1949

Purpura Hemorrhagica

Donald Fuller
Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/iowastate_veterinarian
Part of the Large or Food Animal and Equine Medicine Commons, and the Veterinary Physiology Commons

Recommended Citation
Fuller, Donald (1949) "Purpura Hemorrhagica," Iowa State University Veterinarian: Vol. 11 : Iss. 1 , Article 8.
Available at: https://lib.dr.iastate.edu/iowastate_veterinarian/vol11/iss1/8

This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Veterinarian by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Purpura Hemorrhagica. A 3 year old gelding was admitted to Stange Memorial Clinic, Oct. 8, 1948, with a history of an attack of strangles several weeks previously. Edema of the legs had been present for at least a month.

The patient showed extensive edema of the underline, of the pectoral region, of all four legs and of the prepuce. Petechiae and small ulcers were evident on the nasal mucosa. There was also a slight nasal discharge. The temperature, pulse rate, and respiratory rate were elevated significantly. On the basis of the history and the symptoms, a diagnosis of purpura hemorrhagica was made.

Treatment was initiated with the injection intramuscularly of 600,000 O.U. of procaine penicillin in oil and wax, plus 250 cc. of citrated blood given via the jugular vein.

The same dosage of penicillin was again injected Oct. 9-10. The temperature showed a slight decrease below the reading on Oct. 8.

Much of the edema of the underline had disappeared on Oct. 11. Edema was quite noticeable on the legs and prepuce, however. Ulcers appeared on the prepuce. The same dosage of penicillin was administered in the morning and another 250 cc. of citrated blood was injected intravenously. The evening of the same day another 600,000 O.U. of penicillin was administered intramuscularly.

The animal began to show marked improvement on Oct. 12, and he received the same dosage of penicillin as was given the day before.

In addition to the two injections of penicillin, totaling 1,200,000 O.U., 250 cc. of citrated blood was injected intravenously on Oct. 13. The animal evidenced improvement. The same dosage of penicillin was given the following day.

The preputial ulcers were washed with an antiseptic solution on Oct. 15-16. The animal's general condition seemed improved.

From Oct. 17 to Oct. 20, the treatment was suspended. During this time the horse continued to eat and drink well. His general condition continued to show improvement.

Treatment was resumed on Oct. 21-22 with the transfusion of 250 cc. of citrated blood administered via the jugular vein. The patient still showed slight edema of the legs accompanied by stiffness.

To date, a total of 6,000,000 O.U. of penicillin and 1,500 cc. of citrated blood have been administered to this horse. Although full recovery has not been attained at the time of this report, much improvement over his previous condition is evident. Nevertheless, only a guarded prognosis can be made as the mortality rate from this disease is quite high. Experience has shown that repeated transfusions of 250-300 cc. of citrated blood are of more therapeutic value in treating this disease than are transfusions of a larger amount made less often.

An interesting and unusual feature in this case of purpura hemorrhagica was its apparent chronic nature, as evidenced by the history of prolonged edema of the legs.

Donald Fuller, '50

Plasma Substitute

Both human and animal lives are now being saved by the use of intravenous fluids to prevent serious shock in connection with surgical operations.

"After observing over 75 surgical cases," says Dr. M. W. Allam of the University of Pennsylvania Veterinary Hospital, "I am convinced that intravenous gelatin can be administered easily and safely to all animals."

A special gelatin for this purpose has proved to be a good substitute for plasma, Dr. Allam reports. In animal practice, he pointed out, the use of plasma is limited. It is often very difficult to find a suitable animal blood donor when urgently needed; and impossible for the practitioner to maintain a plasma bank considering the many species of animals.

A further advantage of the use of gelatin for intravenous injections is the fact that it can be stored at room temperature and carried in the veterinarian's car. The gelatin is also always ready for immediate use, and its cost is nominal.

The Veterinary Student