Control of Anthracnose on Watermelon with Fungicide Sprays Timed According to the Melcast Warning System, 2007

Nenad Tatalovic
Iowa State University

Mark L. Gleason
Iowa State University, mgleason@iastate.edu

Jean C. Batzer
Iowa State University, jbatzer@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports

Part of the [Agricultural Science Commons](http://lib.dr.iastate.edu/farms_reports), [Agriculture Commons](http://lib.dr.iastate.edu/farms_reports), and the [Plant Pathology Commons](http://lib.dr.iastate.edu/farms_reports)

Recommended Citation
http://lib.dr.iastate.edu/farms_reports/674

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Control of Anthracnose on Watermelon with Fungicide Sprays Timed According to the Melcast Warning System, 2007

Abstract
Anthracnose, Colletotrichum orbiculare, is one of the most significant pathogens of cucurbits in the U.S. In addition to reducing yield as a foliar pathogen, quiescent or latent infections of Colletotrichum orbiculare, present a major threat as a postharvest pathogen.

Keywords
Plant Pathology

Disciplines
Agricultural Science | Agriculture | Plant Pathology
Control of Anthracnose on Watermelon with Fungicide Sprays Timed According to the Melcast Warning System, 2007

Nenad Tatalovic, graduate student
Mark Gleason, professor/ext. plant pathologist
Jean Batzer, assistant scientist
Department of Plant Pathology

Introduction
Anthracnose, *Colletotrichum orbiculare*, is one of the most significant pathogens of cucurbits in the U.S. In addition to reducing yield as a foliar pathogen, quiescent or latent infections of *Colletotrichum orbiculare*, present a major threat as a postharvest pathogen.

Melcast is a disease-warning system that uses hourly leaf wetness and temperature data to help melon growers schedule fungicide applications for managing fungal diseases. Melcast translates hourly temperature and leaf wetness duration data into environmental favorability index (EFI) values. Fungicide applications are advised at intervals defined by epidemiological time (EFI values) rather than by chronological time (days or weeks).

Materials and Methods
Watermelon transplants *cv. Sangria* (guard rows) and *Crimson Tyde* (treatment rows) were planted to black plastic-covered beds in a drip-irrigated field at Iowa State University Horticultural Station, Ames, IA. The planting pattern consisted of plants spaced 3 ft apart on plant beds spaced 8 ft from center to center. Standard practices for management of fertility, weeds, and insects for muskmelon grown in Iowa followed Iowa State University Extension recommendations. The experiment was arranged as a randomized complete block design with four replications and nine treatments. Each treatment consisted of 10 plants. Treatment plots were 25-ft long and alternated with guard rows to buffer between plots. There was also an 8-ft buffer between plot ends. Fungicides were applied with backpack sprayers. All plots were sprayed with fungicides, except the non-treated control, on June 27 when vines first touched within rows.

Subsequent treatments were applied either on a set schedule or using the Melcast model for anthracnose leaf blight with a threshold of 35 EFI to trigger fungicide applications. Treatment and guard rows were inoculated on July 4 with *Colletotrichum orbiculare*.

Weather data input for Melcast was obtained with either on-site equipment (Model CR10, Campbell Scientific) (Treatment 9) or remotely estimated (ZedX, Inc.) with a combination of timeframe estimations and model corrections (Treatments 1 to 6) (Table 1). Treatment 8, a negative control, did not receive fungicides and Treatment 7 received fungicide applications on a calendar-based schedule.

Foliar disease severity was evaluated weekly, beginning 23 days after inoculation evaluations (July 27 to August 7). Each subplot was rated separately and then the results were averaged and used for Area Under Disease Progress Curve (AUDPC) analysis.

Results and Discussion
Our results show that the highest severity was recorded in Treatment 8, unsprayed control. The least severity was observed in Treatment 5, 72-h forecast-non corrected. Corrected versions of the disease-forecasting model, data sources, or time frame of input data did not result in reduced anthracnose severity.

Acknowledgements
We thank Nick Howell and Lynn Schroeder for helping with orchard maintenance. Thanks also to the 312 Bessey field crew for their hard work during 2007.
Table 1. Severity of anthracnose at the ISU Horticulture Station, 2007.

<table>
<thead>
<tr>
<th>Trt #</th>
<th>Weather data source</th>
<th>Time frame of data input</th>
<th>Model correction</th>
<th>Anthracnose severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>--</td>
<td>Unsprayed</td>
<td>-</td>
<td>21.2</td>
</tr>
<tr>
<td>6</td>
<td>ZedX Inc.</td>
<td>72-h forecast</td>
<td>corrected</td>
<td>14.7</td>
</tr>
<tr>
<td>3</td>
<td>ZedX Inc.</td>
<td>24-h forecast</td>
<td>-</td>
<td>12.0</td>
</tr>
<tr>
<td>9</td>
<td>On-Site</td>
<td>Hindcast</td>
<td>corrected</td>
<td>12.0</td>
</tr>
<tr>
<td>7</td>
<td>--</td>
<td>Calendar-based</td>
<td>-</td>
<td>11.2</td>
</tr>
<tr>
<td>2</td>
<td>ZedX Inc.</td>
<td>Hindcast</td>
<td>corrected</td>
<td>11.2</td>
</tr>
<tr>
<td>1</td>
<td>ZedX Inc.</td>
<td>Hindcast</td>
<td>-</td>
<td>10.8</td>
</tr>
<tr>
<td>4</td>
<td>ZedX Inc.</td>
<td>24-h forecast</td>
<td>corrected</td>
<td>10.6</td>
</tr>
<tr>
<td>5</td>
<td>ZedX Inc.</td>
<td>72-h forecast</td>
<td>-</td>
<td>9.3</td>
</tr>
</tbody>
</table>

\(^b\) Means followed by different letters differ (P < 0.05) (LSD = 9.26).