1946

Toxemia in a Cow

R. T. Howard

Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/iowastate_veterinarian

Part of the Large or Food Animal and Equine Medicine Commons, and the Veterinary Physiology Commons

Recommended Citation

Howard, R. T. (1946) "Toxemia in a Cow," Iowa State University Veterinarian: Vol. 8 : Iss. 4 , Article 12.
Available at: https://lib.dr.iastate.edu/iowastate_veterinarian/vol8/iss4/12

This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Veterinarian by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
twitchings. The body temperature at this time was 106° F.

Eclampsia was diagnosed in this bitch because of her typical history and symptoms. The etiology of this condition is not definitely known, but it occurs in pregnant bitches as late as 50 days after whelping. It has also been observed in pregnant females that have been exposed to severe refrigeration and in suckling bitches following grief or anxiety due to the loss of 1 or more puppies.

This animal was treated by giving 20 cc. of calcium gluconate intravenously. Five minutes after the injection the animal was able to rise and to walk. Further treatment consisted of the subcutaneous injection of 30 cc. of calcium gluconate in divided doses in the flank region. The animal was then released to return home in seemingly normal condition.

—R. T. Howard, ’47

The only two who can live as cheaply as one are a flea and a dog.

Toxemia in a Cow. A 6-year-old Holstein cow was admitted to Stange Memorial Clinic on May 7, 1946. The history, according to the owner, was that the animal showed difficult breathing, anorexia and abdominal pain. The owner was an exceptionally good feeder, but the animal had been fed some corn fodder. The local veterinarian made a tentative diagnosis of ruminal impaction. He treated the animal on the first day by giving it 2 pounds of magnesium sulfate orally. The second day the animal was given 1 gallon of mineral oil. The animal showed no relief on the third day and was given 5 mgm. of lentin subcutaneously. No medication was given on the fourth day and the animal was brought to the clinic on the fifth day.

Upon examination, the animal seemed quite depressed. A marked toxemia was evident and symptoms of dehydration were pronounced. The temperature was

A Step Ahead in Veterinary Therapeutics

Metrazol

Council Accepted

Quick, Dependable Stimulation of the Respiratory, Vasomotor and Cortical Centers

Deepens Breathing

Raises Lowered Blood Pressure

Overcomes Anesthetic Depression

Usual dose for small animals is ½ to 1 cc. by injection, repeated as needed.

Metrazol (pentamethylentetrazol) Trade Mark Bilhuber.

BILHUBER-KNOLL CORP. • ORANGE, N. J.

The Veterinary Student
101.2° F., and the pulse was rapid and weak (120). The urine was acid in reaction. Considering the history and the symptoms presented above, a tentative diagnosis of enterotoxemia was made.

Treatment

The treatment administered to the animal the first day consisted of an enema of 4 gallons of water with ¼ pound of magnesium sulfate. A drench was given per os of 4 ounces of sodium bicarbonate and 1 ounce of bovine tonic (gentian, nux vomica, and tartar emetic). The treatment given on the second day was similar that given on the first day. The third day the animal showed additional symptoms which were a jerking movement of the head, grinding of the teeth, inability to stand and blindness. These new complications with the developing nervous symptoms made the prognosis unfavorable, and since death was evident, euthanasia and a necropsy were performed.

The report from the necropsy was that of a well-marked, diffuse catarrhal enteritis, mucous colitis and a wide-spread, severe interstitial emphysema. No impaction or obstruction was found in the gastro-intestinal tract. The mineral oil and other material administered were found lying in the rumen and seeping posteriorly. This indicated that there was a complete atony of the whole gastro-intestinal tract.

This is the third case of this type that has been in the clinic this spring of 1946. All of them had been fed corn fodder in their ration. Each animal showed a marked toxemia and gastro-intestinal atony. With these factors in mind, the possibility of some toxin being present in the corn stalks can not be overlooked. However, corn-stalk toxemia could not be definitely proven and since the literature on this subject is incomplete, further observations must be made and more data collected before corn stalks can be considered the cause of this disease in cattle.

—R. T. Howard, '47

It is reported that Russia had 50,000 men in veterinary schools at the outbreak of World War II.

Posterior Paralysis. The patient in this case was a 2½-year-old, female albino Pekingese. The animal was presented at the Stange Memorial Clinic December 14, 1945, with the history of having not been able to use its rear quarters during the previous week. The symptoms presented were complete paralysis of the rear quarters and when the animal attempted locomotion, it was forced to drag these parts.

This condition was diagnosed as posterior paralysis due to a vitamin B deficiency.

Treatment

The patient was treated as follows:

Dec. 15 to Jan. 3—Two cc. of vitamin B complex was administered per orum and 1 cc. of thiamine hydrochloride subcutaneously.

Jan. 4 to Jan. 21—Brewer’s yeast tablets were given. At this time it was reported that the animal still had a slight ataxia in the rear quarters, but was able to stand.

Jan. 23 to Jan. 25—The patient was continued on Brewer’s yeast, and could stand, walk, and run with some incoordination still present.

Jan. 26 to Jan. 28—Brewer’s yeast tablets were given with continued improvement, but the animal seemed to lose its balance when it attempted to turn.

Feb. 4—The animal was discharged, being able to handle itself fairly well, but still showing some incoordination during rapid motion.

In the treatment, the injections of vitamin B complex and thiamine hydrochloride that were given subcutaneously were responsible for correcting the deficiency which was the cause of the paralysis. The Brewer’s yeast tablets were given after the deficiency had been corrected to maintain a high level of the vitamin to aid in the repair of the nerve tissue that was affected.

In treating conditions such as this, it is first necessary to determine whether or not the paralysis is due to trauma, as the