plots; and (c) an average of the complete ratios occupy an intermediate position.

(14) The reduction in the carbon-nitrogen ratio has varied in amount depending upon the fertilizer and management used. High-phosphate fertilizers produce a soybean crop of a composition such as to be quite effective in reducing the ratio, if turned in the succulent stage. The hay from these plots is characterized by a high-nitrogen and calcium content.

(15) The effect of the fertilizer ratio and crop
management on the pH of the Norfolk sand is quite variable. The turning of mature hay produced with fertilizers has reduced the value more than has the unfertilized hay. The reverse is true for the green manure and stubble sections. The smallest decrease resulted from the use of complete fertilizers, and those composed of nitrogen and potash; certain of the latter combinations have actually increased the pH, as compared with that of the original soil.
SUMMARY

The data presented have been obtained from a combined field and laboratory study conducted on Norfolk sand; this type of soil is prevalent throughout the sand-hill region of the Carolinas and Georgia. Investigations concerning the relative efficiencies of fertilizers and crop residues as sources of nitrogen for corn and cotton have been made. These involved a comparison of legumes used as green manures; i.e., soybeans, velvet beans, and cowpeas, with only the stubble turned; a low-nitrogen fertilizer was applied to the crops grown on the green manure plots, while a high-nitrogen ratio was used on the stubble plots. These two systems of management were used in a rotation of legumes, corn and cotton. Winter fallow following cowpeas was compared with a winter cover.

Yields data were obtained, and the carbon and nitrogen status of the soil was determined semi-annually during the two rounds of the three-year rotation.

The foregoing study of the effect of a rational soil management and cropping program on the quantity of the crops produced, and the organic matter content of the soil, was in conjunction with an intensive study of the effect of all fertilizers of varying ratio, as dictated
by the triangle system, on the composition (quality) of soybean hay and seed. The use of the residues under the three systems of management; i.e., (1) the turning of the crop as a green manure, (2) the turning of the mature hay after the seed had been removed, and (3) the turning of the stubble, allowed the study of the combined effect of fertilizers and residues on the organic matter and the pH of the soil.

Yields of seed and hay were obtained for the period 1928 to 1933, inclusive. The seed were analyzed for nitrogen and oil during the period 1929 to 1933. The following components of the hay were determined during a four-year period: (1) nitrogen, (2) phosphoric anhydride, (3) potassium oxide, and (4) calcium oxide; soluble ash, R_2O_3, MgO_4, sulphur, and magnesium oxide were determined during a three-year period.

These studies have provided information regarding some fundamental problems associated with a fertility program for the Norfolk sand.
LITERATURE CITED

(49) Fred, E. B. The fixation of atmospheric nitrogen by inoculated soybeans. Soil Sci. 11: 469-477. 1921.

(51) ________, ________. Effect of inoculation and lime on the yield and on the amount of nitrogen in soybeans on acid soil. Soil Sci. 7: 465-467. 1919.

(54) Gilbert, E. E., McLean, F. T., and Adams, W. L.
The current mineral content of the plant solution as an index of metabolic limiting conditions. Plant Physiol. 3: 139-151. 1927.

(59) Hart, G. H., Guilbert, H. R., and Goss, H.

(87) __________, and Waynick, D. D. Detailed study of effects of climate on important soil properties. Soil Sci. 1: 5-46. 1916.

(144) Snyder, H. F. Methods for determining the hydrogen-ion concentration of soils. U. S. D. A. Cir. 56. 1926.

(157) Thomas, W. The reciprocal effect of nitrogen, phosphorus, and potassium as related to absorption of these elements by plants. Soil Sci. 35: 1-20. 1932.

