1951

Relationship between the strains in members and the end connections in an aluminum trussed space-frame tower

William Carl Alsmeyer

Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Civil Engineering Commons

Recommended Citation

Alsmeyer, William Carl, "Relationship between the strains in members and the end connections in an aluminum trussed space-frame tower" (1951). Retrospective Theses and Dissertations. 14970.
https://lib.dr.iastate.edu/rtd/14970

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0500

UMI®
NOTE TO USERS

This reproduction is the best copy available.

UMI
RELATIONSHIP BETWEEN THE STRAINS IN MEMBERS
AND THE END CONNECTIONS IN AN ALUMINUM
TRUSSED SPACE-FRAME TOWER

by

William Carl Alsmeyer

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of
DOCTOR OF PHILOSOPHY

Major Subject: Structural Engineering

Approved:

Signature was redacted for privacy.
In Charge of Major Work

Signature was redacted for privacy.
Head of Major Department

Signature was redacted for privacy.
Dean of Graduate College

Iowa State College

1951
TABLE OF CONTENTS

I. INTRODUCTION

1. Introduction

II. EXPERIMENTAL PROCEDURE

A. Description of Tower
B. Description of End Fixtures
C. Description of Strain Measuring Equipment
D. Tests of Members in Tower
E. Tests of Members in Testing Machine

III. PRESENTATION AND DISCUSSION OF RESULTS

A. Behavior of Members in Tower
 1. Primary strains
 2. Secondary strains
 3. End conditions
 4. Elastic curvature
B. Compression Members in Tower
 1. Development of theory
 2. Comparison of derived theory with results observed in testing machine
 3. Effective length of members
 4. Development of practical method of design
C. Tension Members in Tower
 1. Development of theory
 2. Comparison of derived theory with results observed in testing machine
 3. Effective length of members
 4. Development of practical method of design
D. Evaluation of Results
 1. Compression members
 2. Tension members
E. Suggestions for Future Study
I INTRODUCTION

The objectives of this investigation are to study the effect of end connections on the behavior of single-angle compression and tension members in an aluminum space-frame tower and, on the basis of the results of this study, to develop practical design methods which are more rational than those now used in structural design.

Many of the present day methods of designing structural elements are necessarily arbitrary because of insufficient experimental evidence and data concerning the behavior of these elements in the actual structure. As this knowledge becomes available more nearly rational methods of design will be developed and used by the profession. The design of single-angle truss members both in compression and in tension, which this study covers, is one of the areas in which this lack of knowledge is very acute and the design methods specified in the standard structural design specifications are, therefore, necessarily arbitrary. Three generally used design specifications are those prepared by:
1. American Association of State Highway Officials, AASHO (1).
2. American Institute of Steel Construction, AISC (2).
3. American Railway Engineering Association, AREA (3).

To develop more rational methods of design than those presented in the foregoing specifications it is necessary to correlate the test data of members as integral parts of actual structures with laboratory test data of corresponding individual members and with previously or newly developed theory.

Three single-angle members of the tower were selected. Each of these three members was tested in tension and compression. Observations were first made on the members while they were in their normal positions in the tower; then each member was removed and observations were made in the testing machine under controlled conditions. In all of these tests detailed strain measurements were made. The strain measurements of the members in the tower were compared with those of the corresponding members tested individually in the machine. This comparison provided a reliable indication of the behavior of the members in the tower on the basis of the controlled conditions in the testing machine. Then, after the behavior of the members had been established, a proposed theory was developed. In order to provide the designer with a readily applicable design procedure, the proposed theory was modified.
Owing to the limited time and funds available one type of single-angle member in a trussed space-frame tower structure was used. Therefore, the results are strictly applicable to this type of member and structure only. A general application of the proposed design methods should not be undertaken without additional experimental work on other types of members and trussed structures.

No evidence was found in any of the available literature of studies which were correlated similarly to the studies undertaken in this investigation. Many examples of tests of individual members in testing machines under controlled conditions are available. Most of these tests have been ultimate tests with little detailed strain data recorded. Also, the majority of these tests have been compression tests of large rolled or built-up sections such as are used in bridge trusses and building frames. There have been a considerable number of projects where strain measurements were taken on actual structures, but most of these structures have been bridges or buildings. There is also available a great deal of theory on the analysis and design of trussed structures and their elements.

In many cases theoretical investigations have been carried out in conjunction with either tests of individual elements or tests of a structure, but not with both for the same structure.
A few references are cited here which have a direct bearing on this problem. Betho (4) conducted tests on single- and double-angle tension members to determine the effect of end connections on stress distribution. The main objective of his study was to determine the effect of lock or lug angles at the ends of the members. Equal leg angles were riveted to two end gusset plates which were attached firmly in the testing machine. Longitudinal strain measurements were taken with mirror extensometers at sections near the center and ends of the members. Strain distribution curves for each of these sections are given, (4, p. 145), both with and without lug angles. For the center sections of the single-angle members without lug angles the strain across the attached leg is nearly constant. The maximum difference in strain between the two edges of this leg is not more than five percent. Two of his conclusions are: (4, p. 172)

a) That the assumption of a planar distribution of stress is justified in such members as are considered here, except perhaps close to the end connections, and that ordinary theory may therefore be applied to an analysis of the distribution of stress in these members.

b) That in single- and double-angle members connected at their ends by means of rivets to wide and rigidly held gusset plates the stiffness of the gusset plate in its own plane has a considerable effect on the distribution of stress in the member, there being in every case a particular stiffness which will give the least maximum stress in the member for a given load.
Templin, Hartmann and Hill (5) conducted tests on a pair of 23-foot aluminum alloy trusses which were spaced 42 inches center to center and fastened together by lateral bracing in the planes of the chords and by transverse cross bracing between the posts. The truss members were all equal leg double-angle members, but arranged so that all of the web members in one truss could be changed to single-angles by removing the outside angles.

Detailed strains, deflections and changes in lengths of members were measured. The observed data were utilized for several purposes. Observed primary stresses (axial loads only), secondary stresses (all other stresses) and deflections were compared with computed values. Good agreement was found except for the secondary stresses where the agreement was only fair.

In the section of the report devoted to the behavior of single-angle members, the following statement is made: (5, p.19)

There are too many unknown factors affecting the behavior of the single-angle members of the truss to permit a complete and accurate analysis of their action. The direct force in a member is known from the average of the measured stresses, but the manner in which this direct force is applied and the magnitude and direction of the bending and resisting moments acting at the ends of the member are very indefinite. The direct load is applied to the member in a series of unknown increments through the rivets of the joint. Unknown bending moments at the ends of the member are introduced by the eccentricities of the connections, the rigidity of the joint and the deflection of other members.
meeting at the joint. The effective length of the member is also indefinite because of the variable moment of inertia of the portions of the member included in the joints.

The logical method to employ in calculating the maximum stress in a single angle compression member would be to consider bending of the member about each of the principal axes separately and then to combine the results. The difficulty lies in the fact that the bending moments at the ends of the member cannot be evaluated. It is not always safe to consider the member as an eccentrically loaded, pin-ended column having a length equal to the distance between panel points, which deflects only in a direction normal to the plane of the gusset plate. In the case of member \(U_4L_4 \), the stress so computed, using a load equal to the average measured stress times the area, was only about half as great as the maximum stress measured when the cross-frames were unbolted. In this computation the secant formula was used and the eccentricity was assumed equal to the distance from the back of the angle to the centroid of the section.

The member \(U_4L_4 \) cited is a post member directly over the point of loading and its increase in maximum unit stress when the cross-frames were removed was more than 100 per cent. The maximum unit stress in the adjacent diagonal member, however, was increased only ten per cent. The statement is made: (5, p. 19) "These increases are consistent with what would be expected because the cross-frames, when connected, give considerable support to the posts but very little support to the diagonals."

Diagrams are plotted (5, p 37) for each of the single-angle web members showing the longitudinal stress distribu-
tions on five cross-sections of each member. For each member the stress on the attached leg of the angle is constant at some section near the center of the member. The stress is a maximum at the free edge of this leg at one end of the member and on the supported edge at the other end of the member.
II EXPERIMENTAL PROCEDURE

A. Description of Tower

For this investigation an available aluminum trussed space-frame tower, which had been designed and constructed by C. W. Cunningham\footnote{Professor Charles W. Cunningham, Department of Civil Engineering, The College of the City of New York.} for another project, was used. A photograph and a line drawing of this tower are shown in Figures 1 and 2 respectively.

All of the members in this tower are single-angle members. Each of the four corner posts is a continuous member throughout its length while each of the diagonal and ring members is an individual piece connected to the posts by gusset plates and bolts as shown in Figures 3, 4 and 5. The post members are 1 3/4 x 1 3/4 x 3/16 inch angles, the ring members are 1 3/4 x 1 3/4 x 1/8 inch angles and the diagonal members are 1 1/2 x 3/4 x 1/8 inch angles. The post members are connected by both legs to the gusset plates while the ring and diagonal members are connected by one leg only. For the diagonals the longer legs are attached. The legs of the post and ring members are spread so that each leg of each angle lies in one of the planes of the tower.
Figure 2. Line Drawing of Tower
Figure 3. Details of Tower Gusset Plates for Member D4.
Figure 4. Details of Tower Gusset Plates for Member D5.
Figure 5. Details of Tower Gusset Plates for Member D7.
The connections in the tower are made with 1/8-inch 24-ST aluminum alloy gusset plates and 3/8-inch steel bolts, except that 3/16-inch gussets are used at the four top joints.

The three diagonal members D4, D5 and D7 were chosen for this investigation as typical of one type of single-angle truss member and duplicate members were fabricated for testing purposes. The locations of these three members in the tower are shown in Figure 2; the details of each member and its connections are shown in Figures 3, 4, 5 and 6. All of the original members are of 17-ST aluminum alloy and the new diagonal test members are of 14-SW aluminum alloy, the elastic properties of which are considered to be equivalent by the manufacturer.

The original loading system, which consists of a loading frame and several loading mechanisms, was used with slight modifications. This system is designed so that the tower is allowed to assume any natural displacement without affecting the magnitude and direction of the applied loads. The loading frame is constructed of structural steel angles and channels. The loading mechanism, a line drawing of which is shown in Figure 7, consists of a load platform and a 20 to 1 ratio lever system. Two of these mechanisms were placed on the loading frame so as to apply the horizontal torque loads P or P', as shown in Figure 2. Each of these pairs of loads applies a torque in the top plane of the tower.
Fig. 6. Details of Test Members and
Figure 7. Line Drawing of Loading Mechanism
B. Description of End Fixtures

A pair of end fixtures was designed and constructed for the testing of the three diagonal test members both in tension and in compression in a 20,000 lb. hand operated universal Tinius Olsen testing machine. A drawing showing details and assemblies of these fixtures appears in Figure B.1, Appendix B. Three end conditions can be obtained by different combinations of the elements of the fixtures. These are:

1. Rigidly fixed, Figure 8c.
2. Hinged in any one direction, Figure 8b.
3. Hinged in two directions normal to each other, Figure 8a.

The hinges in these fixtures are produced by ball bearings in races as shown in Figure B.1, in Appendix B.

C. Description of Strain Measuring Equipment

The strains in the members were measured with SR-4 bonded electric resistance strain gages Type A-12 as manufactured by the Baldwin-Lima-Hamilton Corporation. Since these gages are now well known and very widely used no detailed description of the gages and their theory of operation will be

1 Formerly Baldwin Locomotive Works.
a. Hinged Two Directions b. Hinged One Direction c. Rigid-Fixed

Figure 3. Photographs of End Fixtures
presented here. References (6), (7), (8) and (9) are a few of the available sources of information on the SR-4 strain gages. The gages were bonded to the test members with SR-4 Cement in the manner prescribed by the manufacturer and are located on the members as shown in Figure 6.

The strains at the locations of the gages were measured and recorded on circular charts with a 48-channel Switching Unit and an SR-4 Strain Recorder. Both of these units are sold by the Baldwin-Lima-Hamilton Corporation and when used together are referred to as SR-4 Scanning and Recording Equipment. A description of this equipment and its operation may be found in (10). The following statement (10, p.4) is made concerning the overall accuracy of this equipment:

When used with SR-4 Type A-1 gages properly applied to the test structure by a technique which is outlined with each package of these gages, the overall accuracy of the SR-4 Scanning Recording Equipment may confidently be expected to be within one percent of full scale range in either of the three normal ranges.

Expressed in absolute values (instead of percentages) general experience indicates a better accuracy at low strain values than would be indicated by percentage values. To express these values quantitatively, however, becomes practically impossible because of variables not under our control.

The Scanning and Recording equipment has three normal ranges of 0 to 2000, 0 to 5000 and 0 to 10,000 micro-inches per inch. In this investigation the 0 to 2000 range was used for all tests.
Nedderman (11, p. 137) compared the SR-4 Scanning Recorder with the SR-4 Type L Strain Indicator and the Huggenberger Tensometer. His results indicate that for strain readings of 120 micro-inches per inch and above the range of variation among the three instruments does not exceed plus or minus three percent and for readings of 250 micro-inches per inch and above the variation is less than plus or minus two percent. However, for lower values such as 50 or 60 micro-inches per inch the percentage of variation was plus or minus seventeen percent.

D. Tests of Members in Tower.

The three diagonal test members were placed in their normal positions in the tower and the loads \(P \) were applied to the tower by the loading mechanisms. The torque, due to the loads \(P \) in the top horizontal plane of the tower, produced tension loads in each of the diagonal members. By shifting the positions of the loading mechanisms the loads \(P' \) were applied to the top plane of the tower. The reverse torque produced by these loads applied compression loads in each of the diagonal members. Thus, each of the three test members was tested in both tension and compression. Since the Scanning Recorder could accommodate only 48 gages, and since each of the test members had from 32 to
48 gages it was necessary to test one member at a time. For each member both in tension and compression the loads were applied to the tower by placing equal weights simultaneously on the two loading platforms in increments of 10 lb. to a maximum of 100 lb. These weights, because of the 20 to 1 ratio lever system, applied P or P' loads to the tower in increments of 200 lb. to a maximum of 2000 lb. The levers were kept in their proper positions by means of attached level bubbles and adjustment of the turnbuckles so that the 20 to 1 ratio would remain constant. The maximum loads applied to the tower were limited by the yield strength and the difficulty of adjusting the turnbuckles. Each of the three members was loaded three times as outlined above and for each increment of load strain readings were recorded for each strain gage with the Scanning Recorder. An examination of the circular charts, on which the strains were recorded, showed a regular spacing of lines indicating smooth data. Because of this regularity of spacing only a few of the values were used to plot the necessary curves.

The load on a test member in the tower produced by a load applied to the tower was determined as follows: It was assumed that the strain distribution on each cross-section of the member was planar and since all of the recorded strains indicate unit stresses below the elastic limit
for the material this is a reasonable assumption. On the basis of this assumption the strain readings for the four gages numbered 23, 24, 25 and 26 at the center cross-section of the member were projected over the area of the member and integrated to determine the strain volume. The load on the member was then determined by using the modulus of elasticity, E, for the material in the members as determined in Appendix C. The same procedure was followed using the strain readings for each of the two cross-sections adjacent to the center of the member. The results of these three calculations were then averaged as the load on the member in the tower. The loads thus obtained for members in the tower are comparable to the loads applied to the same members in the testing machine.

Each of the three tower test members was tested in the testing machine both in tension and compression with four different controlled end conditions imposed by the end fixtures. Typical tension and compression set-ups in the Tinius Olsen 20,000 lb. hand operated universal testing machine are shown in Figure 9 and typical end fixture arrangements are shown in Figure 8. The four controlled end conditions used were:
a. Tension

b. Compression

Figure 9. Typical Test Set-ups in Testing Machine
1. Rigidly fixed.
2. Hinged parallel to the gusset plates.
3. Hinged normal to the gusset plates.
4. Hinged both parallel and normal to the gusset plates.

For each of the four end conditions, a complete series of tests for each of the three test members was run using two 1/8-inch 24-ST aluminum alloy gusset plates as shown in Figure B1, Appendix B. For member D4 only, two additional series of tests were run using two 1/3-inch and two 1/4 inch steel gusset plates which are the same shape as the aluminum gussets. The designation for each of the test runs is given in Table 1.

In all of these tension tests the loads were applied in increments of 200 lb. to a maximum of 2200 lb. In the compression tests the load increments and the maximum loads varied with the individual members, the end conditions and the types of gusset plates. The magnitude of each of these maximum loads was dependent on either the critical load or the magnitude of the strains recorded. For each member, end condition and gusset plate type, both in tension and compression a test run was made with the outstanding leg of the angle at each of the four cardinal directions of the testing machine. In the early tests the members were also reversed end-for-end for a total of eight tests per end.
condition, but an examination of the results indicated that this was not necessary, and on subsequent tests the members were not turned end-for-end. For each test strain readings were recorded at each increment of load for each strain gage with the Scanning Recorder. The four strain readings for each gage were averaged and these are the values which are used. Again, because of the regularity of spacing of lines on the circular charts, only a few of the values were used to plot the necessary curves for the tension tests.

For the compression members, however, it was necessary to use all of the values to plot the necessary curves.
III PRESENTATION AND DISCUSSION OF RESULTS

In all of the experimental work in this investigation all of the strains or stresses in the test members were within the elastic range of the material used. Thus, the results obtained are equally applicable to any other structural material within its elastic range.

The sign convention for stresses and strains is plus for tension and minus for compression.

A. Behavior of Members in Tower.

The specific behavior of a member, which is an element of a complete structure, is usually influenced by so many factors that the interpretation of the exact action does not lend itself to a rigorous mathematical analysis. However, as the influence of these factors becomes clarified, theory based on sounder assumptions can be developed for the design of such a member.

For the single-angle members in this trussed structure three of the more important basic factors considered are secondary bending, end conditions and elastic curvature. All three of these factors are directly affected by the type and efficiency of the end-connections, and the general framing of the structure. Irregularities resulting from rolling and fabricating these members are not considered because they appeared to be negligible.
1. Primary strains.

In the tower the longitudinal loads which are applied to each end of a test member through the gusset plates are eccentric to the axis of the angle. The eccentricities at the ends of a member would be practically equal both in magnitude and direction. The differences would be caused by the various shapes and connections of the gusset plates at the two ends of the member as shown in Figures 3, 4 and 5. Each of these eccentric loads can be resolved into an axial load at the centroid, and a bending moment about an axis through the centroid of the angle. The bending moments at the two ends would be approximately equal, but opposite in direction.

The longitudinal strains, for a particular gage line along the length of a member, produced by the axial loads would be constant from end to end of the member. Those resulting from the end moments would be practically constant from end to end. In addition there would be strains resulting from the elastic curvature of the axis of the member caused by the eccentricities. These strains would vary from zero at each end to a maximum near the center of the member. The combination of these three strain components will be referred to as primary strains. A curve representing these primary longitudinal strains for a
particular gage line would be approximately symmetrical about the center-line of the member, as illustrated in Figure 10a.
Figure 10. Typical Longitudinal Primary and Secondary Strain Curves.
2. Secondary strains.

When the tower distorts as loads are applied the resistance to rotation of the joints will produce additional bending in a member as a result of the relative displacement and rotation of its ends. The resulting bending moments at the two ends may be either in the same direction or in opposite directions. This bending and the resulting strains will be referred to as secondary bending and secondary strains.

Typical longitudinal secondary strain curves for one gage line for each of the two possible conditions are shown in Figure 10b and 10c. When the secondary end moments are in the same direction the combined strain curve for primary and secondary strains is as shown in Figure 10d. The effect of this type of secondary bending is to rotate the primary strain curve as shown in Figure 10d. When the secondary end moments are in the opposite direction the combined strain curve for primary and secondary strains is as shown in Figure 10e. The effect of this type of secondary bending is to translate the primary curve as shown in Figure 10e.

Thus, it is possible to identify the type of secondary bending in a tower member by the orientation of its strain curves for various gage lines along the member.
The longitudinal strain curves for gage lines I, II, III and IV for the tower test member D4 in compression are shown in Figures 11 and 12. The curves for gage I appear to be symmetrical but if the plotted points at each end are ignored the remainder of each of these curves is rotated slightly. Gage line I is on the outer edge of the projecting leg of the angle and at the end of the member the strain readings would be very unreliable because of the transfer of load from the gusset plate to the angle. The curves for gage II are slightly rotated, while those for III and IV are rotated considerably. The rotation of all four of these curves indicates the presence in the tower data for member D4 in compression of secondary bending produced by end moments in the same direction. Similar curves for D4 in tension, and D5 and D7 in compression and tension appear in Figures A1 to A10 inclusive in Appendix A. All of these curves are rotated similar to those for D4 in compression. Therefore, these are secondary strains of the type produced by end moments in the same direction in all of the tower test data. These secondary strains are zero near the center of the member and maximum at the ends. Consideration of these secondary strains must be given whenever the strain data for the tower tests are used.

Templin, Hartmann and Hill (5, p.37) had the same type
Figure 11. Member D4-CT, Longitudinal Strain Curves for Gage Lines I and II.
Figure 12. Member D4-CT, Longitudinal Strain Curves for Gage Lines III and IV.
of stress or strain distribution in all of their single-angle web members as occurred in the tower indicating the presence of the same type of secondary bending in their trusses as in the tower.

In the design of truss members the additional stresses produced by the secondary bending are usually not considered unless they increase the critical primary stresses a stipulated amount. The AASHTO specification (1, p.167) includes the following statement concerning secondary stresses:

The design and details shall be such that secondary stresses will be as small as practicable. Secondary stresses due to truss distortion or floor-beam deflection usually need not be considered in any member the width of which, measured parallel to the plane of distortion, is less than one-tenth of its length. If this secondary stress exceeds 4000 pounds per square inch for tension members and 3000 pounds for compression members the excess shall be treated as a primary stress.

In the AASHTO specification the permissible unit stresses for structural carbon steel (1, p.145) to employ in the design of tension, compression and flexural members are governed by a base unit stress of 18,000 psi.
3. End conditions.

The ends of each test member in the tower are firmly connected to gusset plates which are also firmly connected to the other members framing into each of the joints. The effectiveness of these joints to resist rotation of the ends of the gusset plates is influenced by so many factors that the determination of the exact resistance does not lend itself to a rigorous mathematical analysis.

A reliable indication of this resistance, which will be referred to as the end condition, can be determined by a comparison of the strain data for a member in the tower with the corresponding strain data for the same member in the testing machine. The machine tests, in which various controlled end conditions were used, will serve as standards.

Since secondary bending exists only in the tower, and not in the machine, the tower data used for this comparison should not include any secondary strains. Since these secondary strains are a minimum near the center of the member strain data will be used for the four gages located on the center cross-section of the member. For each of the members these gages are numbered 23, 24, 25 and 26 as shown in Figure 6.

The first member for which the results are to be compared is D4 in compression, and Figures 13, 14, 15 and 16
Figure 13. Member D4 in Compression, Load-Strain Curves for Gage 23.
Figure 14. Member D4 in Compression, Load-Strain Curves for Gage 24.
Figure 15. Member D4 in Compression, Load-Strain Curves for Gage 25.
Figure 16. Member D4 in Compression, Load-Strain Curves for Gage 26.
are the load-strain curves for this member. The curves marked CT are those for the tower test while all of the other curves are for the machine tests. Table 1 indicates the end conditions represented by the markings on these curves.

In all four of these figures it is apparent that the end conditions C2, C2A, C2B, C4, C4A and C4B cannot represent the end condition in the tower. The last point on each of these curves indicates the maximum increment of load the member would support in the machine. These maximum loads are far below those applied to the member in the tower as indicated by the CT curves. These tower loads caused no apparent distress in the member.

For gages 23 and 25 the curves for C1 and C3 are very close together, also C1A and C3A are close. In each case the CT curve lies between the two pairs C1, C3 and C1A, C3A. Therefore, the strain data for gages 23 and 25 indicates that the end conditions in the tower are between the pairs of conditions C1, C3 and C1A, C3A in the machine, but no differentiation can be made between them. For gages 24 and 26, however, the C1, C1A, C3 and C3A curves are distinctly different, and serve to identify further the end conditions in the tower. For gage 24 the CT curve lies between C1A and C3A, but closer to C1A. For gage 26 the CT curve lies between the C1 and C1A curves and quite removed from both C2 and C3A.
<table>
<thead>
<tr>
<th>Mark Gusset Plates</th>
<th>End Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Members</td>
<td></td>
</tr>
<tr>
<td>C1 1/8" Aluminum</td>
<td>Rigid Fixed</td>
</tr>
<tr>
<td>C1A 1/3" Steel</td>
<td></td>
</tr>
<tr>
<td>C1B 1/4" Steel</td>
<td></td>
</tr>
<tr>
<td>C2 1/8" Aluminum</td>
<td>Hinge parallel to gussets</td>
</tr>
<tr>
<td>C2A 1/3" Steel</td>
<td></td>
</tr>
<tr>
<td>C2B 1/4" Steel</td>
<td></td>
</tr>
<tr>
<td>C3 1/8" Aluminum</td>
<td>Hinge normal to gussets</td>
</tr>
<tr>
<td>C3A 1/3" Steel</td>
<td></td>
</tr>
<tr>
<td>C3B 1/4" Steel</td>
<td></td>
</tr>
<tr>
<td>C4 1/8" Aluminum</td>
<td>Hinges parallel and normal to gussets</td>
</tr>
<tr>
<td>C4A 1/3" Steel</td>
<td></td>
</tr>
<tr>
<td>C4B 1/4" Steel</td>
<td></td>
</tr>
<tr>
<td>Tension Members</td>
<td></td>
</tr>
<tr>
<td>T1 1/8" Aluminum</td>
<td>Rigid Fixed</td>
</tr>
<tr>
<td>T1A 1/3" Steel</td>
<td></td>
</tr>
<tr>
<td>T1B 1/4" Steel</td>
<td></td>
</tr>
<tr>
<td>T2 1/8" Aluminum</td>
<td>Hinge parallel to gussets</td>
</tr>
<tr>
<td>T2A 1/3" Steel</td>
<td></td>
</tr>
<tr>
<td>T2B 1/4" Steel</td>
<td></td>
</tr>
<tr>
<td>T3 1/8" Aluminum</td>
<td>Hinge normal to gussets</td>
</tr>
<tr>
<td>T3A 1/3" Steel</td>
<td></td>
</tr>
<tr>
<td>T3B 1/4" Steel</td>
<td></td>
</tr>
<tr>
<td>T4 1/8" Aluminum</td>
<td>Hinges parallel and normal to gussets</td>
</tr>
<tr>
<td>T4A 1/3" Steel</td>
<td></td>
</tr>
<tr>
<td>T4B 1/4" Steel</td>
<td></td>
</tr>
</tbody>
</table>
It would appear that the end condition for this member in the tower might be either C1, C1A, C3 or C3A, but for the gages where C3 and C3A are not close to C1 or C1A the GT curve lies closer to the curves C1 and C1A than to the curves C3 and C3A. Therefore, the end condition in the tower for the member D4 in compression is between C1 and C1A. Both of these conditions are rigid fixed. The only difference between them is the gusset plates used.

For the same member D4 in tension the curves for the same four gages appear in Figures 17, 18, 19 and 20. The curves marked TT are those for the tower test, while all of the other curves are for the machine tests. Table 1 indicates the end conditions represented by the markings on these curves.

The tension end conditions T2, T2A, T2B, T4, T4A and T4B are the same as the corresponding compression end conditions C2, C2A, C2B, C4, C4A and C4B. Since the compression results indicate that such end conditions do not occur in the tower, it is reasonable to arrive at the same conclusion for the corresponding tension end condition. On the basis of this conclusion the curves representing these conditions have been omitted in Figures 17, 18, 19 and 20.

For gage 23 the TT curve is closer to T1 than to any of the other curves, but T3 is not very far from it. For
Figure 17. Member D4 in Tension, Load-Strain Curves for Gage 23.
Figure 18. Member D4 in Tension, Load-Strain Curves for Gage 24.
Figure 19. Member D4 in Tension, Load-Strain Curves for Gage 25.
Figure 20. Member D4 in Tension, Load-Strain Curves for Gage 25.
gage 24 the TT curve is between T1 and T3, but closer to T3. For gage 25 the TT curve is close to both T1 and T3, which are nearly the same. For gage 26 the TT curve is closest to T1, but T3 is not very far from it. Therefore, the end condition in the tower for member D4 in tension approaches both end conditions T1 and T3 in the machine. Condition T1 is rigid fixed, while T3 is hinged on an axis normal to the plane of the gusset plates and rigid fixed normal to the hinge.

Similar curves for members D5 and D7 in compression and tension appear in Figure A1 to A26 inclusive. For both of these members only the conditions C1, C2, C3, C4, T1, T2, T3 and T4 were tested. These curves indicate that the end condition in the tower for D5 in compression approaches both C1 and C3, and for D5 in tension the end condition approaches T1 and T3. For the member D7 in compression the end condition approaches C1, and for D7 in tension the end condition approaches T1 and T3.

For all three of the members both in tension and compression the end conditions in the tower approach one of the conditions C1, C1A, or T1 all of which are rigid fixed. In addition, the end conditions of all of the tension members and one of the compression members also approach the conditions C3 or T3, which are hinged normal to the plane of the gusset plates. In every case where the tower curves CT and TT are
close to both C1 and C3 or T1 and T3 these pairs of machine curves were close together. On the other hand, whenever the C1 and C5 or the T1 and T3 curves were not close together the tower curves were close to the C1 or T1 curves only.

Therefore, it may be concluded that the ends of the gusset plates attached to the structure approach the rigid fixed condition.
4. Elastic curvature.

The test members in the tower are loaded at each end with an axial load and a bending moment as previously discussed. Each bending moment may be resolved into two component bending moments, one about the x-axis and the other about the y-axis of the angle section, shown in Figure 21.

The member would bend about both the x-axis and the y-axis producing an elastic curve whose deflection at any point would have both x and y components. The magnitudes of these deflection components are influenced by the restraint offered by the gusset plates to which the ends of the member are joined.

The longitudinal strain curves for gage lines III and IV for the tower test member D4 in compression and tension appear in Figures 12 and A2. In each case strain curves for three different loads are given. For each loading the two curves cross each other near the center of the member and diverge toward each end. For the tension member these points of intersection are either at or very close to the center of the member, but for the compression member they are definitely toward one end of the member. The divergence of each pair of curves has been attributed to the secondary bending present in the member.
Figure 21. Cross-Section and Section Properties of Test Members.
For the tension member, if there was no secondary bending the primary curves for gage lines III and IV would be practically the same. However, for the compression member, if there was no secondary bending the primary curves for the two gage lines would be of entirely different shapes. The primary curve for gage line IV would approach a straight line while the curve for gage line III would have a very definite curvature. This lack of curvature for gage line IV might be explained as follows. Gage line IV is near the unsupported edge of the long leg of the angle and is in compression. This unsupported edge is waving or buckling slightly and relieving itself of some of the load. If the strain curves for each of the gage lines IV were ideally curved similar to those for gage line III the points of intersection of these pairs of curves would be closer to the center of the member than they are now.

Similar longitudinal strain curves for gage lines III and IV for the tower test members D5 and D7 in compression and tension appear in Figures A4, A6, A8 and A10, in Appendix A. These curves are all similar to the corresponding curves for the member D4.

It is indicated by the above observations that the primary bending of the angle member about its x-axis is negligible. If there was no bending about the x-axis of the angle then the primary strains along gage lines III and
and IV would be equal at every cross-section. However, when the secondary strains are added to these primary strains there would be only one cross-section near the center of the member when the two combined strains would be equal. Since the curves for all of the tower tests indicate such a condition it can be assumed that all of the bending of the angle member is about its y-axis.

Betho's (4, p. 145) strain curves for the center cross-section of the single-angle tension members in the testing machine indicate practically a constant strain across the attached leg. Templin, Hartmann and Hill's unit stress distribution curves (5, p. 37) for the single-angle members in a truss indicate a point near the center of each member where the unit stress would be constant across the attached leg. Both of these results would indicate in a way similar to that of this study that practically no primary bending exists about an axis normal to the plane of the gusset plates. In both of these cases the angles used were equal leg angles indicating that the type of bending observed in this study does not depend on a particular type of angle.
B. Compression Members in Tower.

Having established some of the basic factors affecting the behavior of the compression members in the tower it is possible to develop a practical method of design for such members.

1. Development of theory.

On the basis of previously observed data defining the behavior of the test members in the tower a theoretical analysis will be made for the type of compression members tested in this investigation. This analysis will be based on two assumptions resulting from these observations. The first is that the ends of the gusset plates joined to the structure are rigid fixed, and the second is that no bending of the member occurs about the axis of the member normal to the plane of the gusset plates.

In addition it is assumed that the member is symmetrical about its center-line and that the bolted connections of the gusset plates to the member are rigid and located at the centroid of the bolt pattern. Also included are all of the usual assumptions made in the development of the basic theory used. Figure 22 shows the assumed member as a free-body diagram and its elastic curve with the necessary notation.
Figure 22. Typical Compression Member
For small deflections the differential equation for the beam is:

\[EI \frac{d^2y}{dx^2} = M \] \hspace{1cm} (1)

The general expressions for bending moment are:

\[M_1 = Mc - Py_1, \text{ for } x = 0 \text{ to } l_1 \] \hspace{1cm} (2)

\[M_2 = Mc - P(y_2 + e), \text{ for } x = l_1 \text{ to } l_2 \] \hspace{1cm} (3)

Substituting (2) into equation (1) yields the differential equation:

\[\frac{d^2y_1}{dx^2} + k_1^2y_1 = q_1 \] \hspace{1cm} (4)

where \(k_1^2 = \frac{P}{EI_1} \) and \(q_1 = \frac{Mc}{EI_1} \)

The general solution of equation (4) is:

\[y_1 = C_1 \cos k_1x + C_2 \sin k_1x + \frac{Mc}{P} \] \hspace{1cm} (5)

Substituting (3) into equation (1) yields the differential equation:

\[\frac{d^2y_2}{dx^2} + k_2^2y_2 = q_2 - k_2^2e \] \hspace{1cm} (6)

where \(k_2^2 = \frac{P}{EI_2} \) and \(q_2 = \frac{Mc}{EI_2} \)

The general solution of equation (6) is:

\[y_2 = C_3 \cos k_2x + C_4 \sin k_2x + \frac{Mc}{P} - e \] \hspace{1cm} (7)
The boundary conditions for the member are:

(I) \(y_1 = 0 \) when \(x = 0 \)

(II) \(\frac{dy_1}{dx} = 0 \) when \(x = 0 \)

(III) \(y_1 = y_2 \) when \(x = l_1 \)

(IV) \(\frac{dy_1}{dx} = \frac{dy_2}{dx} \) when \(x = l_1 \)

(V) \(\frac{dy_2}{dx} = 0 \) when \(x = l_2 \)

Applying boundary conditions (I) and (II) to equation (5) yields:

\[
y_1 = \frac{M_c}{D} (1 - \cos k_1 x)
\]

Applying boundary conditions (III), (IV), and (V) to equation (7) yields:

\[
y_2 = A \cos k_2 x + B \sin k_2 x + \frac{M_c}{D} - e
\]

where:

\[
A = \frac{k_1 M_c \sin k_1 l_1}{k_2 P \tan k_2 l_2 \left(\cos k_2 l_1 - \frac{\sin k_2 l_1}{\tan k_2 l_2} \right)}
\]

and:

\[
B = \frac{k_1 M_c \sin k_1 l_1}{k_2 P \left(\cos k_2 l_1 - \frac{\sin k_2 l_1}{\tan k_2 l_2} \right)}
\]
Equating equations (8) and (9) results in the following equation for the bending moment at the center-line of the member:

$$M_0 = \frac{P_e}{k_2} \left[\frac{\sin k_1 l_1 \cos k_2 l_1}{\tan k_2 l_2 (\cos k_2 l_1 - \frac{\sin k_2 l_1}{\tan k_2 l_2})} \right] + \frac{\sin k_1 l_1 \sin k_2 l_1}{\cos k_2 l_1 - \frac{\sin k_2 l_1}{\tan k_2 l_2}} + \cos k_1 l_1$$

(10)
For a particular member the bending moment at any section can be computed by substituting equation (10) in equation (2) or (3). The deflection of the member can be computed at any point by substituting equation (10) in equation (8) or (9).
2. **Comparison of derived theory with results observed in testing machine.**

To verify equation (10) experimentally the results of the machine tests C1 for the members will be used. Machine tests are used in preference to tower tests for three reasons:

1. Secondary bending does not develop and this bending was not considered in the development of equation (10).

2. The members and their end connections are symmetrical while in the tower the gusset plates at each end of a member are not identical.

3. The effective lengths and moments of inertia of the gusset plates are defined while in the tower they are practically indeterminate.

The machine condition C1 is used because its controlled conditions closely satisfy the assumptions on which equation (10) is based, and data are available for all three of the test members.

To compare the computed results from equation (10) with the observed data from condition C1 for each of the members, longitudinal strain curves for the four gage lines I, II, III and IV are used, and these curves appear in Figures 23, 24 and 25. The data for the curves representing equation (10) were computed on the basis of the modulus of elasticity of the
Figure 23. Member D4 in Compression, Comparison of Equation (10) with Condition C1 for Load of 731 lb.
Equation (10)

Experimental

Gage Lines

Distance, Inches

Strain, Micro-Inches per Inch

Figure 24: Member D5 in Compression, Comparison of Equation (10) with Condition C1 for Load of 449 lb.
Figure 25. Member D7 in Compression, Comparison of Equation (10) with Condition C1 for Load of 632 lb.
material in the test members as determined in Appendix C.

An examination of the curves plotted for the derived equation (10) show very close agreement with those plotted from the data obtained on tests with single-angle members in the testing machine. Therefore, the derived equation (10) is verified for the controlled conditions of this portion of the investigation.
3. **Effective length of members.**

The compression member used in this investigation has two inflection points as indicated by the general shape of its elastic curve, shown in Figure 22. The length of the member between these inflection points is called the effective length. If this effective length can be established then the analysis of the compression member can be simplified. The member can be considered as a hinged end compression member of a length equal to this effective length.
At an inflection point the bending moment is zero and therefore from equation (1), at that point:

\[
\frac{d^2y}{dx^2} = 0
\]

(11)

If the inflection point is between C and B in Figure 22 then \(x \) is between zero and \(L \), and equation (8) can be used. Then equation (11) becomes:

\[
\frac{d^2y_1}{dx^2} = 0
\]

(12)

Differentiating equation (8) twice and substituting in equation (12) gives:

\[
\frac{d^2y_1}{dx^2} = \frac{M_c}{P} k_1^2 \cos k_1 x = 0
\]

(13)

Since \(M_c \) and \(k_1 \) can be zero only when \(P \) is zero, then:

\[
\cos k_1 x = 0
\]

(14)

Equation (14) will be satisfied when:

\[
k_1 x = \frac{n \pi}{2}
\]

(15)

where \(n = 1, 3, 5 \cdots \) Then from equation (15):

\[
x = \frac{n \pi}{2k_1}
\]

(16)

and substituting for \(k_1 \), its value \(\sqrt{\frac{P}{EI_1}} \) gives:

\[
x_e = \frac{n \pi}{2} \sqrt{\frac{EI_1}{P}}
\]

(17)
where x_e is one-half of the effective length of the member. Then from equation (17):

$$P = \frac{n^2 \pi^2 EI}{4x_e^2}$$ \hspace{1cm} (18)

where $n = 1, 3, 5 \cdots$.

Equation (18) is identical in form to the Euler equation for the critical load on a concentrically loaded strut with hinged ends where X_e is one-half the length of the strut. The load P is inversely proportional to X_e and, therefore, the smallest load producing general buckling of the member from A to B (Figure 22) as a unit results when $n = 1$ and $X_e = l_1$. If the load P is less than this critical load then X_e is greater than l_1. Therefore, the inflection point cannot be between B and C unless the load on the member BC is greater than its critical load of the least magnitude.

In Figure 22 the section of the member from A to B is identical in form to the section from B to C, and similarly the inflection point cannot be at any point between A and B unless the load on the member AB is greater than its critical load of the least magnitude.

Then, if neither the angle member BC nor the gusset plate AB is loaded beyond its respective critical loads the inflection point must lie in the eccentric connection at B between the centroid of the angle and the center of the gusset plate. Therefore, the effective length of the compression member is the distance between the centroids of the bolted connections between the gusset plates and the angle member, providing neither the angle member nor the gusset plates are loaded beyond their critical loads of the least magnitude.

Equation (10), which was developed for compression members of the type tested in this investigation, is of value for theoretical investigations, determination of limits and development of practical methods of design. However, it is of very little direct value to the practical designer.

The equation is so involved and its application so time consuming that the practical designer would not bother to use it. In addition, it is necessary to know, or assume, the effective length and the moment of inertia of the gusset plate at each end of the member. These factors are indeterminate and even difficult to assume for gusset plates such as those on the test members in the tower (Figures 3, 4 and 5). Also, the effective stiffness of such a gusset plate changes as the load is applied to the structure. A gusset plate at the end of a compression member also has other members connected to it. Tension members will increase, while other compression members will decrease the effective stiffness of the gusset plate as the load on each of these members is increased.

Therefore, it is highly desirable to develop a method of design which can be readily applied by the designer to his practical problems. Such a method will be developed on the basis of additional simplifying assumptions based on the
theoretical and experimental results of this investigation.

The design of compression members subjected to direct and bending loads necessitates the use of a trial and error procedure where a member is selected and then checked to see whether it can safely support the design load. The maximum theoretical load for such a member is limited either by the critical load, based on general buckling of the member as a unit, or by a controlling unit stress at some point. This controlling unit stress may be based on any of the following: a) the yield strength of the material; b) the lateral buckling of the member; and, c) the localized failure where a relatively small element of a member fails due to compression or buckling. The maximum theoretical load is reduced to determine the safe working load for the member. To accomplish this reduction a factor of safety is applied on the basis of prevailing conditions to be satisfied by the compression member.

To determine the critical load the angle member can be assumed to be a concentrically loaded hinged end strut of a length equal to its effective length. The effective length has been established in this study as the distance between the centroids of the two connections of the angle and the gusset plates. On the basis of this assumption the critical load can be determined with Euler's well known formula for such a member.
As previously determined herein, the two inflection points for this member are located in the connections between the centroid of the angle and the centers of the gusset plates. Therefore, if these points could be definitely located the angle member could be considered as an eccentrically loaded hinged end compression member. The length of the member would be the effective length and the eccentricities would be the distance from the centroid of the angle to the points of inflection.

The position of these points can be determined with equations (8) and (10). An examination of these equations, however, shows that the location is a function of the following: P, e, l_1, l_2, I_1, I_2, E_1 and E_2. Therefore, the inflection point is not fixed in position even for a particular member, but moves across the connection as the load varies. When the load on the member equals the critical load of either the angle or the gusset plate the point of inflection will be at the end of the connection joined to the critical element. Therefore, for a member which is not loaded beyond the critical load of either of its elements, the limits on the position of the inflection point are the centroid of the angle and the center of the gusset plates. In the design of such a member a factor of safety would be applied so that the design load on the member would not even
approach the critical load. Then, for a member subjected to design loads, the maximum distance the point of inflection can be from the centroid of the angle is less than the distance to the center of the gusset plates.

On the basis of the foregoing discussion, it can be conservatively assumed that the inflection points are at the center of the gusset plates, and the eccentricity at each end of the member is equal to the distance from the center of the gusset plate to the centroid of the angle. For this assumed member the stresses can be computed by the use of several available formulas for eccentrically loaded compression members, the best known of which is the secant formula.

A comparison of the computed strains, based on the foregoing assumptions and the secant formula, with the observed strains for the member D4 in compression in the testing machine, condition C1, and in the tower are shown in Figures 26 and 27. Similar curves for the members D5 and D7 appear in Figures A27 to A30 inclusive in Appendix A. In all cases the results of the secant formula are conservative in comparison with the observed results. This reserve strength becomes available to compensate for the uncertainties in determining the magnitude of the loads and the effects of rolling and fabricating the members.
Figure 26. Member D4 in Compression, Comparison of Secant Formula and Condition C1 for Load of 731 lb.

Strain, Micro-Inches per Inch.
Strain, Micro-Inches per Inch

Figure 27. Member D4 in Compression, Comparison of Secant Formula with Condition CT for Load of 751 lb.
C. Tension Members in Tower.

Having established some of the basic factors affecting the behavior of the tension members in the tower it is possible to develop a practical method of design for such members.

1. Development of theory.

On the basis of the observed data defining the behavior of the test members in the tower a theoretical analysis will be made for the type of tension member tested in this investigation. This analysis will be based on the same assumptions as those previously made for the analysis of the compression members. Figure 28 shows the assumed member and its elastic curve with the necessary notation.
Figure 28. Typical Tension Member.
For small deflections the differential equation for the beam is:

$$EI \frac{d^2y}{dx^2} = M$$ \hspace{1cm} (19)

The general expressions for bending moments are:

$$M_1 = M_c + Py_1, \text{ for } x = 0 \text{ to } l_1 \hspace{1cm} (20)$$
$$M_2 = M_c + P(e-y_1), \text{ for } x = l_1 \text{ to } l_2 \hspace{1cm} (21)$$

Substituting (20) into equation (19) yields the differential equation:

$$\frac{d^2y_1}{dx^2} - k_1^2 y_1 = g_1$$ \hspace{1cm} (22)

where $$k_1^2 = \frac{P}{E I_1}$$ and $$g_1 = \frac{M_c}{E I_1}$$.

The general solution of equation (22) is:

$$y_1 = C_1 \cosh k_1 x + C_2 \sinh k_1 x - \frac{M_c}{P}$$ \hspace{1cm} (23)

Substituting (21) into equation (19) yields the differential equation:

$$\frac{d^2y_2}{dx^2} - k_2^2 y_2 = g_2 - k_2^2 e$$ \hspace{1cm} (24)

where $$k_2^2 = \frac{P}{E I_2}$$ and $$g_2 = \frac{M_c}{E I_2}$$.

The general solution of equation (24) is:

$$y_2 = C_3 \cosh k_2 x + C_4 \sinh k_2 x - \frac{M_c}{P} + e$$ \hspace{1cm} (25)
The boundary conditions for the members are:

(I) \(y_1 = 0 \) when \(x = 0 \)

(II) \(\frac{dy_1}{dx} = 0 \) when \(x = 0 \)

(III) \(y_1 = y_2 \) when \(x = l_1 \)

(IV) \(\frac{dy_1}{dx} = \frac{dy_2}{dx} \) when \(x = l_1 \)

(V) \(\frac{dy_2}{dx} = 0 \) when \(x = l_2 \)

Applying boundary conditions (I) and (II) to equation (23) yields:

\[
y_1 = \frac{M_c}{P} (\cosh k_1 x - 1) \quad (26)
\]

Applying boundary conditions (III), (IV), and (V) to equation (25) yields:

\[
y_2 = C \cosh k_2 x + D \sinh k_2 x - \frac{M_c}{P} + e \quad (27)
\]

where:

\[
C = \frac{k_1 M_c \sinh k_1 l_1}{k_2 P \tanh k_2 l_2 \left(\frac{\sinh k_2 l_1}{\tanh k_2 l_2} - \cosh k_2 l_1 \right)}
\]

and:

\[
D = -\frac{k_1 M_c \sinh k_1 l_1}{k_2 P \left(\frac{\sinh k_2 l_1}{\tanh k_2 l_2} - \cosh k_2 l_1 \right)}
\]
Equating equations (26) and (27) results in the following equation for the bending moment at the center-line of the member:

\[
M_c = \frac{Pe}{k_1 \left[\frac{\sinh k_1 \xi \sinh k_2 l_1}{\cosh k_1 \xi - \cosh k_2 l_1} \right] + \cosh k_2 l_1 - \frac{\sinh k_1 \xi \cosh k_2 l_1}{\tanh k_2 l_2 \left(\frac{\sinh k_1 \xi}{\tanh k_2 l_2} - \cosh k_2 l_1 \right)}}
\]
For a particular member the bending moment at any section can be computed by substituting equation (23) in equation (20) or (21). The deflection of the member can be computed at any point along the length of the member by substituting equation (26) in equation (26) or (27).
2. **Comparison of derived theory with results observed in testing machine.**

To verify equation (28) experimentally the results of the machine tests T1 for the members will be used. Machine tests are again used for the same reasons similar tests were used for the compression members. The machine condition T1 is used because its controlled conditions closely satisfy the assumptions on which equation (28) is based, and data are available for all three of the test members.

To compare the computed results from equation (28) with the observed data from condition T1 for each of the members, longitudinal strain curves for the four gage lines I, II, III and IV are used, and these curves appear in Figures 29, 30 and 31. The data for the curves representing equation (28) were computed on the basis of the modulus of elasticity of the material in the test members as determined in Appendix C.
Figure 29. Member D4 in Tension, Comparison of Equation (28) and Condition T1 for Load of 676 lb.
Figure 80. Member B5 in Tension, Comparison of Equation (28) and Condition T1 for Load of 550 lb.
Figure 51. Member D7 in Tension, Comparison of Equation (28) and Condition T1 for Load of 544 lb.
3. **Effective length of members.**

The tension member used in this investigation has two inflection points as indicated by the general shape of its elastic curve, shown in Figure 28. The length of the member between these inflection points is called the effective length. If this effective length can be established then the analysis of the tension member can be simplified. The member can be considered as a hinged end tension member of a length equal to this effective length.
At an inflection point the bending moment is zero and therefore from equation (19), at that point:

\[
\frac{d^2y}{dx^2} = 0 \tag{29}
\]

If the inflection point is between C and B in Figure 28 then \(x\) is between zero and \(L\), and equation (29) becomes:

\[
\frac{d^2y_1}{dx^2} = 0 \tag{30}
\]

Differentiating equation (26) twice and substituting in equation (30) gives:

\[
\frac{d^2y_1}{dx^2} = \frac{Mc}{P} k_i \cosh k_i x = 0 \tag{31}
\]

Since \(Mc\) and \(k_i\) can be zero only when \(P\) is zero, and since \(\cosh k_i x\) cannot be less than one, this condition cannot exist. Therefore, the inflection point cannot be between B and C of the member.
In Figure 28 the section of the member from A to B is identical in form to the section from B to C, and similarly the inflection point cannot be at any point between A and B. Then, the inflection point must lie in the eccentric connection at B between the centroid of the angle and the center of the gusset plate. Therefore, the effective length of the tension member is the distance between the centroids of the bolted connections between the gusset plates and the angle member.

Equation (28), which was developed for tension members of the type tested in this investigation, is of value for theoretical investigations, determination of limits and development of practical methods of design. However, it is of very little direct value to the practical designer. Its use involves the same difficulties discussed for equation (10) for the compression member.

Therefore, it is highly desirable to develop a method of design which can be readily applied by the designer to his practical problems. Such a method will be developed on the basis of additional simplifying assumptions based on the theoretical and experimental results of this investigation.

The design of tension members subjected to direct and bending loads necessitates the use of a trial and error procedure where a member is selected and then checked to see whether it can safely support the design load. The maximum theoretical load for such a member is limited by a controlling unit stress. This controlling unit stress may be based on one of the following: a) the yield strength of the material; and, b) the localized failure where a relatively small element of a member fails due to compression or buckling. The
maximum theoretical load is reduced to determine the safe working load for the member. To accomplish this reduction a factor of safety is applied on the basis of prevailing conditions to be satisfied by the tension member.

As previously determined herein, the two inflection points for this member are located in the connections between the centroid of the angle and the centers of the gusset plates regardless of the magnitude of the load. Therefore, if these points could be definitely located the angle member could be considered as an eccentrically loaded hinged end tension member. The length of the member would be the effective length and the eccentricity would be the distance from the centroid of the angle to points of inflection.

The position of these points can be determined with equations (26) and (26). An examination of these equations, however, shows that the location is a function of the following: \(P \), \(e \), \(l_1 \), \(l_2 \), \(I_1 \), \(I_2 \), \(E_1 \) and \(E_2 \). Therefore, the inflection point is not fixed in position even for a particular member, but moves across the connection as the load varies.

On the basis of the foregoing discussion the maximum distance the inflection point can be from the centroid of the angle is the distance to the center of the gusset plates.
Then, it can be conservatively assumed that the inflection points are at the centers of the gusset plates, and the eccentricity at each end of the member is equal to the distance from the center of the gusset plate to the centroid of the angle.

For the tension member the maximum primary stresses will occur near the end of the member because the bending moment will be a maximum there. The bending moment will decrease toward a minimum at the center of the member because of the curvature of the member. Thus, the maximum stresses can be conservatively computed by the use of the familiar relationship $P/A \pm M_c/I$, where $M = P e$ and e is the distance from the centroid of the angle to the center of the gusset plates.

A comparison of the computed strains, based on the foregoing assumptions, with the observed strains for the member D4 in tension in the machine, condition T1, and in the tower are shown in Figures 32 and 33. Similar curves for the members D5 and D7 appear in Figures A31 to A34 inclusive in Appendix A. In all cases the results of $P/A \pm M_c/I$ are conservative in comparison with the observed results. This reserve strength becomes available to compensate for the uncertainties in determining the magnitude of the loads and the effects of rolling and fabricating the members.
Figure 32. Member E4 in Tension, Comparison of $P/A \pm M_c/I$ and Condition T1 for Load of 676 lb.
Figure 33. Member D4 in Tension, Comparison of P/A ± Mc/I and Condition TT for Load of 676 lb.
D. Evaluation of Results.

The value of the results of this investigation lies in the information concerning the observed behavior of one type of single-angle compression and tension members in an aluminum space-frame tower. The three most important factors of behavior of these members to the designer are the effective length, the direction of bending and the limits within which the eccentricity varies. The observed results for each of these factors and their applications in the design of compression and tension members have been previously discussed and compared with observed results. For compression members this discussion is in III-B-4 and for tension members in III-C-4 of this dissertation.

All of the results of this study were determined for an aluminum structure, but since all of the stresses were within the elastic range of the material the results can be applied to any structural material within its elastic range.

The results of this investigation are based on the observations of the behavior of unequal leg angle members attached by the longer leg in a space-frame tower. Therefore, these results are applicable only to this type of member in this type of structure and additional investigations of other types of members and trussed structures are necessary before any general application of such results can be made.
1. Compression members.

A commonly accepted method of designing a single-angle compression member for a trussed structure is to consider the member as a concentrically loaded column. In this method the unsupported length of the member is assumed to be the distance between the working points (intersections of gage lines) of the member assuming no end restraint. In some cases this length is reduced by an arbitrary amount to compensate for the end restraint. The member is assumed to bend about the axis having the least radius of gyration and the eccentricities of the loads are ignored. The permissible load for the member is determined on the basis of a permissible average unit stress computed with a column formula for concentrically loaded members. Such a method is obviously quite arbitrary and based on several questionable assumptions as evidenced by the results of this study.

Nearly all design specifications provide for the use of some rational method for the analysis of eccentrically loaded compression members. The application of any of these methods to a single-angle member in an actual structure requires the designer to assume for the member the effective length, direction of bending and the magnitudes of the eccentricities. The effective length and the direction of bending are usually assumed as in the previous method, while
the eccentricities might be assumed as any one of several distances. These distances might be from the centroid of the angle to the center of the gusset plate or the back of the angle, or any other distance the designer decides to use. It is evident that in order to use one of these rational methods the designer is required to make several decisions and there is little available information on which he can base these decisions. Therefore, he usually makes very obviously conservative assumptions or he uses an arbitrary method such as the one discussed previously in this section.

The results of this investigation furnish the information necessary for the designer to make reasonable assumptions of the effective length, direction of bending and magnitude of eccentricities for single-angle compression members in a space-frame tower. With these reasonable assumptions he can then use any one of the existing rational methods of analyzing and designing these members such as the secant formula as previously discussed in III-B-4.

For long flexible compression members as are commonly used in tower type structures the members must also be checked for general buckling of the members as a unit. Euler's well known formula for critical load is used and again the effective length and the direction of bending must be assumed. The assumptions usually made for these factors are the same.
as in the two previous methods of design. Again the results of this investigation will assist the designer in making more realistic assumptions of these factors as discussed previously in III-B-4.

2. Tension members.

The usual method of designing a single-angle tension member for a trussed structure is to determine the permissible load for the member. This permissible load is based on the effective area of the angle and a specified permissible average unit stress. The effective area is determined differently according to various specifications. The AASHO specifies the effective area as follows: (1, p. 169)

The effective area of a single angle tension member, or of each angle of a double tension member in which the angles are connected back to back on the same side of a gusset plate, shall be assumed as the net area of the connected leg plus one-half of the area of the unconnected leg.

The net area of the connected leg is the gross area minus the area of any bolt or rivet holes. The additional reduction in area of one-half of the unconnected leg is intended to compensate for the eccentricity of the loads on the member.

When designing under the AISC specification (2) the effective area of an angle is the gross area of the angle minus the area of any bolt or rivet holes in the attached
leg. No provision is made to compensate for the eccentricities of the loads.

This method of designing single-angle tension members in a trussed structure is very arbitrary. The results of this investigation provide the information necessary for the designer to make reasonable assumptions in regard to effective length, direction of bending and eccentricity, and to use a more rational method in the design of single-angle tension members in a space-frame tower. This type of design method and the necessary assumptions, based on the results of this study, have been previously discussed in III-C-4.
E. Suggestions for Future Study.

As a result of this investigation the following suggestions are made for future projects in this general area of trussed structures:

1. An extension of this project to include equal leg angles, unequal leg angles attached by the short leg and double-angles having various combinations of equal and unequal leg angles in various types of trussed structures.

2. An investigation of angle members continuous through panel points of various types of trussed structures.

3. An investigation similar to that recommended in items 1 and 2 but for other rolled sections.

4. An investigation similar to that recommended in items 1 and 2 but for built-up sections.

5. An experimental investigation of the elastic and inelastic buckling of members in trussed structures.

6. A detailed study of the strain distribution at the ends of members where they are connected to the gusset plates in a trussed structure.

7. A study of the behavior of members in trussed structures beyond the elastic range as related to limit design.

8. A study of the behavior of various shapes and arrangements of gusset plates in trussed structures.
IV. CONCLUSIONS

The following conclusions for primary elastic action result from the theoretical and experimental investigations presented herein and are considered applicable to the type of single-angle members tested and the trussed space-frame tower type of structure used in this investigation. All of these conclusions are based on loads which do not produce stresses beyond the elastic limit of the material. In addition, for compression members the loads do not exceed the critical loads for the angles or the gusset plates.

1. For the type of gusset plate used in this investigation the end of the plate attached to the structure closely approaches the rigid-fixed condition for bending about the axes in the plane of and perpendicular to the plane of the gusset plate.

2. Practically all of the bending of a tension or compression angle member throughout its length develops about the axis parallel to the plane of the gusset plates.

3. The points of inflection at the two ends of a compression or tension member, for bending about an axis parallel to the plane of the gusset plates, are located:
 a. Laterally, between the limits of the axes of bending of the angle and the gusset plates.
 b. Longitudinally, at the centroids of the bolt patterns at each end of the angle member.
4. The effective length of a compression or tension member is the distance between the points of inflection at the two ends of the member as herein determined.

5. When the effective length is established as stated in these conclusions, the rational formulas in present use for analyzing eccentrically loaded compression members yield results closely approximating those observed in this study.

6. When the effective length is established as stated in these conclusions, Euler's well known formula can be used to compute the critical load for the angle member.

7. When the limit of eccentricity, e, of the primary load is established as stated in these conclusions a tension member can be analyzed as an eccentrically loaded hinged-end member by using the expression \(P/A + M_e/I \) where \(M = P_e \).
V. LITERATURE CITED

VI. ACKNOWLEDGEMENTS

The writer wishes to express his appreciation to Frank Kerekes, Professor of Civil Engineering, who suggested this study, for his helpful advice, guidance and encouragement during the progress of this investigation. To the Engineering Experiment Station and Prof. G. R. Town, the Associate Director, for the use of equipment, supply of materials, fabrication of end fixtures and provision of student help throughout the investigation. To Dr. Glenn Murphy, Professor of Theoretical and Applied Mechanics, for his assistance and advice as well as cooperation in making available the laboratory facilities of the Theoretical and Applied Mechanics Department. Also to Professor L. O. Stewart, Head of the Civil Engineering Department, for furnishing the SR-4 strain gages.

He takes this opportunity also to express his gratitude to Professors D. L. Holl, A. H. Fuller and R. A. Caughey for the counsel they gave during the conduct of the project.
VII. APPENDICES

A. Appendix A: Additional Experimental Data.
Figure A1. Member D4OTT, Longitudinal Strain Curves for Gage Line I and II.
Figure A2. Member D4-TT, Longitudinal Strain Curves for Gage Lines III and IV.
Figure A3. Member D5-CT, Longitudinal Strain Curves for Gage Lines I and II.
Figure A4. Member D5-CT, Longitudinal Strain Curves for Gage Lines III and IV.
Figure A5. Member T5-T11, Longitudinal Strain Curves for Gage Lines I and II.
Strain, Micro-Inches per Inch

Figure A6. Member D5-TT, Longitudinal Strain Curves for Gage Lines III and IV.
Figure A7. Member M-CT, Longitudinal Strain Curves for Gage Lines I and II.
Figure A8. Member D7-CT, Longitudinal Strain Curves for Gage Lines III and IV.
Figure A9. Member D7-TT, Longitudinal Strain Curves for Gage Lines I and II.
Figure A10. Member D7-TT, Longitudinal Strain Curves for Gage Lines III and IV.
Figure A1. Member D5 in Compression, Load-Strain Curves for Gage 23.
Figure A12. Member D5 in Compression, Load-Strain Curves for Gage 24.
Figure A13. Member D6 in Compression, Load-Strain Curves for Gage 25.
Figure A14. Member D6 in Compression, Load-Strain Curves for Gage 26.
Figure A15. Member D5 in Tension, Load-Strain Curves for Gage 23.
Figure A16. Member D5 in Tension, Load-Strain Curves for Gage 24.
Figure A17. Member D5 in Tension, Load-Strain Curves for Gage 25.
Figure A18. Member D5 in Tension, Load-Strain Curves for Gage 26.
Figure A19. Member D7 in Compression, Load-Strain Curves for Gage 23.
Figure A20. Member D7 in Compression, Load-Strain Curves for Gage 24.
Figure A21. Member D7 in Compression, Load-Strain Curves for Gage 25.
Figure A22. Member D7 in Compression, Load-Strain Curves for Gage 26.
Figure A23. Member D7 in Tension, Load-Strain Curves for Gage 23.
Figure A24. Member D7 in Tension, Load-Strain Curves for Gage 24.
Figure A25. Member D7 in Tension, Load-Strain Curves for Gage 25.
Figure A26. Member D7 in Tension, Load-Strain Curves for Gage 26.
Figure A27. Member C5 in Compression, Comparison of Secant Formula and Condition CI for Load of 448 lb.
Figure A28. Member D7 in Compression, Comparison of Secant Formula and Condition Cl for Load of 532 lb.
Figure A29. Member D5 in Compression, Comparison of Secant Formula with Condition CT for Load of 449 lb.
Figure A50. Member D7 in Compression, Comparison of Secant Formula and Condition CT for Load of 138 lb.
Figure A31. Member D5 in Tension, Comparison of \(\frac{P}{A} \pm \frac{M}{I} \)
and Condition T1 for Load of 550 lb.
Figure A32. Member D7 in Tension, Comparison of P/A ± Mc/I and Condition T1 for Load of 544 lb.
Figure A33. Member D5 in Tension, Comparison of $P/A \pm Mc/I$ and Condition TT for Load of 550 lb.
Figure A34. Member D7 in Tension, Comparison of $P/A \pm Mc/I$ and Condition TT for Load of 544 lb.
B. Appendix B: Detail and Assembly Drawing of End Fixtures.
Figure Bl. Detail and Assembly

Drawing of End Fixtures.
As shown in the diagram, the material list is provided to guide the assembly process. The materials are listed by their codes and specifications. Each piece is marked with a unique letter, and the accompanying notes provide further instructions for assembly.

Material List:

<table>
<thead>
<tr>
<th>Material Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.2 mm brass</td>
</tr>
<tr>
<td>B</td>
<td>1.5 mm steel</td>
</tr>
<tr>
<td>C</td>
<td>2.0 mm copper</td>
</tr>
<tr>
<td>D</td>
<td>3.0 mm aluminum</td>
</tr>
<tr>
<td>E</td>
<td>4.0 mm titanium</td>
</tr>
</tbody>
</table>

Assembly Notes:
- Assemble the components in the order shown.
- Ensure all parts are correctly aligned and tightened.
- Check dimensions against the provided specifications.
C. Appendix C. Determination of Modulus of Elasticity of Material in Test Members.

A tension coupon was cut from the same piece of 14-8W aluminum alloy angle from which all three of the test members were fabricated. Two SR-4 gages, type A-12, were attached on opposite faces of the tension coupon. The coupon was loaded in tension in the testing machine by increments of 200 lb. to a maximum load of 2800 lb. which corresponded to a unit stress of 42,700 psi. Strain readings were taken at each increment of load with the Scanning Recorder and the readings for the two gages were averaged at each increment. The coupon was unloaded and the test was repeated in the same manner. The results of the two tests were then averaged as the final results. A stress-strain curve was plotted and appears in Figure C1.

The modulus of elasticity of the material was determined as

\[E = \frac{32,100 \times 10^6}{3000} = 10,700,000 \text{ psi}. \]
Figure C1. Stress-Strain Curve for Material in Test Members.