8-31-2009

Goss’s Wilt and Northern Corn Leaf Blight Showing Up in Iowa

Alison E. Robertson
Iowa State University, alisonr@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Plant Pathology Commons

Recommended Citation
http://lib.dr.iastate.edu/cropnews/579

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Goss’s Wilt and Northern Corn Leaf Blight Showing Up in Iowa

Abstract
This past week I have received several more reports of Goss’s wilt. Reports of the disease come from south of
Highway 3, North of I-80 and east of I-35. For the most part, it seems that the disease is occurring in random
fields; however this past week I visited a 200 acre field in Boone County in which many of the plants were
infected. Many of the plants had extensive leaf blight occurring on the top two to three leaves of the canopy
(Figure 1). Most of the lesions occurred around holes made by hail.

Keywords
Plant Pathology

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences | Plant Pathology

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/579
Goss's Wilt and Northern Corn Leaf Blight Showing Up in Iowa

By Alison Robertson, Department of Plant Pathology

Goss’s wilt
This past week I have received several more reports of Goss’s wilt. Reports of the disease come from south of Highway 3, North of I-80 and east of I-35. For the most part, it seems that the disease is occurring in random fields; however this past week I visited a 200 acre field in Boone County in which many of the plants were infected. Many of the plants had extensive leaf blight occurring on the top two to three leaves of the canopy (Figure 1). Most of the lesions occurred around holes made by hail.

Goss’s wilt lesions are large, have wavy margins and are brown, yellow, gray in color. They may be elliptical or V-shaped and usually extend down a leaf vein (Figure 2). The tissue neighboring the lesion is water soaked. It is common for the bacteria that cause this disease to ooze out onto the leaf surface, so the lesions often have a shiny appearance. Most characteristic though, are the dark green “freckles” that occur within the lesion (Figure 3). In the Plant Disease and Insect Clinic, we check for “streaming” to diagnose a bacterial disease. I did this in a glass of water in my office (Figure 4).

Goss’s wilt disease can progress rapidly under the right conditions (warm 80 degree F and wet) resulting in extensive leaf blight and death of the canopy.

Since this is a bacterial disease, a fungicide application will not control the disease. The pathogen is able to survive in infested surface crop residue for 10 months. The recommended management practices include rotation to a non-host crop, any type of tillage that buries the infested residue and helps with decomposition, and tolerant hybrids.

An excellent review of this disease is available from University of Nebraska, Lincoln.
Figure 1. Leaf blight symptoms of Goss's wilt

Figure 2. Characteristic lesions of Goss’s wilt

Figure 3. Characteristic freckling seen on Goss’s wilt lesion
Northern Corn Leaf Blight

Northern corn leaf blight (NCLB) is also making an appearance. This disease could be mistaken for Goss’s wilt because it also causes large elliptical lesions on corn leaves. Since Northern corn leaf blight is caused by a fungal pathogen, *Exserohilum (Helminthosporium) turcicum*, a fungicide could be used to manage this disease.

Northern corn leaf blight lesions are elliptical or cigar-shaped, gray-green to tan in color, with a distinct margin between the infected and healthy tissue (Figure 5). Under high humidity they look “dirty” due to large numbers of spores produce on the surface of the lesion (Figure 6).

Infection is favored by cool (65-80 degree F), wet conditions. Free water needs to be present on the leaf surface for 6-18 hours for infection to occur. Lesions develop within 7-12 days.

Yield losses of over 30 percent have been reported if the disease is present on the upper leaves of the plant at the silking. Losses are minimal if disease development is delayed until dent stage. Like other foliar pathogens, Northern corn leaf blight predisposes corn to stalk rot.

Hybrids with resistance to NCLB are available so check with your seed dealer. Rotation to soybean or alfalfa can be beneficial as well since the pathogen survives in infested crop debris. What about now? A fungicide application may be an option; however, there are no tried and tested thresholds available. Thus far I have heard of only one field in which several lesions were present on the ear leaf. Before making the call on a fungicide application, be sure to scout to determine disease pressure in the field. Then consider hybrid susceptibility to disease, current and predicted weather conditions, previous cropping history and economics (cost of fungicide plus application, price of grain, drying costs, standability).
Figure 5. Cigar-shaped lesions of northern corn leaf blight (Credit G. Coates)

Figure 6. Sporulation on the surface of a northern corn leaf blight lesions

Alison Robertson is an assistant professor of plant pathology with research and extension responsibilities in field crop diseases. Robertson may be reached at (515) 294-6708 or by email at alisonr@iastate.edu.

This article was published originally on 7/31/2009. The information contained within the article may or may not be up to date depending on when you are accessing the information.

Links to this material are strongly encouraged. This article may be republished without further permission if it is published as written and includes credit to the author, Integrated Crop Management News and Iowa State University Extension. Prior permission from the author is required if this article is republished in any other manner.