Loading Gantry Versus Traditional Chute for the Finisher Pig: Effect on Fresh Pork Quality Attributes When Properly Loaded at First Pull

Nick L. Berry
Iowa State University

Anna K. Johnson
Iowa State University

Steven M. Lonergan
Iowa State University, slonerga@iastate.edu

Thomas J. Baas
Iowa State University

Locke A. Karriker
Iowa State University

See next page for additional authors

Recommended Citation
DOI: https://doi.org/10.31274/ans_air-180814-634
Available at: https://lib.dr.iastate.edu/ans_air/vol656/iss1/66
Loading Gantry Versus Traditional Chute for the Finisher Pig: Effect on Fresh Pork Quality Attributes When Properly Loaded at First Pull

Authors
Nick L. Berry, Anna K. Johnson, Steven M. Lonergan, Thomas J. Baas, Locke A. Karriker, Kenneth J. Stalder, Jeffery Hill, Collette Schultz-Kaster, and Neal Matthews

This swine is available in Animal Industry Report: https://lib.dr.iastate.edu/ans_air/vol656/iss1/66
Loading Gantry Versus Traditional Chute for the Finisher Pig: Effect on Fresh Pork Quality Attributes When Properly Loaded at First Pull

A.S. Leaflet R2545

Nick L. Berry, graduate research assistant; Anna K. Johnson, assistant professor; Steven M. Lonergan, associate professor; Tom J. Baas, associate professor; Locke Karriker, assistant professor; Ken J. Stalder, associate professor, Iowa State University; Jeffery Hill, consultant, Innovative Livestock Solutions, Alberta, Canada; Collette Schultz-Kaster, V.P. Quality Technical Services; Neal Matthews, Farmland Foods, Milan, MO

Summary and Implications

Pig mortalities from the farm to the harvest facility have been estimated to cost the U.S. swine industry over 55 million dollars annually. Improved understanding of the major factors impacting the behavioral and physiological responses of the finisher pig during transportation and its effects on final meat quality is needed. Fresh pork loin quality attribute evaluations were performed on a total of 200 (n = 100 per treatment) pigs from the first pull (FP defined as first pigs marketed from a finishing facility). Two loading system designs were compared in the study. The first loading system design (T) was the production system’s traditional metal covered chute. The second design (P) used was a prototype loading gantry constructed of an aluminum covered chute. After loading was complete, pigs were transported ~88.5 km to a commercial packing plant. Initial pH, 24-h pH, Japanese Color Score (JCS) cut, JCS rib, color pass rate and Loin L* were scored on each loin. Loins from pigs loaded with the P loading gantry had higher (P < 0.05) initial and 24 h pH and tended (P = 0.08) to have higher JCS cut values. These observations were consistent with lower L* values observed in loins from pigs loaded with P loading gantry (P < 0.05). Results indicate that pigs loaded on the P loading gantry have improved meat quality attributes when compared to pigs loaded with the T chute during the first pull.

Introduction

Animal “movement is accomplished by making the target location, or route to it, more attractive than the starting location.” Pigs are motivated by several factors including natural curiosity, odors, sounds, conspecifics, food, water and fear. Traditional handling and loading systems may have been either poorly planned or not planned in the design and construction of finishing facilities. Therefore, during handling and marketing opportunities the industry is forced to rely heavily on negative motivators or repulsive forces, most notably fear and pain, to move the animal. Therefore, the objective of this study was to evaluate the effects of the loading system at the farm (traditional chute [T] vs. prototype loading gantry [P]) on the quality attributes of fresh pork loin at first pull. Pigs were harvested at a commercial facility.

Materials and Methods

Samples: Fresh pork loin quality attribute evaluations were performed on a total of 200 (n = 100 per treatment) pigs from the first pull (FP defined as first pigs marketed from a finishing facility). Meat quality evaluations were performed on a random sample of approximately two-thirds of the pigs per load. This level of sampling was based on the integrators standard operating procedures.

Loading System Design: Two loading system designs were compared in the study. The first loading system design (T) was the production system’s traditional metal covered chute. The chute was 76.2 cm in width, 2.3 m in height, and 4.6 m in length, and used square stock (2.5 cm) metal cleats which were spaced 20.3 cm apart. The T chute included a flat pivot section on each end to accommodate the angle that the trailers were positioned relative to the finishing facility. The slope of the chute used to load the pigs onto the trailer was approximately 19 degrees to the bottom deck. The trailer included an internal ramp raised 23 degrees for access to the upper deck. One incandescent lamp fixture (60 watts) was placed at the entrance to the T chute. The second design (P) used was a prototype loading gantry constructed of an aluminum covered chute. The loading gantry was 91.4 cm in length, and used square stock (2.5 cm) metal cleats which were spaced 20.3 cm apart. The P loading gantry included a flat pivot section on each end to accommodate the angle that the trailer was positioned relative to the finishing facility. The slope of the chute used to load the pigs onto the trailer was approximately 7 degrees to the bottom deck and 18 degrees to the upper deck of the trailer. A cushioned bumper dock system was incorporated into the loading gantry design to completely eliminate gaps from the barn to the loading gantry. The flooring material consisted of metal coated with epoxy (designed to mimic the feel of concrete on the pigs feet) and had an inverted stair step design with cleats 2.5 cm in height and spaced 20.3 cm apart. The gantry slope was approximately 4 degrees to the bottom deck and 19 degrees to the upper deck of the trailer. The P loading gantry utilized an industrial rope lighting system designed to provide a soft, continuous light source that minimized shadowing.
Truck and Transportation: After loading was complete, pigs were transported ~88.5 km to a commercial packing plant. All animal transport procedures complied with the Transport Quality Assurance Program™. All transport trailers were 16.5 m in length, double-deck straight trailers. All trailers utilized natural ventilation with punched sides and flooring was diamond plate.

Processing: Pigs were harvested at a commercial facility. Pigs were held in lairage for an average of 4-h, and food was withheld, however, pigs had continual access to water. A CO₂ anesthetizing system was used to render the pigs unconscious. The carcasses were held in a blast-chiller for a period of approximately 90 min. Blast-chilling requires an air temperature of −20 to −40°C with an average air velocity of 10 to 16 ft/s for 1 to 3 hours. Following the blast-chill, carcasses were held in a conventional cooler until fabrication 24 h postmortem.

Fresh Pork Quality Attributes: Initial pH (~35 min postmortem) was measured at the 10th rib of the same *longissimus dorsi* (LD) of each carcass prior to entering the blast chill chamber. A 24 h pH was evaluated on the same muscle and at the same location on the carcass. Both measures were collected using a Hanna 9025 pH/ORP meter (Hanna Instruments, Woonsocket, RI), which was calibrated at the expected carcass temperatures. The carcasses remained in the cooler until 24 h postmortem, after which time they were fabricated. The 24 h pH, objective (CIE L*), and subjective Japanese Color Score (JCS cut and JCS rib) measurements were determined on the LD of the selected carcasses by personnel that were both trained and experienced in subjectively evaluating quality of pork carcasses. Objective color was determined using a Minolta CR-400 Chroma Meter (Minolta Camera Co., Ltd., Japan) with illuminant C and 20 standard observer. Color measurements (L* values) were measured on a cross-section of the LD at the last rib. Subjective color was evaluated using the JCS system consisting of six plastic discs that ranged from scores of 1 to 6 (1=pale grey, 6=dark purple). Japanese color scores were obtained from the outer surface (lean) of the LD and from the cross-section of the LD at the last rib. Color pass rate (defined as a loin that meets specified color requirements) was determined utilizing an internally-approved scale used for identification of loins that met specifications for high value domestic and international markets. All measures were collected on the left side of the pig’s carcass. Methods for collection of meat quality attributes were developed.

Statistical Analysis: The experimental unit was the pork loin and a complete randomized experimental design was utilized. The statistical model included the parameter of interest (pH upon initiation of chilling, 24 h pH, JCS cut score, JCS rib score and loin L*), treatment (traditional [T] or prototype [P]) and gender (barrow or gilt). Data were analyzed using the PROC MIXED of SAS® (SAS Inst., Cary, NC). Harvest date was a covariate (two harvesting dates with both P and T represented on both dates). There were no main effects of gender or treatment by gender interaction and subsequently these were removed from the final model. A P-value of $P \leq 0.05$ was considered significant.

Results and Discussion

Loins from pigs loaded with the P loading gantry had higher ($P < 0.05$) initial and 24 h pH and tended ($P = 0.08$) to have higher JCS cut values. These observations were consistent with lower L* values observed in loins from pigs loaded with P loading gantry ($P < 0.05$; Table 1).

Table 1. Subjective and objective fresh pork loin quality attributes from a study evaluating two different loading systems when first pull pigs are marketed.

<table>
<thead>
<tr>
<th>Item</th>
<th>T</th>
<th>P</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of animals</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Initial pH</td>
<td>6.57 ± 0.02</td>
<td>6.5 ± 0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>24 h pH</td>
<td>5.7 ± 0.01</td>
<td>5.7 ± 0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>JCS cut</td>
<td>3.1 ± 0.04</td>
<td>3.2 ± 0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>JCS rib</td>
<td>3.3 ± 0.05</td>
<td>3.2 ± 0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>Color pass rate</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Loin L*</td>
<td>46.7 ± 0.31</td>
<td>45.7 ± 0.31</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Despite the rigors of extra handling during sorting from the pen during FP, pigs loaded using the P loading gantry had superior meat quality attributes. In addition, pigs loaded with the P loading gantry had improved 24 h pH, and overall color attributes. In conclusion, this investigation has provided data to support changes in loading system design that may ultimately lead to the improvement of pork quality. Results indicate that pigs loaded on the P loading gantry have improved meat quality attributes when compared to pigs loaded with the T chute during the first pull.