Radioactivities produced in europium and gadolinium

Richard Earl Hein
Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Physical Chemistry Commons, and the Radiochemistry Commons

Recommended Citation
Hein, Richard Earl, "Radioactivities produced in europium and gadolinium " (1950). Retrospective Theses and Dissertations. 13957. https://lib.dr.iastate.edu/rtd/13957

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
RADIOACTIVITIES PRODUCED IN EUROPINIUM AND GADOLINIUM

by

Richard Earl Hein

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major Subject: Physical Chemistry

Approved:

In Charge of Major Work

Head of Major Department

Dean of Graduate College

Iowa State College

1950
INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
TABLE OF CONTENTS

INTRODUCTION ... 1
REVIEW OF LITERATURE 6
EXPERIMENTAL INVESTIGATIONS 14

Statement of Problem 14
Instruments Employed 14

Beta and Gamma Counters 14
Electroscope ... 16
Survey Meters .. 16
Coincidence Circuit 17
Rate Meter Circuit 22

Materials ... 23

Gadolinium Produced by Deuteron Bombardment of Europium 24

Survey of Previous Work 24
Separation of Europium and Gadolinium Activities 25
Purification of Gadolinium by Ion Exchange Methods 29
Half-life Studies 31
Energy Measurements 32
Critical Absorption Measurements 38
Decay Schemes ... 44

Neutron Bombarded Gadolinium 51

Survey of Previous Work 51
Na-Kg Extractions of Possible Contaminants 52
Separation of Activities by Ion Exchange Methods 53
Identification of Contaminants 57
Estimation of Impurities in the Gadolinium 62
Half-life Studies 65
Critical Absorption Measurements 70
Energy Measurements 71
Decay Scheme of Gadolinium-153 77

T9381
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron and Deuteron Bombarded Europium</td>
<td>84</td>
</tr>
<tr>
<td>Survey of Previous Work</td>
<td>84</td>
</tr>
<tr>
<td>Purification of Activities</td>
<td>85</td>
</tr>
<tr>
<td>Half-life Measurements</td>
<td>85</td>
</tr>
<tr>
<td>Energy Measurements</td>
<td>87</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>89</td>
</tr>
<tr>
<td>Interpretation of Data</td>
<td>89</td>
</tr>
<tr>
<td>Mass Assignment of Gadolinium Activities</td>
<td>89</td>
</tr>
<tr>
<td>Limitations of Studies</td>
<td>91</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>93</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>95</td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>98</td>
</tr>
</tbody>
</table>
INTRODUCTION

The study of radioactivities produced in gadolinium and europium was undertaken with two objectives in mind. The first objective was the determination of half-lives, energy of emitted radiations, mode of decay and decay schemes of gadolinium activities, and the assignment where possible of these activities to the proper isotope and element. The first aim is then fulfilled in that these tracers when catalogued may be used in rare earth separations as an identification of the gadolinium fraction.

Secondly, the present studies were designed to clear up some debated points in regard to europium activities. It was hoped that some assignment of radiations and half-lives could be made by the comparison of deuterium and neutron produced europium activities.

It should be pointed out at this time that primarily these studies deal with long-lived activities although two short-lived activities were investigated. As the samples were irradiated either at Argonne National Laboratory or Oak Ridge, half-lives of the order of a few hours or less could not be conveniently studied because of the time interval between the end of bombardment and the receiving of the sample.
When this investigation was started, the information regarding the neutron induced activities was somewhat meager. A long-lived neutron-induced gadolinium activity had been assigned to Gd153 on the basis of mass spectrographic measurements. A gadolinium activity produced in deuteron bombarded europium had also been tentatively assigned to Gd153 as this activity was long-lived. Neither the mode of decay nor energy of emitted particles of the long-lived neutron-induced gadolinium activity had been studied. This long-lived gadolinium activity would be useful as a tracer if its radiation characteristics were known. Various half-lives, energies and assignments had been reported for the short-lived gadolinium activities. The europium activities had been studied to some extent. It was known that both Eu152 and Eu154 were long-lived activities and their radiation spectra were complex. The short-lived 9.2 hour Eu152 was well known.

The problem thus involves the study of gadolinium activities, their half-lives, energies, mode of decay, decay schemes and assignments. Table I lists the stable isotopes of samarium, europium, gadolinium and terbium. In a slow neutron bombardment of gadolinium, the nuclides 153, 159, and 161 could be produced. Somewhat less likely is the production of an active isomer of a stable gadolinium
TABLE I
Stable Isotopes of Samarium, Europium, Gadolinium and Terbium.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb</td>
<td></td>
<td></td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>Gd</td>
<td></td>
<td></td>
<td>154-158</td>
<td>160</td>
</tr>
<tr>
<td>Eu</td>
<td></td>
<td>151</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>Sm</td>
<td>144</td>
<td>147-150</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>154</td>
</tr>
</tbody>
</table>

isotope. Fast neutron activation could give Gd151 by an (n, 2n) reaction on Gd152. Deuteron bombarded europium could give the following gadolinium isotopes with the (d, 2n) processes the more probable for deuterons with the energy of those used, 16 Mev.

\[
\begin{align*}
\text{Eu}^{151} + _1^1\text{H}^2 &\rightarrow \text{Gd}^{151} + 2\text{on}^1 \\
\text{Eu}^{153} + _1^1\text{H}^2 &\rightarrow \text{Gd}^{153} + 2\text{on}^1 \\
\text{Eu}^{151} + _1^1\text{H}^2 &\rightarrow \text{Gd}^{152} + \text{on}^1 \\
\text{Eu}^{153} + _1^1\text{H}^2 &\rightarrow \text{Gd}^{154} + \text{on}^1
\end{align*}
\]

Gd152 and Gd154 would decay from the activated state to the ground state of the stable isotope by emission of one or more gamma rays. If conversion of a gamma ray occurred, the characteristic x-ray which would then be present would identify the activity as an isomer of a stable gadolinium isotope. Gd151 or Gd153 must decay to the corresponding stable europium isotope either by electron capture or
positron emission or a combination of these. Positrons are readily detected by magnetic deflection experiments so the mode of decay could be established. As a long-lived neutron induced gadolinium activity was assigned to \(^{153}\text{Gd}\), a comparison of the long-lived gadolinium activity produced in europium is of some interest. If the activities were not similar, an assignment probably could be made on the basis of radiations emitted by the activity.

Because of the radiation complexities of the europium activities, the study was concerned more with a comparison of the activities produced by neutron and deuteron bombardment of europium. The europium activities are produced in the following way:

\[
\begin{align*}
\text{Eu}^{151} + \text{H}^2 & \rightarrow \text{Eu}^{152} + \text{H}^1 \\
\text{Eu}^{153} + \text{H}^2 & \rightarrow \text{Eu}^{154} + \text{H}^1 \\
\text{Eu}^{151} + \text{on}^1 & \rightarrow \text{Eu}^{152} + \gamma \\
\text{Eu}^{153} + \text{on}^1 & \rightarrow \text{Eu}^{154} + \gamma
\end{align*}
\]

If in the neutron activation of europium, the process \(\text{Eu}^{151}(n, \gamma)\ \text{Eu}^{152}\) had a large capture cross section and the \(\text{Eu}^{153}(n, \gamma)\ \text{Eu}^{154}\) process a small probability, the \(\text{Eu}^{152}\) activity would of course be predominant. If also such a probability existed in the deuteron bombarded europium that \(\text{Eu}^{154}\) was the favored activity, comparison of these activities produced by the two different particles would be of value. In this idealized case it would then be possible
to study radiation, half-lives and decay schemes. However, mass assignments could not be made without some additional information. It was on this basis of comparison that the work on the europium activities was performed.

The bane of all radioactive studies is the possibility of active impurities. This is especially true in the rare earths which are difficult to separate. A rare earth contaminant in gadolinium may not be detected spectrographically but because of the possible large neutron capture cross section of this contaminant and some rare earths have unusually large cross sections, an activity which may be an appreciable percentage of the whole is introduced. Thus it is necessary to carefully purify the bombarded material so that extraneous activities do not distort the results. Perhaps the most convenient and best method for separating and purifying rare earths is the ion exchange resin technique. This method was employed frequently in the identification and separation of activities present in the neutron bombarded gadolinium. The final purity of the gadolinium activities is based on this method. The purification of europium is somewhat unique since advantage is taken of the divalent state to separate europium from most rare earths.
REVIEW OF LITERATURE

The presence of an 8 hour activity (1) in neutron bombarded gadolinium was first reported in 1935. A mixture of radium and beryllium provided the neutrons for the bombardment. In the same year Sugden (2) bombarded several rare earths which were purified by J. K. Marsh. Using neutrons from radon, in quantities up to 100 millicuries, sealed in small glass tubes with powdered beryllium no activity was produced in gadolinium. An intense 9.2 ± 0.1 hour europium activity was detected with a Geiger-Mueller counter. Also a 3.9 ± 0.1 hour activity was produced in terbium. These activities were reinvestigated with a stronger neutron source a short time later (3). Again no activity was detectable in the gadolinium. Also in 1935 another group of investigators (4) found a 6.4 ± 0.3 hour activity in gadolinium. In this experiment a 500 millicure radium-beryllium neutron source bombarded 14 grams of gadolinium oxalate. The initial activity was 16 counts per minute. These early experiments lack conclusiveness because of low intensity of the activity and impurity of samples. The radium-beryllium sources provided a low neutron flux which was not capable of activating isotopes with a low capture cross section. Also the rapid separation of rare earth fractions after bombardment could not be accomplished so chemical identification of the activity was difficult.
After an interim of 2 or 3 years, the use of cyclotron techniques to obtain a high neutron flux revived the study of rare earth activities. Pool and Quill (5) did not detect an 8 hour activity in either fast or slow neutron irradiated gadolinium. The neutrons were produced by the lithium plus deuteron reaction. However, half-lives of 3.5 minutes and 17 hours were found in the gadolinium after both the fast and slow neutron bombardment. Both activities were assigned to Gd159. This assignment was seemingly verified by fast neutron bombardment of Tb159 as activities with half-lives of 3.6 minutes and 17 hours were found. The reaction producing them would be the (n, p) process. The 3.6 minute activity decayed in part by emission of positrons. A slow neutron bombardment produced a 3.3 hour activity assigned to Tb160. The following processes were involved according to the investigators.

$$\text{Tb}^{159} + \text{n} \rightarrow \text{Tb}^{158} + 2 \text{n}$$
$$\text{Tb}^{158} \rightarrow \text{Gd}^{158} + e^+ \quad 3.6 \text{ minutes}$$
$$\text{Tb}^{159} + \text{n} \rightarrow \text{Gd}^{159} + \text{H}^1$$
$$\text{Gd}^{159} \rightarrow \text{Tb}^{159} + e^- \quad 3.5 \text{ min. 17 hour.}$$

Evaluation of this work is somewhat difficult as later investigators (6) could not produce the above activities by fast neutron bombardment of terbium. However, at present activities with half-lives of 3.6 minutes and 18 hours are assigned to Gd161 and Gd159 respectively (7).
The possibility of gadolinium being present as an impurity in the terbium may be the answer.

Krisberg, Pool and Hibdon (6) reported no activity was detectable in gadolinium irradiated with a 500 milli-curie radon-beryllium source. However, slow neutrons produced by Li + 1H² and Be + 1H² gave 5.5 day and 18 hour activities. Both of these activities were tentatively assigned to Tb¹⁶¹. There was not a parent-daughter relationship between the two based on saturation intensity ratios. Assignment of these activities to Gd¹⁵⁹ was considered unlikely since fast neutron bombardment of Tb¹⁵⁹ did not produce either activity. That the assignment of these activities was still in doubt is evidenced by a paper by these same investigators (8) in which the 18 hour activity is assigned to Gd¹⁶¹ and the 5.5 day to Tb¹⁶¹. The radiations emitted by these activities are as follows:

\[
\begin{array}{ccc}
\text{Gd}^{161} \text{ or Tb}^{161} & \text{18 hour} & 0.85 \text{ Mev } \beta \quad 0.3 \text{ Mev } \gamma \\
\text{Tb}^{161} & \text{5.5 days} & 0.5 \text{ Mev } \beta \quad 1.28 \text{ Mev } \gamma
\end{array}
\]

These same investigators bombarded gadolinium with deuterons producing 5.5 day and 72 day activities. The 5.5 day activity has already been discussed and was thought to be produced by a Gd¹⁶⁰ (d, n) Tb¹⁶¹ reaction. The 72 day Tb¹⁶⁰ activity is well known and is produced by a (d, 2n) reaction on Gd¹⁶⁰. It should be noted that no long-lived neutron or deuteron induced gadolinium activities were reported.
Uranium reactors as neutron sources had entered the field by this time. After a long neutron bombardment in the uranium pile at Hanford, Washington, a sample of Sm₂O₃ on mass spectrographic analysis exhibited the activities listed in Table II (9). Europium, gadolinium and terbium were present in the samarium as impurities. The half-lives were estimated by comparing intensity of lines produced on photographic plates with an activity of a known half-life. The half-life of greater than 72 days for Gd¹⁵³ was obtained by comparison with the 72 day Tb¹⁶⁰.

TABLE II

Neutron Induced Activities in Impure Sm₂O₃.

<table>
<thead>
<tr>
<th>Mass No.</th>
<th>Ion</th>
<th>Active Isotopes</th>
<th>Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>Sm¹⁴⁵⁺</td>
<td>Sm¹⁴⁵</td>
<td>>72 days</td>
</tr>
<tr>
<td>151</td>
<td>Sm¹⁵¹⁺</td>
<td>Sm¹⁵¹</td>
<td>~20 years</td>
</tr>
<tr>
<td>152</td>
<td>Eu¹⁵₂⁺</td>
<td>Eu¹⁵²</td>
<td>~5 years</td>
</tr>
<tr>
<td>154</td>
<td>Eu¹⁵⁴⁺</td>
<td>Eu¹⁵⁴</td>
<td>~5 years</td>
</tr>
<tr>
<td>155</td>
<td>Eu¹⁵⁵⁺</td>
<td>Eu¹⁵⁵</td>
<td>2.3 years</td>
</tr>
<tr>
<td>156</td>
<td>Eu¹⁵⁶⁺</td>
<td>Eu¹⁵⁶</td>
<td>15.4 days</td>
</tr>
<tr>
<td>161</td>
<td>Sm¹⁴⁵⁰⁺</td>
<td>Sm¹⁴⁵</td>
<td>>72 days</td>
</tr>
<tr>
<td>167</td>
<td>Sm¹⁵¹⁰⁺</td>
<td>Sm¹⁵¹</td>
<td>~20 years</td>
</tr>
<tr>
<td>169</td>
<td>Gd¹⁵³⁺</td>
<td>Gd¹⁵³</td>
<td>>72 days</td>
</tr>
<tr>
<td>176</td>
<td>Tb¹⁶⁰⁺</td>
<td>Tb¹⁶⁰</td>
<td>72 days</td>
</tr>
</tbody>
</table>
Another extensive review of activities produced in pile neutron irradiated rare earths was reported a short time later (10). Oxides of lanthanum, samarium, europium, gadolinium and terbium were irradiated in the Oak Ridge pile for two months. The conclusions concerning activities in Gd₂O₃ are clouded because europium and terbium were also present and these activities were not separated from the gadolinium. However, a gamma ray of 102 kev as measured with a magnetic spectrometer was assigned to Gd¹⁵³. This activity was given a rough half-life of 110 days.

After the investigation of gadolinium and europium activities had been started in this laboratory two other papers regarding bombardment of gadolinium with pile neutrons were reported. The first paper dealt with short-lived activities produced in Gd₂O₃ in the pile at Harwell, England (7). Table III gives the pertinent information from this report. The similarity between capture cross section for the 218 sec. and the 6.75 day activities suggested a parent-daughter relationship and assignment to Gd¹⁶¹ and Tb¹⁶¹. Likewise the cross section value for the 18 hour activity placed this nuclide at Gd¹⁵⁹ rather than Gd¹⁶¹. Deuteron and neutron bombarded gadolinium did not give long-lived activities. The results discussed in the second paper (11) are in part very similar to those reported in this thesis. A comparison of results will be given later.
TABLE III
Neutron Induced Activities in Gd₂O₃.

<table>
<thead>
<tr>
<th>Half-life</th>
<th>Element</th>
<th>(\gamma)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>218 ± 5 sec.</td>
<td>--</td>
<td>0.18</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>18.0 ± 0.2 hr.</td>
<td>Gd</td>
<td>1.1</td>
<td>0.95 Mev</td>
<td>0.055, 0.38 Mev</td>
</tr>
<tr>
<td>6.75 ± 0.1 d.</td>
<td>Tb</td>
<td>0.16</td>
<td>0.52 Mev</td>
<td>0.05 (no harder (\gamma))</td>
</tr>
</tbody>
</table>

* barns \((10^{-24} \text{ cm}^2)\) in natural gadolinium

The production of an activity in deuteron bombarded europium which was chemically different from europium was first observed by Fajans and Voigt (12). The investigation was concerned with short half-lives produced in the deuteron bombarded europium. In the course of chemical purification an activity present after irradiation could be separated from europium as it was not reduced or precipitated as a sulfate. The activity did precipitate with \(\text{Eu}_2(\text{C}_2\text{O}_4)_3 \) in acid solution which is a characteristic reaction of rare earths. The intensity was such that it could not be an impurity. It was further determined that the activity decayed with a half-life of 155-170 days and the emission of negative beta rays and x-rays or gamma rays.

Krisberg, Pool and Hibdon (6) bombarded \(\text{Eu}_2\text{O}_3 \) but made no chemical separation of the activities. Three components were present in the decay curve of the active
sample with half-lives listed as 9.2 hours, a minimum of 75 days, and a minimum of 20 years. The 75 day activity was tentatively assigned to Gd153 because the 75 days was longer than would be expected for Gd151. The same investigators (8) in another paper assign a half-life of 62 days to the activity.

The assignment of this long-lived gadolinium to Gd153 seemed to be corroborated by mass spectrographic work (9). A neutron induced gadolinium activity with a half-life greater than 72 days was assigned to Gd153 (see Table II). Because of the similarity in half-lives it was assumed that Gd153 was the long-lived gadolinium activity (13) produced by a (d, 2n) reaction on Eu153. The production of Gd151 by a similar process on Eu151 would be possible.

Since this study is not concerned with the well known 9.2 hour Eu152, the history of that activity will not be reviewed. The first reference to a long-lived europium activity (1-2 years) produced by slow neutron irradiation was by Schenkenberger (14). The early history of the long-lived europium activity is reviewed by Fajans and Voigt (12) who estimated its half-life as 5-8 years, checked its production by n,γ reaction and produced it by (d, p) reaction as well. Other workers measured the decay of deuteron bombarded europium over a period of 4 years and assigned a minimum half-life of 20 years (6).
Mass spectrographic analysis on pile irradiated Eu_2O_3 indicated long-lived activities formed at masses 152 and 154 with approximately equal half-lives (15). Magnetic investigation showed no detectable positron emission. One or both of the activities decay to an unknown extent by K-electron capture (16). In a later paper (9), the half-lives were estimated at approximately 5 years by comparison of line intensities on photographic plates. Table II gives some relevant information in regard to this measurement. Later the same investigators (17) with a refined method involving a mass spectrometer and an isotopic dilution technique reported half-lives of 5.3 and 5.4 years for Eu^{152} and Eu^{154} respectively. These results were believed to be good within 15 percent.

A number of measurements of the gamma ray energies have been made (18, 19, 20, 21). One of these groups of investigators (21) states that about 33 electron lines are detected with a photographic magnetic spectrometer in the decay of the europium activities. A part of a decay scheme was presented but the authors state a satisfactory scheme will have to wait until enriched isotopes of masses 151 and 153 are available.
EXPERIMENTAL INVESTIGATIONS

Statement of Problem

The purposes of this study, as given in the introduction, are restated at this point to give added meaning to the following experimental work. The first objective was to determine the radiation characteristics of gadolinium activities in order to increase our knowledge about nuclei in general and so that these activities could be used in rare earth separations as an identification of the gadolinium fraction. To accomplish this objective, the half-lives, energies of emitted radiations, mode of decay and decay schemes were studied. The second aim was to determine whether a comparison of deuteron and neutron bombarded europium activities would aid in the assignment of half-lives and radiation to Eu152 and Eu154.

Instruments Employed

Beta and Gamma Counters

A detailed description will not be given of instruments in common use. However, circuits specially designed will be described in some detail. Models 161 and 165 scaling units manufactured by Nuclear Instrument and Chemical Corporation were used for most of the counting work.
These scale of 64 counters have the Higinbotham trigger circuits which are quite reliable. The resolving time of the circuit is less than five microseconds. A stabilized high voltage supply capable of generating from 600 to 1500 volts is part of the unit. A constant voltage generator in conjunction with the built-in power supply gave a well stabilized voltage.

Geiger-Mueller counter tubes made by Victoreen Instrument Co., Radiation Counter Laboratories and Tracer Lab were used to count beta and gamma radiations. The tubes were all of the self-quenching type. Counter tubes were selected that had less than 5 percent increase in slope per 100 volts and with a threshold of 1000 - 1200 volts so that a suitable plateau could be reached within the limits of the power supply. The counter tubes were mounted in lead housings to minimize background counts and care was taken to exclude light when the tubes were at operating potential. The absorption curves, short half-life measurements and quantitative work were done with the G-M tubes and sealers. As usual background and standard sample readings were taken each time an experimental sample was counted.
Electroscope

All of the long half-life measurements were taken on a Lauritsen electroscope because of its reliability over long periods of time. A standard sample read with this instrument over a period of 7 years has given identical readings. The instrument employed was purchased from Fred C. Henson Co. The ionization chamber was changed to one of cast aluminum 8 cm. on an edge. It was equipped with two glass receptacles which were filled with a dehydrating agent to keep the air inside the chamber dry. All of the instruments were kept in a constant temperature room. The case was designed so that measurements could be made from either the top or bottom of the ionization chamber. A detailed description of such a chamber has been published (22). The same part of the scale (20 to 40 divisions) was used for all measurements.

Survey Meters

A variety of survey meters were used during the investigation. These instruments were of value in checking the progress and separation of rare earth activities on ion exchange columns as well as checking glassware, clothing, etc. Low energy beta particles were generally not detected because of the window thickness of the probe so this factor was taken into account when testing activities.
Coincidence Circuit

A coincidence circuit was built by the electronics shop of this laboratory. The circuit was similar to one described by Moak (23) although some modifications were incorporated. Diagrams of the electronic circuit are given in Figures 1 and 2. The circuit was designed with two high voltage power supplies so that matched counter tubes were not necessary. Conventional scalers were employed to count the pulses from either channel. Pulses through both channels as well as the coincidence count were recorded simultaneously. The coincidence pulses were unscaled and recorded directly by a Mercury recorder. With a high coincidence rate the loss in this unscaled circuit would be considerable; however, the highest coincidence counting rate in any of this work was 10 c/m at which rate the loss is less than 1%.

The circuit was designed with four resolving times of the order of 0.5, 1.0, 1.5 and 2.0 microseconds. These resolving times were then experimentally determined by the method of independent samples and found to be 0.543, 1.05, 1.42 and 2.06 microseconds. In this method of determining resolving times, the two counter tubes were widely separated so as to minimize the chance of one particle passing through both counters. Samples were then counted on the two channels and the number of accidental coinci-
Fig. 1. Coincidence Circuit with One Channel, Rossi Stage and Resolving Time Control.
Fig. 2. Power Supplies for Coincidence Circuit and Channels.
dences determined. The resolving time T is related to the accidental coincidences by the following equation (24):

$$G_{\text{acc/min}} = KT N_1 N_2$$

where N_1 and N_2 are the counts per minute recorded in channels 1 and 2. K is a constant very often taken as two, but since KT is measured experimentally the value of K is not important. It is evident that any coincidence experiment must be corrected for these accidental coincidences. The resolving times were determined over a six months period and no variation greater than was reasonable from statistics was observed. In the coincidence studies on gadolinium activities, the resolving time setting was kept at 2.06 microseconds.

The coincidence mount consists of an aluminum box with the counter tubes, facing one another, inset in the aluminum sheet with a distance of 2.7 cm separating the counter windows. The aluminum box is 3.1 cm wide, 8.4 cm high and 8.9 cm long. A slot for insertion of sample plates with the active sample is centered between the counter tubes. Foils can be placed between either counter and the sample. The aluminum box and counter assembly is mounted on a larger aluminum base and the whole assembly is covered to exclude light.

A sample of Co60 was used to determine the γ-ray efficiency of the counters. This activity decays by the
emission of a 0.31 Mev β followed by γ-rays of 1.1 and 1.3 Mev in cascade (25). The γ-ray efficiency is determined in the following fashion (26):

$$C_{\beta} = C_{o} F(x) W_{\beta}$$
$$C_{\gamma} = C_{o} W_{\gamma} (E_{1} + E_{a})$$
$$C_{\beta\gamma} = C_{o} F(x) W_{\beta} W_{\gamma} (E_{1} + E_{a})$$
$$C_{\beta\gamma}/C_{\beta} = W_{\gamma} (E_{1} + E_{a})$$

C_{o} is the true disintegration rate and the solid angle subtended by the β and γ counters are given by W_{β} and W_{γ}. $F(x)$ represents the fraction of β-particles passing through a thickness x of absorber. E_{1} and E_{a} represent the efficiency of the γ counters for the 1.1 Mev and 1.3 Mev γ-rays.

Experimentally $\beta\gamma + \gamma\gamma$ coincidences were determined with a Co60 source. Both of these values were corrected for accidental and background coincidences. The corrected $\beta\gamma$ value was then obtained from these data. The pertinent information is given in Table IV. The value represents the total efficiency including solid angle for both γ-rays.

TABLE IV

<table>
<thead>
<tr>
<th>($\beta\gamma+\gamma\gamma$)/min</th>
<th>$\gamma\gamma$/min</th>
<th>$\beta\gamma$ corrected</th>
<th>C_{β}/min</th>
<th>$C_{\beta\gamma}/C_{\beta}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.65</td>
<td>0.397</td>
<td>10.14</td>
<td>4125</td>
<td>2.45 x 10^{-3}</td>
</tr>
</tbody>
</table>
Rate Meter Circuit

The combination of a small ion exchange column, eluate counting cell, counter tube and recording rate meter was used in the purification of activities*. The small column 11 cm long and 0.1 cm I.D. packed with Dowex-50 resin was so designed that eluting agents could be forced through the column. Free flow through the finely divided resin was much slower than the optimum flow rate of 0.04 ml/min desired. The eluate then entered a lead housing containing the counting cell and counter. The counting cell was designed to present a maximum volume of active solution to the counter with a minimum of self absorption. Drawings of the assembly are on file in laboratory reports of D. Christian. Similar experimental arrangements have been reported (27).

The electronic circuit has six different scales of 200, 500, 1000, 2000, 5000 and 10,000 c/m so that a wide intensity of samples could be observed. An Esterline-Angus automatic recorder graphed activity per unit volume versus time as the elution of an activity progressed. This graph was of value in making volume cuts of the eluate at the proper time.

* Constructed by D. S. Martin and Darleane Christian of this laboratory.
Materials

The gadolinium oxide bombarded in this investigation was loaned by the rare earth group of this laboratory. Purification of the gadolinium had been effected by large scale ion exchange fractionations (28). After recycling of the gadolinium fraction a sample of high purity was obtained. Early spectrographic analysis indicated 0.28% samarium and a trace of terbium. Later analyses also listed dysprosium, holmium, yttrium and ytterbium as trace contaminants. The purity of the sample will be discussed again in connection with the activities produced in the neutron irradiated gadolinium.

Europium oxide, originally purified by H. N. McCoy and loaned for this investigation by F. H. Spedding, on spectrographic analysis indicated traces of samarium and gadolinium were present. The percentage of either of these contaminants could not be estimated. Before the \(\text{Eu}_2\text{O}_3 \) was bombarded with neutrons an extensive repurification of the europium was undertaken which involved precipitations of europous sulfate, europic fluoride and oxalate. However, spectrographic analysis still indicated a trace of samarium and gadolinium following this procedure. After bombardment of the \(\text{Eu}_2\text{O}_3 \) with neutrons and deuterons, separations designed to detect any active contaminants failed to do so.
Nalcite high capacity resin and Dowex-50 were used as cation exchangers in this investigation. These resins are the same chemically as both are a sulfonated poly-styrene-divinyl-benzene co-polymer whose nuclear sulfonic acid groups are the sole ion-active groups at any pH value. Generally the resins were treated with saturated solutions of ammonium chloride so that the exchange reactions took place between the ammonium form of the resin and the rare earth cation.

Gadolinium Produced by Deuteron Bombardment of Europium

Survey of Previous Work

A brief recapitulation of previous investigation is given before the experimental results are discussed. Fajans and Voigt (12) chemically separated the gadolinium and europium activities produced in deuteron bombarded europium and assigned a half-life of 155 - 170 days to the gadolinium activity. Another group of investigators (6) reported an activity with a half-life of about 75 days in deuteron bombarded europium but no chemical separations were effected. Mass spectrographic work (9) showed that a half-life greater than 72 days could be produced by neutron bombardment of gadolinium, the mass number of the
active isotope being 153. Based on the similarity of half-

lives, it was assumed that the 155 - 170 day activity was

Gd153 (13) being produced both by \((d, 2n)\) reaction on Eu153

and \((n, \gamma)\) on Gd153.

Separation of Europium and

Gadolinium Activities

A sample of Eu$_2$O$_3$ (130 mg) was given 870 microampere

hours of bombardment with 20 Mev deuterons by the Berkeley

60-inch cyclotron. The cyclotron target was prepared by

filling a small platinum dish with the powdered Eu$_2$O$_3$.

The assembly was raised to 800°C and a pressure of four

tons applied. The target was then allowed to cool under

pressure. A thin tantalum foil was placed over the materi-

al to protect it during bombardment. During the bombard-

ment, the assembly was cooled by water circulating through

a copper coil attached to the target.

Since these other materials had been bombarded with

the Eu$_2$O$_3$, a chemical separation of rare earth activities

from other target activities was performed. The target

and the foil were leached several times with hydrochloric

acid to effect solution of the Eu$_2$O$_3$. The acid solutions

were concentrated and copper present in the solutions was

deposited electrolytically. The copper was inactive but

Zn65 was present as a result of the \((d, 2n)\) reaction.

The europium was precipitated as the oxalate and then
ignited to the oxide. The oxide was redissolved and EuF₃ precipitated to purify further from tantalum and other fluoride soluble contaminants. The rare earth fluoride was then converted back to the oxide via the oxalate. The recovery on this portion was 97.3 mg.

The resulting pure rare earth fraction was separated into europium and gadolinium by precipitation of europious sulfate. The McCoy method of reduction with minor modifications as given in Inorganic Synthesis Volume II (29) was followed. After preparation of the Jones reductor, the active rare earth fraction 0.1 M with respect to Eu⁺³ and HCl was poured through the reductor at a slow rate. Air was carefully excluded by sweeping nitrogen through the filter flask.

A feathery white precipitate of EuSO₄ was formed first in the 8 M H₂SO₄ in the receiving flask. After heating the solution and precipitate under nitrogen to 80°C, the α form of EuSO₄ changed to a more stable β form which is dense and crystalline settling to a compact mass. The β form unlike the α is only slightly soluble in H₂SO₄. The EuSO₄ was then filtered and air dried at 75°C. As will be discussed later, this EuSO₄ fraction was further purified for radiation and half-life studies of the europium activities.
After the bulk of the active europium had been separated in the above manner, the filtrates containing the active gadolinium were combined and reduced in volume. The remainder of the europium (also any samarium or ytterbium present as impurities) was extracted from this gadolinium-rich fraction with sodium amalgam. Inactive europium carrier was added in later extractions to ensure the removal of traces of active europium. The extent of the separation of activities was determined by means of aluminum absorption curves of the activity in both fractions. As the radiation energies of the gadolinium and europium fraction were quite different, aluminum absorption curves give a sensitive method of analysis as indicated in Figure 3. When similar absorption curves were obtained for both fractions, the separation was considered complete. This method of analysis was reported earlier in separation of antimony and titanium in this laboratory (30). Some gadolinium was occluded in the mercury phase in each extraction, so the analysis method mentioned above could be applied. As gadolinium was present in tracer quantities, cerium carrier was added. This carrier was chosen because it can be readily separated from trivalent rare earths such as gadolinium by utilizing the Ce$^{3+}$ state.
Fig. 3. Absorption Curves on Europium and Gadolinium Fractions.

A. First EuSO₄ fraction.
B. Filtrate from A containing gadolinium activity.
C. Gadolinium further purified from europium (filtrate from D).
D. Second EuSO₄ fraction after inactive Eu⁺³ added to B.
Purification of Gadolinium
by Ion Exchange Methods

The purification of the gadolinium activities with respect to europium (also samarium and ytterbium) is discussed in the preceding portion. Any other rare earth contaminant could not be separated in this way. Although the spectrographic analysis of the original europium showed the presence of only samarium and gadolinium (in trace amounts) it was thought necessary to test the active gadolinium fraction for rare earth contaminants. Ion exchange techniques have been discussed in many recent papers and a review of this method will not be given here. Suffice it to say that a number of sulfonated aromatic resins will adsorb the rare earths. These rare earths may then be eluted from the resin with a variety of agents the most common one being solutions of citrate ion. The rare earths are thus separated on the resin bed according to their aqueous ionic size.

The first experiments with the active gadolinium utilized a small ion exchange column, eluate counting cell, and recording rate meter. A sample of the active gadolinium was adsorbed on Dowex-50 resin and eluted with 5% ammonium citrate solution at a pH of 3.4. Only one sharp peak was observed on the graph recorded by the rate meter circuit. Pre and post peak fractions gave identical
aluminum absorption curves indicating either that contami-
nants were absent or that no separation was effected.
To check the possibility that a trace of active europium
could still be present and also to test the efficiency of
the experimental setup, a known mixture of active europium
and gadolinium was adsorbed and eluted from the column.
The eluting agent and resin were the same as used in the
earlier experiment. Only one broad peak was observed.
However, aluminum absorption curves on the pre and post
peak fractions indicated that a separation of approximately
20% was achieved. It was suspected that two peaks were
not observed because the volume of the counting cell
(0.5 ml) was too large with respect to the total volume
of liquid in the column (0.9 ml) allowing mixing of the
peaks at this point. Accordingly a much smaller cell
(0.01 ml) was prepared. Another sample of the active
gadolinium was adsorbed on the resin column and eluted
with a 5% ammonium citrate solution at a pH of 2.5. Once
again only one peak was observed and no differences were
detectable in pre and post peak fractions. These exper-
m ents indicate that contaminants other than the immediate
neighbors of gadolinium were not present. Further, if
either terbium or europium were present, they could only
be present in trace amounts. Further separation of known
mixtures of active europium and gadolinium were not attempted.

Two more attempts were made later to establish the purity of the gadolinium with large ion exchange resin columns. A column 1 cm. I.D. was filled with Marseite high capacity resin (60 - 80 mesh) to a height of 20 cm. The resin had previously been stirred with a saturated ammonium chloride solution so that it would be in the ammonium cycle. All the excess chloride ion was removed by backwashing the column with distilled water. In the first and second column runs the activity was eluted with 0.1% and 0.3% ammonium citrate solution respectively. In the second run the specific activity (c/min/ml) was determined with a dipping counter tube and only one sharp peak of activity was observed. In both the first and second runs pre and post peak fractions gave identical aluminum absorption curves. As gadolinium and terbium activities produced in neutron bombarded gadolinium were separated effectively by similar ion exchange methods the inference is that the gadolinium from the deuteron bombarded europium is quite free from any contamination.

Half-life Studies

After evaporation of a small sample of the active gadolinium in an aluminum cup, a drop of Zapon solution
was evaporated over the sample thus holding the activity in place. The aluminum cup was set on a brass plate and the whole assembly was thus inserted below the electro-
scope chamber.

The decay of the activity has been followed over a period of 600 days (see Figure 4). As will be noted in the figure the half-life for nearly 300 days can be given by a 155 day line; however, the half-life is definitely lengthening into a longer period, subtraction of which shortens the 155 day line to 150 days. The longer period is assigned to Gd153 and the 150 day activity to Gd151. A further discussion of the activities and mass assign-
ments is given in another part of this thesis.

Energy Measurements

The energy of γ-rays associated with the gadolinium from deuteron bombarded europium has been determined by absorption in copper, tin, lead and tantalum. In all cases the composite curves consisted of three components, a 265 Kev and 101 Kev γ-rays and a 42 Kev x-ray. In copper the half-thicknesses were 5.8, 1.6 and 0.17 g/cm² corresponding to the above energies. The experimental curves are given in Figure 5. The experimental half-thicknesses for lead were 1.3, 0.28 and 0.062 g/cm² giving 268, 85 and 47 Kev as the energies (Figures 6 and 7). The result of three absorption curves in tin place the energy of
Fig. 4. Decay Curve of Gadolinium Produced in Deuteron Bombarded Europium.
Fig. 5. Copper Absorption Curve on Gadolinium Produced in Deuteron Bombarded Europium.

The X-ray and 101 Kev γ-ray are Subtractions from the Original Data in the Inset.
Fig. 6. Lead Absorption Curve on Gadolinium Produced in Deuteron Bombarded Europium.
Fig. 7. X-ray Present in Gadolinium Decay after Subtraction of Higher Energy γ-rays (see Fig. 6).
There are several groups of conversion electrons

Even in Table A

with different geometries of sample, magnet, and counters, the probable experimental data for two measurements position deeper le two" suggested possible but not at all

with a permanent magnet show that a small percentage of attempts to detect positions A by bundling them into a counter

position measurement is a good possibility. Results from

mero transmission or a decay to a superposition, the deeper

since the gadolinium activity must be either an 1.6-

By Cook, Sherrett and Porter (10)

probably identical with a 725 Key Y-ray associated to 47.5
proportionately intense. The 725 Key Y-ray is most
poor choice in this study. The 725 Key Y-ray to the other
67.9 Key Y-ray (in lead mask) make the statement a rather
The proximity of the 725 Key Y-ray to the x absorption
authors are in considerable disagreement in this regard,
erratum versus energy data for transmission through several
a part of the difference may lie in the absorption of-
values considerably higher than those from other elements.
has also been tried as an absorber but the use led to
the intermediate Y-ray between 105 and 110 Key. Transmission
taken 500 days later shows a higher preponderance of low energy electrons (see Figure 9). Conversion of the 102 KeV \(\gamma \)-ray would lead to such low energy electrons.

TABLE V
Magnetic Deflection of Positrons

<table>
<thead>
<tr>
<th>Measurement</th>
<th>No magnet</th>
<th>Positrons</th>
<th>Negatrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>89 (\pm) 5 c/m</td>
<td>47 (\pm) 3 c/m</td>
<td>12,160 c/m</td>
</tr>
<tr>
<td>2</td>
<td>94 (\pm) 2 c/m</td>
<td>117 (\pm) 2 c/m</td>
<td>8,267 c/m</td>
</tr>
</tbody>
</table>

Critical Absorption Measurements

As mentioned previously the possibility exists that the observed transition is isomeric in gadolinium (e.g. \(\text{Gd}^{154*} \rightarrow \text{Gd}^{154} \text{stable} \)) instead of K-electron capture. Therefore the 42 KeV x-ray was studied in detail, as its energy would be indicative of the element to which the activity decays. To determine whether the x-ray originated from a gadolinium or europium nucleus, critical absorption measurements were performed using lighter rare earths as absorbers. Europium K\(\alpha \) radiation has an energy of 41.5 KeV while that of gadolinium is 43.5. Since the K absorption edges of lanthanum, cerium, praseodymium, and neodymium occur at 39.0, 40.5, 42.5 and 44.5 KeV respectively, these elements were selected as absorbers. An europium K\(\alpha \) x-ray
Fig. 8. Aluminum Absorption Curve on Eu(d, 2n)Gd.
Fig. 9. Absorption Curve on Eu(d, 2n)Gd
500 Days after End of Bombardment.
would be strongly absorbed by lanthanum and cerium and transmitted by the other two elements. A gadolinium Kα x-ray would be transmitted only by neodymium and absorbed by the other three rare earths. Although absorption versus energy data for these elements are far from complete, an expected set of half-thicknesses for the four elements can be estimated (31).

TABLE VI

Expected Absorption Data for γ-rays in Rare Earths

<table>
<thead>
<tr>
<th>γ-ray Energy</th>
<th>Half-thickness in g/cm²</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.5 Kev</td>
<td>.027</td>
<td>.027</td>
<td>.127</td>
<td>.127</td>
<td></td>
</tr>
<tr>
<td>43.5 Kev</td>
<td>.027</td>
<td>.027</td>
<td>.027</td>
<td>.127</td>
<td></td>
</tr>
<tr>
<td>102 Kev</td>
<td>.270</td>
<td>.260</td>
<td>.250</td>
<td>.240</td>
<td></td>
</tr>
<tr>
<td>265 Kev</td>
<td>1.93</td>
<td>1.88</td>
<td>1.83</td>
<td>1.78</td>
<td></td>
</tr>
</tbody>
</table>

The absorbers of the rare earth oxide were prepared from pure oxides loaned through the courtesy of F.H. Spedding and the rare earth separation group. By slurrying a weighed amount of the particular oxide in an ether solution of paraffin, a uniform layer of the oxide could be formed in an aluminum dish. The concentration of paraffin was such as to hold the oxides in place after the volatile solvent
was removed. In the first series of measurements, only
one absorber was prepared from each element with less
than 100 mg/cm2. Only 0.3 g/cm2 of absorber could be placed
in each dish because of size limitation. To obtain greater
absorber thickness one dish was piled on top of another.

The first attempt to establish the energy of the
x-ray was inconclusive in that no significant difference
could be detected in the absorption curves of the x-ray
in these elements. As the other two γ-rays are of higher
energy than the x-ray, the curves were continued to large
absorber thickness in order to correct for these com-
ponents. This procedure proved impractical because of the
amount of rare earth oxide needed to reach a flat portion
in the curve (see Table VI). Accordingly the x-ray ab-
sorption in the region from 0-180 mg/cm2 was examined.
Absorbers of 180, 150, 120, 90, 60, 40 and 20 mg/cm2 of
the four rare earths were made up in aluminum cups. The
lighter weight absorbers were difficult to prepare evenly
and the experimental points were somewhat erratic. The
same sample of Gd153 was used with the same geometry for
all of the curves. Each curve was rerun twice and the
results were very similar. The experimental data are
plotted in Figure 10. From the experimental half-thick-
nesses of 75 mg/cm2 for La$_2$O$_3$, 72 mg/cm2 for CeO$_2$, 160 mg/cm2 for Pr$_6$O$_{11}$ and 156 mg/cm2 for Nd$_2$O$_3$, the
The Ce, Pr, and Nd absorbents present in Pu(d,p) 2n(4d) with X-ray absorption of Ce, Pr, and Nd.
observed ratio for half-thicknesses for cerium/praseodymium is 1:2.2. The calculated ratio (see Table VI) for the absorption of an europium x-ray is 1:4.7 for these absorbers. As was stated earlier, the fact that other gamma rays are present and that the subtraction of these more energetic components cannot be made tend to make the experimental ratio approach 1 rather than 1:4.7. From these data it appears quite conclusive that the x-ray energy is between the absorption edges of cerium and praseodymium and is therefore the K_a x-ray of europium.

Decay Schemes

Although the coincidence circuit (see Figures 1 and 2) and counter assembly were described earlier, a few statements regarding the operation of the instruments are given here. The end-window (2.2 mg/cm2) counters inset in an aluminum box were protected from light by a cardboard box covering the whole assembly. Brass or copper plates 1.2 mm in thickness with a small hole 4 - 6 mm in diameter were inserted in a slot midway between the counters. If a sample plate which would absorb scattered and secondary radiations were not present between the counters, other investigators from this laboratory found that a number of spurious coincidences occurred. The number of spurious coincidences with a brass plate
(1.1 g/cm²) and small hole for sample mounting was assumed to be negligible. With measurements on high intensity samples a lead sheet was used as a sample holder instead of brass. A straight line connecting the anodes of the end-window counters would pass through the center of the hole in the sample plate.

The activity to be studied was evaporated on thin mica sheets or formvar films (0.1 mg/cm²). The mica or formvar was then glued to the sample plate with the activity viewing both counters through the central orifice.

With the sample located midway between the counters, approximately equal counting rates were observed on scalers connected to channels 1 and 2. A dilute solution of zapon evaporated on the activity held the sample in place.

Before an actual measurement began, the coincidence rate due to cosmic and stray γ radiation was determined. After insertion of a sample plate in the slot between the counters, the background counts on both channels and the coincidence background were determined over a period of 24 hours. A list of coincidence backgrounds with different thickness of aluminum foils between the counters is given in Table VII.

The coincidence rate was slightly lower (.060) and constant for a range of lead absorbers. It should be noted that the active areas of the counters were in a
TABLE VII
Background Coincidences

<table>
<thead>
<tr>
<th>Mg/cm² of Al</th>
<th>0</th>
<th>32.4</th>
<th>64.8</th>
<th>150</th>
<th>272</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coincidence Rate</td>
<td>.155±.008</td>
<td>.143±.010</td>
<td>.120±.010</td>
<td>.102±.004</td>
<td>.092±.004</td>
</tr>
</tbody>
</table>

horizontal plane in the experimental assembly. With the counters in a vertical plane the coincidence background is increased by about a factor of three. This increase is due to the fact that a single cosmic ray coming through a vertical assembly will give a coincidence count while it takes a cosmic ray shower to give a count in the horizontal assembly.

The variable gate was maintained at the resolving time of 2.06 microseconds for all of the experimental determinations of coincidence rates. The resolving time remained constant over the course of the investigation.

Two long-lived gadolinium activities are produced in deuteron bombarded europium as previously stated. The shorter-lived Gd¹⁵¹ is produced by about a factor of 20 over Gd¹⁵³, so this coincidence study will deal mostly with Gd¹⁵¹. The decay scheme of Gd¹⁵³ will be discussed in detail later in connection with activities produced in
neutron bombarded gadolinium.

As both Gd\(^{151}\) and Gd\(^{153}\) decay by K-electron capture the europium K x-ray (41.5 keV) is present. The γ-ray energies were determined (see Figure 5) as 102 and 265 keV. On the basis of work to be discussed later, the 265 keV γ-ray is associated with the decay of Gd\(^{151}\). Both γ-rays are internally converted.

A tentative decay scheme is assumed in which Gd\(^{151}\) decays to an unstable Eu\(^{151}\) by K electron capture and then to the ground state by emission of a 265 keV γ-ray. Coincidences may then be determined in the decay of Gd\(^{151}\) between the 220 keV K conversion electrons and the K x-rays from either the conversion process or the electron capture step. Obviously these K x-rays are also in coincidence in such a decay scheme as are also the K x-ray from the electron capture step and the 265 keV γ-ray. These measurements may be complicated by the presence of Gd\(^{153}\), but the determinations are assumed to be valid because of the low intensity of Gd\(^{153}\) as compared to Gd\(^{151}\).

If the tentative decay scheme for Gd\(^{151}\) is correct only electrons from the conversion of the 265 keV γ-ray are present. To check this assumption a sample of Gd\(^{151}\)-Gd\(^{153}\) activity was mounted on mica sheet (2 mg/cm\(^2\)) and inserted in the counter assembly. Sufficient aluminum was placed between counter 1 and the sample to absorb
all electrons and absorbers were added for each measurement to channel 2 until all the electrons were also absorbed. After correcting the experimental values for background and accidental coincidences the ratio of γ coincidences to electron count at the same absorber thickness was a constant. This result indicates that only one group of electrons is emitted. The experimental data are plotted in Figure 11.

The same experiment was repeated four months later with slightly different geometry conditions. The ratio of γ coincidences to electron count is the upper curve in Figure 11. The experimental results are given in Table VIII. The same aluminum absorber (64.8 mg/cm²) was kept on the number 1 side for all measurements.

The N_γ/N_e value is probably affected in this case by Gd¹⁵³ coincidences. The Gd¹⁵¹ to Gd¹⁵³ ratio decreases with time because of the longer half-life of Gd¹⁵³.

In another series of measurements, absorbers were added to channel 2 and no absorbers were present between the sample and counter 1. After the coincidences were corrected for background, accidental and $\gamma\gamma$ coincidences, the resulting points on a semi-log plot gave a straight line with a half-thickness of 5 mg/cm². This half-thickness corresponds to the 220 kev conversion electrons. This result is in agreement with the tentative decay
Fig. 11. Coincidence Measurements on Eu(d, 2n)Gd.
scheme of Gd153 as these coincidences between the 220 kev electrons and K x-rays were predicted. The first two points on the above mentioned plot were above the straight line and are assumed due to a contribution from Gd153 electron x-ray coincidences.

TABLE VIII

Coincidence Measurements on Gd151 - Gd153

<table>
<thead>
<tr>
<th>I o cm</th>
<th>II mg/cm2</th>
<th>II o cm</th>
<th>Ne\textsubscript{γ}+x\textsubscript{γ}/min uncorr.</th>
<th>Ne\textsubscript{γ} corr.</th>
<th>(Ne\textsubscript{γ}/Ne)\textsuperscript{104}</th>
</tr>
</thead>
<tbody>
<tr>
<td>313</td>
<td>0</td>
<td>3430</td>
<td>2.305±0.053</td>
<td>2.054±0.054</td>
<td>6.44±1.17</td>
</tr>
<tr>
<td>312</td>
<td>2.3</td>
<td>2177</td>
<td>1.275±0.042</td>
<td>1.051±0.044</td>
<td>5.43±2.23</td>
</tr>
<tr>
<td>311</td>
<td>3.0</td>
<td>1842</td>
<td>1.188±0.0305</td>
<td>0.972±0.032</td>
<td>6.06±2.00</td>
</tr>
<tr>
<td>312</td>
<td>4.6</td>
<td>1395</td>
<td>0.916±0.036</td>
<td>0.709±0.038</td>
<td>6.13±3.33</td>
</tr>
<tr>
<td>316</td>
<td>6.0</td>
<td>1020</td>
<td>0.714±0.031</td>
<td>0.516±0.032</td>
<td>6.62±4.41</td>
</tr>
<tr>
<td>314</td>
<td>7.7</td>
<td>773</td>
<td>0.489±0.025</td>
<td>0.296±0.028</td>
<td>5.56±5.3</td>
</tr>
<tr>
<td>324</td>
<td>10.7</td>
<td>524</td>
<td>0.372±0.015</td>
<td>0.185±0.019</td>
<td>6.51±6.7</td>
</tr>
<tr>
<td>318</td>
<td>15.4</td>
<td>407</td>
<td>0.280±0.015</td>
<td>0.096±0.019</td>
<td>5.75±1.14</td>
</tr>
<tr>
<td>323</td>
<td>23.1</td>
<td>302</td>
<td>0.212±0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>32.4</td>
<td>250</td>
<td>0.221±0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>317</td>
<td>40.1</td>
<td>244</td>
<td>0.206±0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>324</td>
<td>75</td>
<td>239</td>
<td>0.167±0.011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
With lead absorbers on both channels, xx and xy coincidences were observed although few in number. No coincidences were observed when the x-ray was absorbed on both channels. This would support the assumption that only one gamma ray is present in the decay of Gd151.

Neutron Bombarded Gadolinium

Survey of Previous Work

A detailed review of literature on gadolinium activities was given earlier. The status of gadolinium activities was reviewed by G. T. Seaborg and I. Perlman (13) at about the time the study of neutron induced gadolinium activities began in this laboratory. A 155-day activity decaying by K electron capture was assigned to Gd153 (32). This activity formed in deuteron bombardment of europium was assigned to Gd153 because a long-lived neutron induced activity had been assigned to Gd153 on the basis of mass spectrographic methods. It was presumed that the two long-lived activities were the same. The table of isotopes also lists a 4.5 minute Gd161 (33) and tentatively assigns an 18-hour activity to the same nuclide (8). An 8.6 day activity was also tentatively assigned to gadolinium although the investigators state the activity may be due to an impurity (34).
An extensive investigation of short-lived gadolinium activities reported recently (7) assigned the 18-hour activity to Gd159. A 218 sec. Gd161 - 6.75 day Tb161 chain was also reported.

Na-Hg Extractions of Possible Contaminants

Samples of gadolinium oxide were irradiated at two different times at the Argonne Laboratory. The first bombardment of 400 hours did not give a sufficiently intense sample of the long-lived gadolinium, so a second bombardment lasting 854 hours was obtained.

As samarium and possibly ytterbium were spectrographically detected in the gadolinium and as (n,p) and (n,α) reactions on gadolinium would give europium and samarium activities, the irradiated sample was extracted several times with sodium amalgam. The small amount of activity extracted into the amalgam had the same energy characteristics as the non-extracted portions. The extractions were performed several days after removal of the sample from the pile and short-lived activities such as the 47-hour Sm153 would have decayed. No attempt was made to extract contaminants in the longer irradiated gadolinium sample.

Another sample of Gd$_2$O$_3$ bombarded in the Oak Ridge pile for one week was obtained to study the short-lived activities. A Na-Hg extraction performed on this irradia-
ated sample 30 hours after removal from the pile did reveal the presence of Sm153. The extracted activity decayed with a 48 hour half-life. The energy of this activity based on absorption in aluminum was 730 Kev. These experimental results are in good agreement with published values of a 47 hour half-life (35) and 780 Kev β (36) assigned to Sm153.

Separation of Activities by Ion Exchange Methods

The possibility that two or more long-lived activities were present in the neutron irradiated gadolinium seemed likely because of the consistent difference in half-life curves measured with and without absorbers. Without added absorber, the observed half-life was shorter. Since the x-ray emitted in the gadolinium decay is not appreciably absorbed in 225 mg/cm2 of aluminum, the contaminant must have the shorter half-life and little or no γ-ray. As the possibility of long-lived samarium, europium and ytterbium contaminants was investigated repeatedly with negative results, the extraneous activity could not be due to them. To separate other rare earths it was necessary to set up ion exchange columns.

Separation of impurities in the long-lived gadolinium was not attempted with the small column, counting cell
and recording rate meter. The combination of a low load capacity of the small column (1.5 - 2.0 mg) and low specific activity of the gadolinium prohibited investigation with this instrument.

Several cation exchange column runs were carried out on the irradiated gadolinium in separating and identifying impurities. These experiments will be discussed in chronological order. In the early runs the activity in a known fraction of the eluate was determined by evaporation on a watchglass and subsequent counting of the sample. Later dipping counters were used to determine the activity in the eluate.

Halcite high capacity resin was ground at dry ice temperatures both to aid in the grinding and also to ensure that no chemical change would occur in the resin. The mesh size of the resin varied in different experiments. In all runs, the resin was stirred twice with saturated ammonium chloride solutions and then backwashed in a column until a chloride ion test was negative. The same columns (1 cm I.D.) were used in all experiments with the height of the resin bed varying from 12 - 20 cm. Usually the activity was eluted with 0.1% ammonium citrate solution at a pH of 5.5. In all cases the eluting solutions were 0.1% in phenol to inhibit mold growth.
The intensity of this extraneous absorbance in the first

back scatterer.

It was carried to 50 mg of iron was present at a hold

Chemotactic activity appeared to be a rare event, since

For quantity of about 0.9 mey and little or no "key

on the two fractions (see Figure 12). The activity decreased

was affected as evidenced by a striking absorbance curves

complete separation of this activity from the Eadotropha

activity was still in the upper third of the column. A

the intensity when the bulk of the
tinum was determined in the late stage when the bulk of the

In the late stage, an activity other than Eadotropha
Fig. 12. Absorption Curves on Contaminant (Δ) and Gadolinium (○) before Column Separation.
for half-life measurements. This will be discussed later in the identification of this activity.

The second sample of Gd$_2$O$_3$ which had received twice as much irradiation as the first sample also was purified by ion exchange methods. The first elution started 7 days after the Gd$_2$O$_3$ was removed from the pile. Again the first fraction off the column was the extraneous activity with the 0.90 Mev beta ray. This fraction was quite active and a sample was mounted for half-life measurement. As the elution progressed other fractions were also mounted for half-life studies from this run. A sample of the eluate preceding the gadolinium peak contained an activity which was neither gadolinium nor the extraneous activity mentioned earlier. The identification of these activities are discussed in the following section.

Identification of Contaminants

Two samples (22.3 and 156 mg) of the Gd$_2$O$_3$ which was bombarded for 854 hours were adsorbed and eluted from the cation exchange columns. In both cases the activity was determined in the eluate with a dipping counter tube. The graduate in which the counter was immersed and the counter were both clamped so that the same geometry was reproduced for all samples. A plot of the c/min/ml versus liters of eluate for the 156 mg sample is given in Figure 13.
Fig. 13. Elution Curve of Neutron Induced Activities in Gd₂O₃.
The extraneous activity mentioned earlier is the same as the activity in the sharp peak preceding the gadolinium off the column (see Figure 13). This activity was identified as Tm170 in a number of ways. As thulium had not been detected spectrographically and as Tm170 was the bulk of the long-lived contaminating activity, considerable time was spent in verifying the identification. Tm170 decays with a half-life of 127 days emitting a β of 1.1 Mev (37) as determined by absorption in aluminum. The decay of a sample of Tm170 separated from the first bombardment of Gd$_2$O$_3$ was measured over 8 months (see Figure 14). The experimental value of 127 days is the same as that previously reported for Tm170. A β-ray energy of 0.95 Mev was determined by aluminum absorption on a purified Tm170 fraction agreeing well with the literature value. A high intensity source of Tm170 gave a γ to β ratio of 1×10^{-4}. This ratio agrees well with a value of 0.5×10^{-4} reported by von Bothe (35).

As a final check on the identification of the activity as Tm170, it was decided to bombard Tm$_2$O$_3$ and compare the radiations. The rare earth group loaned a sample of Tm$_2$O$_3$ which contained both erbium and ytterbium as impurities. After a one week bombardment at the Argonne pile, the activities present in the sample were separated on an ion exchange column. Two peaks of activity were
Fig. 14. Decay Curves for Tm170 and Tb160.

[Graph showing decay curves for Tm170 and Tb160]
separated with the thulium fraction about 120 times as intense as the second peak later identified as Ho166. The radiations from the Tm170 of this sample were the same as the activity thought to be Tm170 present as a contaminant in the Gd$_2$O$_3$.

In the elution curve of neutron bombarded gadolinium, the first small peak off the column was identified as Yb169. The identification was based on energy and coincidence measurements in addition to the fact that this activity precedes Tm170 from the column which would point to a ytterbium isotope. Aluminum absorption curves of known Yb169 and this activity were similar but not identical. If a few per cent of Tm170 were assumed to be present, this difference in absorption curves could be explained. Finally, comparison of electron-electron coincidence rates for known Yb169 and the activity in question were very similar, both being exceptionally high, a striking characteristic useful for identification.

The same elution curve (see Figure 13) of activities in the neutron bombarded Gd$_2$O$_3$ indicates the presence of still another long-lived contaminant. Half-life and energy measurements in addition to the position of activity in the elution curve are the basis for assignment of the activity to Tb160. An aluminum absorption curve on
this pre-gadolinium fraction gave a value of 760 Kev for the \(\beta \) whereas the reported value for \(\text{Tb}^{160} \) is 750 Kev (35). Half-life measurements over a period of 70 days are plotted in Figure 14, giving a value of 76 days as compared to the reported value of 72 days (35).

Estimation of Impurities in the Gadolinium

Spectrographic analysis did not list thulium as a contaminant and the amount of other trace contaminants could not be estimated by this method. It is possible to calculate the per cent thulium in the \(\text{Gd}_2	ext{O}_3 \) from the experimentally observed disintegration rate and known neutron capture cross section value. Knowing the per cent thulium in the \(\text{Gd}_2	ext{O}_3 \), the percentages of other contaminants can be estimated as will be discussed in the following paragraphs.

The disintegration rate for \(\text{Tm}^{170} \) was calculated from two different elution curves where the starting weight of gadolinium was 156 mg in one case (see Figure 13) and 22.3 mg in the other, both as \(\text{Gd}_2	ext{O}_3 \). The thermal neutron capture cross section for the process \(\text{Tm}^{169} \, (n, \gamma) \, \text{Tm}^{170} \) is reported as 100 barns (37) and 118 barns (38). The amount of thulium in 156 mg of gadolinium is calculated as follows:
\[\text{gms of Tm} = \frac{\text{(dis/sec) (atomic wt of Tm)}}{(\sigma) (\text{FF}) (6.03 \times 10^{23}) (P) (1 - e^{-\lambda t})} \]

\[\text{gms of Tm} = \frac{(3.44 \times 10^5) (169)}{(10^{-22}) (3.6 \times 10^7) (6.03 \times 10^{23}) (250) (.177)} \]

\[= 61 \times 10^{-7} \text{ gm.} \]

\(\sigma \) = capture cross section for thermal neutrons

\(\text{FF} \) = flux factor for the Argonne pile

\(P \) = average power of pile in kilowatts

\(1 - e^{-\lambda t} \) = growth factor where \(\lambda \) is decay constant and

\(t \) is time of bombardment

The per cent thulium was calculated as \(4.5 \times 10^{-3} \) and \(4.8 \times 10^{-3} \) for the two runs of 156 and 22.3 mg of gadolinium. This amount of thulium is at the limit of spectrographic detection. This illustrates the potential usefulness of the activation method of analysis in certain cases.

As a check on the above method, the disintegration rate for the Tm\(^{170}\) produced in the neutron irradiated Tm\(_2\)O\(_3\) was estimated. Again the same calculation was performed, i.e. knowing the disintegration rate the weight of thulium in the sample could be calculated. The known weight of thulium adsorbed in the column was 25 mg and the calculated value was 50 mg. On this basis the per cent thulium in the sample is probably good within a factor of two.

Since thulium was in the Gd\(_2\)O\(_3\), erbium, holmium, and dysprosium must also be present in equal or greater amounts.
as their natural abundance in ores is greater and these elements are more difficult to separate from gadolinium by ion exchange methods. On the basis of abundance data of the rare earths (39) and separation effected by the ion exchange columns, the following ratios based on thulium as unity are estimated in the \(\text{Gd}_2\text{O}_3 \).

TABLE IX

Percentages of Contaminants in \(\text{Gd}_2\text{O}_3 \).

<table>
<thead>
<tr>
<th>Element</th>
<th>Tm</th>
<th>Er</th>
<th>Ho</th>
<th>Dy</th>
<th>Tb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio</td>
<td>1</td>
<td>40</td>
<td>2.5</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>%</td>
<td>(4.5 \times 10^{-3})</td>
<td>0.16</td>
<td>(1.2 \times 10^{-2})</td>
<td>0.27</td>
<td>(1.4 \times 10^{-2})</td>
</tr>
</tbody>
</table>

The neutron capture cross section for the process \(\text{Tb}^{159}(n, \gamma) \text{Tb}^{160} \) was also calculated. The disintegration rate of \(\text{Tb}^{160} \) was estimated from the elution curve of activities in neutron bombarded gadolinium (see Figure 13). The weight of terbium in the 156 mg of gadolinium was based on the \(1.4 \times 10^{-2}\) value in Table IX. The capture cross section was calculated as 9.6 barns. Values of <22 barns (38) and 10 barns (40) are reported in the literature. As the calculated and reported cross sections are similar, credence is lent to the percentages of contaminating rare earths in the gadolinium shown in Table IX.
Half-life Studies

Half-life measurements on two gadolinium samples from the first bombardment now extend over 500 days. The decay of one of the samples was measured through 225 mg/cm² of aluminum while readings on the second sample were taken with no absorber. Neither sample was purified by ion exchange methods.

As stated earlier the half-life of 236 ± 3 days determined with the added absorber is considered correct since the contribution of Tm¹⁷⁰ through the absorber is negligible (see Figure 15). As determined visually, the best fit of a straight line to the experimental points gave the value of 236 ± 3 days. Application of the least square method (41) to the points gave a half-life of 233 days. Another sample of gadolinium with the Tm¹⁷⁰ separated by ion exchange methods has been measured over 280 days giving a half-life of 240 ± 5 days.

Two half-life determinations on the short-lived components in the first neutron irradiated gadolinium sample gave values of 24 ± 3 hours and 7.2 ± 0.2 days (see Figure 16). The short-lived values were obtained from a composite curve after the subtraction of the 236 day line. Neither sample was purified by ion exchange methods or sodium amalgam extractions. Measurements with and without added absorber gave the same short half-life values.
Fig. 15. Decay Curve for Gd153 from Neutron Irradiated Gd$_2$O$_3$. Measurements Taken with 225 mg/cm2 of Aluminum Present.
Fig. 16. Decay Curve of Short-lived Components in Neutron Irradiated Gd₂O₃.
The 24 hour activity and the 7.2 day activity present in the Gd$_2$O$_3$ irradiated for 854 hours were separated on an ion exchange column (see Figure 17). As the separation was completed eight days after the sample was removed from the pile, the short-lived component had decayed to a low intensity. These activities cannot be assigned to the same element as the 7.2 day activity preceded the other off the column. Furthermore as the 7.2 day activity did not grow back into the short-lived activity a parent-daughter relationship does not exist with this pair. The assignment of these activities will be discussed later. Suffice it to say that the experiment corroborates the assignment of the 24 ± 3 hour and 7.2 day activities to isotopes of gadolinium and terbium respectively.

Another sample of Gd$_2$O$_3$ was bombarded at the Oak Ridge pile for one week. This bombardment was procured for two reasons: first, to check the separation and half-lives of the short-lived activities and second to test for the presence of Sm153. The latter nuclide with a 47 hour half-life was suspected since samarium was a known impurity in the Gd$_2$O$_3$ and the slow neutron capture cross section for the process Sm152 (n, γ) Sm153 is large, reported as 280 barns (38). The 24 ± 3 hour activity was thought to be a combination of 47 hour Sm153 and 18 hour Gd159.
Fig. 17. Decay Curves for 24 Hour and 7.2 Day Activities Separated on Cation Exchange Column.
As was mentioned earlier, sodium amalgam extraction of solutions of irradiated gadolinium did show the presence of \(\text{Sm}^{153} \) both by half-life and energy measurements. After separation of the terbium and gadolinium fractions on an ion exchange column, samples were mounted for half-life measurements. The terbium decayed with a half-life of 7.2 days. The gadolinium activity after the separation of \(\text{Sm}^{153} \) showed a half-life of 20 hours. Again no growth of the 7.2 day activity into the gadolinium activity was observed.

Critical Absorption Measurements

Critical adsorption measurements were described in detail in the identification of the Eu K x-ray present in the gadolinium produced by deuteron bombardment of europium. If the x-ray present in the decay of the 236 day neutron induced gadolinium activity is an Eu x-ray, the activity must be \(\text{Gd}^{153} \). The possibility of an \((n, 2n)\) reaction producing \(\text{Gd}^{151} \) is improbable with pile neutrons at least to the extent that the 236 day activity was produced.

Absorbers of cerium and praseodymium oxides in an ether-paraffin solution were dried in aluminum cups giving a thin adhering layer. Absorbers of 20, 40, 60, 90, 120, 150 and 180 mg/cm\(^2\) of the rare earth oxide were placed in reproducible positions between the sample and counter.
The ratio of the Eu K x-ray half-thickness in cerium and praseodymium is 1/4.7 (see Table VI). Experimentally the ratio was 1/2.1. As given earlier, the same ratio for gadolinium from deuteron bombarded europium was 1/2.2.

As was stated earlier the subtraction of the more energetic γ-ray cannot be made so the experimental ratio approaches 1 rather than 1/4.7. Since this experimental evidence identifies the x-ray as originating in an europium nucleus, the 236 day activity is assigned to Gd\(^{153}\).

Energy Measurements

Copper, tin and lead absorption curves on Gd\(^{153}\) indicated that a 106 Kev γ-ray was present in addition to the europium K x-ray. The copper curve and subtraction are plotted in Figure 18. This measurement was made on the peak fraction of gadolinium purified by ion exchange methods (see Figure 13). Tin and lead curves gave a similar value for the energy of the gamma ray.

As the K conversion electrons from the 106 Kev γ have an energy of about 58 Kev, these electrons are not detected under ordinary counting conditions. Europium L x-rays and L conversion electrons are present in the decay of Gd\(^{153}\). An absorption curve with the electrons magnetically deflected from the counter gave a component after subtraction of the K x-rays with a half-thickness of 6.3 mg/cm\(^2\).
Fig. 18. Copper Absorption Curve of Gd^{153} Radiations.
in aluminum. This half-thickness corresponds to a 6.5 KeV x-ray which agrees well with an energy of an Eu L x-ray apparently present in high intensity. The magnet was then removed without changing the geometric relation between the counter and sample. The points for this absorption curve were identical with the previous curve except for the first few absorbers. The difference between the readings for low absorber thicknesses obtained by subtracting those with the magnet from those without when plotted linearly versus absorber thickness give the range of the L conversion electrons. The results from this series of measurements are plotted in Figures 19 and 20.

Aluminum absorption curves on a purified fraction of the 7.2 day terbium indicate the activity decays by emission of a 0.50 Mev β (see Figure 21). As determined by copper absorption curves a γ-ray of 0.05 Mev is also present.

A β of 0.82 Mev and γ-rays of 0.05 and 0.42 Mev are associated with the decay of the short-lived gadolinium. As the intensity of the 47 hour Sm153 contaminant was greater than the short-lived gadolinium and as the possibility exists that all of the Sm153 was not removed by two extractions with sodium amalgam, these energies may not be exact. The energies are in general agreement with those reported by Butement (7) for an 18 hour gadolinium
Fig. 19. Gd153 Absorption Curves With and Without Magnetic Deflection of the Electrons.
Background (see Fig. 19).

Activity (A) vs. absorption.

Fig. 20. Absorption Curves of 1 X-ray.

Activity (A cm⁻¹).

Activity (C/m).

E = 6.5 MeV X-ray.

Without magnet.

L - Conversion.

L - Electrons.
Fig. 21. Aluminum Absorption Curve of 7.2 Day Tb161.
activity decaying by emission of 0.95 Mev β and 0.055 and 0.38 Mev γ-rays.

Decay Scheme of Gadolinium-153.

As given in Figure 22, Gd153 decays to an excited state of Eu153 by K electron capture and then to the ground state by γ-ray emission. Experimentally the γ-ray energy was determined as 106 Kev in Gd153 from neutron bombarded gadolinium and 101 Kev in Gd153 from deuteron bombarded europium. It is assumed from these values that this γ-ray is the same as the 102 Kev γ-ray measured spectrometrically (10) and assigned to Gd153.

The highly converted γ-ray gives rise to both K and L electron groups. However, the K conversion electrons were not detected because the low electron energy of 54 Kev does not allow them to go through a thin window. The L x-rays and L electrons comprise the low energy radiation (see Figures 19 and 20). The range of the electrons and half-thicknesses of the γ-rays in aluminum are given in Table X.

The same assembly, variable gate setting, geometry conditions etc. were used in these coincidence determinations as in those on the gadolinium activities produced in deuteron bombarded europium. The Gd153 was evaporated on a formvar film (0.10 mg/cm2) and the sample held in place
Fig. 22. Decay Scheme of \(\text{Gd}^{153} \).
The conversion of the 105 key I is determined as X. The capture is determined as X while the X key from the equipment is presented. The X key and the X electron of the components present in the plot of momenta before discussion of Table XI is plotted in Figure 2.

The corrected conductance then from the last column of Table I for all determinations.

A fixed absorber of 25 cm2 of aluminum was left in the electron. The experimental results are given in Table XI.

The electron aluminum had been added to absorb all x-rays and were placed between the sample and counter 2 until suit.

In the electron, readings were then taken at aluminum rolls and electron aluminum in channel 1 to absorb the x-ray and a series of measurements on GD 153 were taken with suit-

<table>
<thead>
<tr>
<th>Energy</th>
<th>105 Key</th>
<th>I Key</th>
<th>I' Key</th>
<th>I'' Key</th>
<th>I conversion electron</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9%</td>
<td>1.3</td>
<td>1.5</td>
<td>6.3</td>
<td>7.5</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Range of hardness

TABLE X

With a carbon film of about the same thickness.
TABLE XI
Coincidence Measurements on Gd153

<table>
<thead>
<tr>
<th>mg/cm2 on 2</th>
<th>(a/m)$_{1}$</th>
<th>(a/m)$_{2}$</th>
<th>Coin.Rate uncorr.</th>
<th>N</th>
<th>N</th>
<th>Coin.Rate corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4500</td>
<td>476</td>
<td>2.219\pm.037</td>
<td>0.143</td>
<td>0.139</td>
<td>1.937\pm.038</td>
</tr>
<tr>
<td>2.3</td>
<td>2500</td>
<td>476</td>
<td>1.233\pm.022</td>
<td>0.082</td>
<td>0.138</td>
<td>1.012\pm.023</td>
</tr>
<tr>
<td>3.0</td>
<td>2164</td>
<td>473</td>
<td>1.043\pm.028</td>
<td>0.068</td>
<td>0.138</td>
<td>0.837\pm.028</td>
</tr>
<tr>
<td>6.0</td>
<td>1098</td>
<td>471</td>
<td>0.573\pm.019</td>
<td>0.034</td>
<td>0.137</td>
<td>0.402\pm.019</td>
</tr>
<tr>
<td>7.7</td>
<td>845</td>
<td>472</td>
<td>0.455\pm.017</td>
<td>0.027</td>
<td>0.137</td>
<td>0.291\pm.017</td>
</tr>
<tr>
<td>10.7</td>
<td>685</td>
<td>467</td>
<td>0.396\pm.016</td>
<td>0.021</td>
<td>0.136</td>
<td>0.239\pm.016</td>
</tr>
<tr>
<td>15.4</td>
<td>606</td>
<td>473</td>
<td>0.333\pm.013</td>
<td>0.019</td>
<td>0.135</td>
<td>0.179\pm.013</td>
</tr>
<tr>
<td>26.2</td>
<td>535</td>
<td>466</td>
<td>0.268\pm.011</td>
<td>0.017</td>
<td>0.133</td>
<td>0.118\pm.011</td>
</tr>
<tr>
<td>52.4</td>
<td>511</td>
<td>463</td>
<td>0.264\pm.010</td>
<td>0.016</td>
<td>0.128</td>
<td>0.120\pm.010</td>
</tr>
</tbody>
</table>

Coincidences that can occur with absorber thicknesses of 52.4 mg/cm2 are $k_x k_x$, $k_x k_x'$, $k_x k_Y$ and γk_x as based on the decay scheme given in Figure 21 and ranges of radiations as given in Table X. Writing the coincidences between the γ-ray and K x-ray as γk_x signifies the simultaneous observance of a γ-ray in channel 1 and K x-ray in channel 2. As the radiations are not absorbed by the aluminum present on either channel, $k_x k_Y$ coincidences can also be observed. After subtraction of these coincidences and replottig the data, another straight line group is present with a half-
Fig. 23. Coincidence Measurements on Gd153.
thickness of 5.7 mg/cm2. This half-thickness corresponds to a 6.2 kev x-ray and this component is due to L x-ray and X$_K$ coincidences.

After this component is subtracted, a line with a half-thickness of 1.4 mg/cm2 of aluminum can be drawn through the remaining four points. This half-thickness corresponds to the 94 kev electron group and these points arise from L electron and X$_K$ in coincidence. Since these components can be explained on the basis of the tentative decay scheme, the decay scheme is substantiated by this experiment.

The decay scheme is further corroborated by another series of measurements. In this experiment, aluminum foils were added to channel 2 with no absorbers between the sample and counter 1. After the corrected coincidence rate was plotted (see Figure 24), a straight line component was present due to X$_K$K$_X$, K$_X$X$_K$, X$_K$$\gamma$, X$_KX_K$, L$_XX_K$ and L$_e$X$_K$ coincidences.

After subtraction of this component (see Figure 24) a straight line with a half-thickness of 6.5 mg/cm2 can be drawn through another set of coincidence points. This half-thickness corresponds to the L x-ray and the coincidences are between L$_e$L$_X$ and X$_K$L$_X$ radiations.
Fig. 24. Coincidence Measurements on Gd153.
After subtraction of this component a straight line can be drawn through a third group of coincidences involving L electrons being counted in channel 2. The coincidences are due to X_Le and L_Le radiations.

Another determination with sufficient copper in both channels to absorb everything except the 102 kev γ-ray did not give a measurable coincidence rate above background and accidentals. Also the L conversion electrons are the only electron group present as Ne_γ/Ne was a constant.

On the basis of these experimental results, the tentative decay scheme of Gd153 as proposed earlier (see Figure 22) is thus verified.

Neutron and Deuteron Bombarded Europium

Survey of Previous Work

As a survey of the pertinent work concerning the long-lived europium activities was given earlier, only a few statements will be made before the experimental work will be discussed. Long-lived neutron induced activities in europium (17) are assigned to Eu152 (5.3 yr) and Eu154 (5.4 yr). The γ-radiations are quite complex with about 33 conversion electron lines present in a mixture of the two isotopes (21). One or both of the nuclides decay to an unknown extent by K-electron capture (16). No satis-
factory decay scheme has been advanced as yet and will probably have to wait until enriched isotopes are available.

Purification of Activities

At the time the studies were started, much of the information just given was not known. The question of whether Eu152 or Eu154 might be formed preferentially in a neutron or deuteron bombardment of europium appeared worth investigating. If such were the case, a comparison of activities produced by the two methods could be of value in assigning half-lives and energies to the particular isotopes involved.

Samples of Eu$_2$O$_3$, originally separated and purified by H. N. McCoy, on spectrographic analysis indicated trace amounts of samarium and gadolinium were present. One sample was given 870 microampere hours of bombardment with 20 Mev deuterons by the Berkeley 60-inch cyclotron. The other sample received a pile neutron bombardment at Oak Ridge. Both samples were again purified after bombardment by a succession of EuSO$_4$ precipitations. The complete chemical process is outlined earlier in connection with the separation of gadolinium and europium.

Half-life Measurements

Half-life determinations with an electroscope now extend over 550 days (see Figure 25). The europium activities produced by deuteron bombardment were measured with and
Fig. 25. Decay Curves for Eu152 - Eu154 Activities from Neutron and Deuteron Irradiated Eu$_2$O$_3$.

- Eu(n,γ) Eu* $T_1 \sim 6.6$ years
- Eu(d,p) Eu* $T_1 \sim 8.5$ years
- Eu(d,p) Eu* $T_1 \sim 6.9$ years

Added Absorber of 0.84 g/cm2 Al.
without absorbers giving the values of 6.9 and 8.5 years respectively. The radiations from neutron induced europium without absorber present decays with a half-life of 6.6 years. These results are of course a composite of Eu152 and Eu154 half-lives and the measurements have not continued long enough to give values which are valid. The results are believed to be good within 20%.

Energy Measurements

Absorption curves of the radiation in lead, copper and aluminum do not yield much valuable information for these nuclides since the combined activity is so complex that only a rough average of the energy in each energy region is obtained. The value for the gamma radiations from lead absorption curves was 1.4 Mev and that for the beta radiations by aluminum absorption curves was 0.9 Mev in agreement with published absorption data (42).

As a comparison of the neutron and deuteron produced activities, aluminum absorption curves were run on both under identical geometry. It can be seen from Figure 26 that the two curves are superimposable. Thus there is not enough difference in the relative amounts of Eu152 and Eu154 as produced by the two different methods to be observed in the aluminum absorption curves. In a similar way the lead absorption curves are essentially identical in the two cases.
Fig. 26. Absorption Curves on Eu152 - Eu154 from Neutron and Deuteron Irradiated Eu$_2$O$_3$.
DISCUSSION

Interpretation of Data

Mass Assignment of Gadolinium Activities

A 236 day activity produced in neutron irradiated gadolinium is assigned to Gd153. The activity decays by K electron capture and the resulting x-ray has been identified as the europium K x-ray. As Gd151 and Gd153 are the only nuclides that can decay to a stable europium the choice is thus limited. The (n, 2n) reaction necessary to produce Gd151 is not likely with pile neutrons.

Based on similarity of half-lives and γ-ray energies, one of the long-lived gadolinium activities produced in deuteron bombarded europium appears to be the same as that assigned to Gd153. The assignment of the other activity to Gd151 is based on the following premises. First, as an europium x-ray is associated with the decay of the 150 day activity, the possible choices are limited to Gd151 and Gd153. Second, the assignment of the 150 day activity to Gd153 is improbable since the activity was not observed in neutron irradiated gadolinium. Possibly Gd151 could also be produced by high energy γ-radiation of gadolinium as well as fast neutron bombardment thus providing a check on these observations.
The half-life of 150 days for Gd151 is a calculated value based on changes in the ratios of γ-ray intensities over a period of time. As has been stated earlier the 102 keV γ-ray is associated with the decay of Gd153 and the 265 keV γ-ray with Gd151. With a period of 590 days intervening copper absorption curves give a ratio of intensities of the 102 keV γ-ray to the 265 keV γ-ray of 2.9 at $t = 0$ and 8.1 at $t = 590$ days. The following equations can then be solved for the half-life of Gd151.

$$\lambda_{1ss} N_{1ss} = 2.9 \lambda_{1si} N_{1si}$$
$$\lambda_{1ss} N_{1ss} = 8.1 \lambda_{1si} N_{1si}$$
$$\lambda_{1ss} N_{1ss} = \lambda_{1ss} N_{1ss} e^{-\lambda_{1ss} t}$$
$$\lambda_{1si} N_{1si} = \lambda_{1si} N_{1si} e^{-\lambda_{1si} t}$$

$$e^{-\lambda_{1si} t} = 2.9 e^{-\lambda_{1ss} t/8.1}$$

or $T_{\frac{1}{2}} = 150$ days

The calculated half-life agrees well with what would be expected from the overall decay curves of the gadolinium activity from deuteron bombarded europium (see Figure 4). Apparently the process Eu153(d, 2n)Gd153 occurs to about 5% of the Eu151(d, 2n)Gd151 process.

In cation exchange experiments, the 7.2 day activity is eluted just prior to the gadolinium fraction. The relative position of the activity peaks in the elution curve would indicate the 7.2 day activity is a terbium isotope.
Energy measurements on the 7.2 day activity are in agreement with those reported for a 5.5 to 7 day activity assigned to Tb161 by other investigators. The Tb161 by virtue of its relationship with stable nuclides must have a gadolinium parent. As the 7.2 day activity tentatively assigned to Tb161 did not grow back into the 18 to 24 hour gadolinium fraction from which it was separated, this gadolinium nuclide cannot be the parent. This would indicate the 18 to 24 hour activity is Gd159. Other investigators have assigned a 3.6 minute activity to Gd161.

Limitations of Studies

The energies of radiation associated with gadolinium activities were determined by absorption in various elements. The limitations of this method are well known in that similar energy levels cannot be differentiated. Highly erroneous values may result in γ-ray determinations with elements having a K absorption edge slightly less than the energy of the γ-ray in question. The ranges of the electron groups were estimated visually.

The half-life values for Gd151 and Gd153 are believed to be accurate as the electroscope was extremely stable over the period of measurement. The 24 \pm 3 hour value for Gd159 is in doubt because of possible Sm153 contamination and the usual difficulty in measuring short-lived activ-
Warrant continued measurement.

Warrant results. The purity of the samples is such as to
have not exceeded over a long enough time interval to give
measurements on the decay of the europium materials
which at a site removed from the irradiation source. The
SUMMARY

A 236 day neutron induced activity in gadolinium purified by ion exchange methods is assigned to Gd153. A simple decay scheme is proposed in which the Gd153 decays to an unstable Eu153 by K electron capture and then to the ground state by emission of a 106 keV γ-ray. The γ-ray is highly internally converted giving rise to K, L, and possibly M electrons.

A 7.2 ± 0.2 day and 18 to 24 hour activity present in the neutron irradiated gadolinium were separated on an ion exchange column. The 7.2 day activity assigned to Tb161 decays by emission of 0.50 Mev β and 0.05 Mev γ. The 18 to 24 hour activity tentatively assigned to Gd159 decays by emission of 0.82 Mev β and γ-rays of 0.05 and 0.42 Mev.

Half-life measurements on gadolinium produced by deuteron bombardment of europium extend over 600 days. The activity decaying with a half-life of 155 days initially is slowly lengthening into a longer half-life. A 265 kev γ-ray is detected in addition to the 106 kev γ-ray previously found in Gd153. The 265 kev γ-ray is assigned to Gd151 which decays with a half-life of 150 days. This half-life is based on ratios of the 106 kev γ-ray to the 265 kev γ-ray observed over a 600 day period. The decay scheme of Gd151 appears to be very similar to Gd153 with only the 265 kev γ-ray present in the decay.
Energy measurements on Eu152 and Eu154 produced by neutron and deuteron bombardment of EuαOα give highly similar results, indicating that the same ratio of isotopes is produced in the two irradiations. Half-life measurements on the combined samples of Eu152 and Eu154 extend over 550 days giving values of 6.6 to 8.5 years.
REFERENCES

7. F. D. S. Butement, ibid., 75, 1276 (1949).
18. F. B. Shull, *ibid.*, 74, 917 (1948).
ACKNOWLEDGMENT

The writer wishes to express his sincere appreciation to the following people whose cooperation made this research possible.

Dr. A. F. Voigt suggested the problem and has given encouragement and many helpful criticisms during the development of the research.

Dr. F. H. Spedding and the rare earth group were generous in their loans of pure rare earths needed for this study.

Other members of the laboratory, especially Ruth Powers, Joe Copeland and Barrett Doyle, have cooperated during the research making possible many of the detailed studies.

Acknowledgment is made to the Ames Laboratory of the Atomic Energy Commission for providing the funds and necessary facilities for the research.