2002

The Intermetallic Compound BaAuSb

Eun Kwang Lee
Chungnam National University

Gordon J. Miller
Iowa State University, gmiller@iastate.edu

Sung Kwon Kang
Chungnam National University

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs

Part of the Materials Chemistry Commons, Other Chemistry Commons, and the Physical Chemistry Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/847. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.

This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
The Intermetallic Compound BaAuSb

Abstract
The title compound was obtained as a by-product when elemental Ba [rod, Aesar (99.99%)], Au [powder, 100 mesh, Aesar (99.999%)], and Sb [powder, 100 mesh, Aesar (99.999%)] were loaded into a tantalum tube (Nobel-Met. Ltd, >99.85%, 0.375 OD) in a 1:1:2 molar ratio in an Ar-filled glove-box. The tube was sealed in an arc-melter under argon, and heated to 973 K for 3 d in a fused-silica jacket. The reaction container was cooled slowly to 673 K at 10 K h\(^{-1}\), and then quenched to room temperature. When the tantalum tube was opened in the Ar-filled glove-box, gray irregular-shaped crystals of the title compound were found in the product. Suitable single crystals were mounted in 0.3 mm thin-walled capillaries for subsequent diffraction experiments.

Disciplines
Materials Chemistry | Other Chemistry | Physical Chemistry

Comments
This article is from Acta Crystallographica Section E 58 (2002): i17, doi:10.1107/S1600536802000569. Posted with permission.
The intermetallic compound BaAuSb

The title compound, barium gold antimonide, BaAuSb, is isostructural with ZrBeSi, which adopts the space group \(P6_3/mmc \). The Au and Sb atoms form planar honeycomb layers, with an Au—Sb distance of 2.7402 (3) Å.

Comment

During studies on the ternary barium–gold–antimony system using sealed tantalum containers for their preparation, the intermetallic compound, BaAuSb, was obtained as a side product. Previously, this compound was prepared by direct reaction with stoichiometric amounts of the components and characterized by X-ray powder diffraction (Merlo & Fornasini, 1990).

BaAuSb is isostructural with ZrBeSi, a ternary ordered variant of the binary type Ni\(_2\)In (Vogel & Schuster, 1980). Au and Sb form planar hexagonal sheets like graphite, with Au and Sb alternating in the layer. Ba atoms lie between two layers and are positioned over the centers of the hexagonal rings. The shortest interatomic distance, Au—Sb, is 2.7402 (3) Å, and each Ba atom is bonded to six Au and six Sb atoms at distances of 3.5948 (3) Å.

Experimental

The title compound was obtained as a by-product when elemental Ba [rod, Aesar (99.99%)], Au [powder, 100 mesh, Aesar (99.999%)], and Sb [powder, 100 mesh, Aesar (99.999%)] were loaded into a tantalum tube (Nobel-Met. Ltd, >99.85%, 0.375 OD) in a 1:1:2 molar ratio in an...
Ar-filled glove-box. The tube was sealed in an arc-melter under argon, and heated to 973 K for 3 d in a fused-silica jacket. The reaction container was cooled slowly to 673 K at 10 K h⁻¹, and then quenched to room temperature. When the tantalum tube was opened in the Ar-filled glove-box, gray irregular-shaped crystals of the title compound were found in the product. Suitable single crystals were mounted in 0.3 mm thin-walled capillaries for subsequent diffraction experiments.

Crystal data

BaAuSb

\(M_r = 456.06 \)

Hexagonal, \(P6_3/mmc \)

\(a = 4.7461 (6) \) Å

\(c = 9.3075 (11) \) Å

\(V = 181.57 (4) \) Å³

\(Z = 2 \)

\(D_r = 8.342 \) Mg m⁻³

Mo Kα radiation

Cell parameters from 48 reflections

\(\theta = 4.4–14.0^\circ \)

\(\mu = 58.13 \) mm⁻¹

\(T = 293 (2) \) K

Irregular, gray

0.10 × 0.05 × 0.05 mm

Data collection

Bruker \(P4 \) diffractometer

2θ/ω scans

Absorption correction: \(\psi \) scan

(North et al., 1968)

\(T_{\min } = 0.030, T_{\max } = 0.055 \)

412 measured reflections

89 independent reflections

78 reflections with \(I > 2\sigma(I) \)

Refinement

Refinement on \(F^2 \)

\(R[F^2 > 2\sigma(F^2)] = 0.033 \)

\(wR(F^2) = 0.082 \)

\(S = 1.14 \)

89 reflections

8 parameters

Space groups \(P\bar{3}1c, P\bar{3}1c, P\bar{6}3m, P\bar{6}3/mmc, \) and \(\bar{P}6\bar{2}c \) were allowed based upon the observed systematic absences. Space group \(P\bar{6}3/mmc \) was selected for initial refinements, and this group was confirmed by comparing the refinement results using the other four groups. Ba, Au, and Sb atoms were readily located from an \(E \) map, and refined with anisotropic displacement parameters. The largest residuals in the final difference map were 1.74 e Å⁻³ at a distance of 0.42 Å from Ba and −2.04 e Å⁻³ at a distance of 1.30 Å from the Au atom. All atoms lie in special positions with no refined coordinates.

Data collection: \(XSCANS \) (Bruker, 1996); cell refinement: \(XSCANS \); data reduction: \(SHELXTL \) (Bruker, 1997); program(s) used to solve structure: \(SHELXS97 \) (Sheldrick, 1997); program(s) used to refine structure: \(SHELXL97 \) (Sheldrick, 1997); software used to prepare material for publication: \(WinGX \) (Farrugia, 1999).

The authors wish to acknowledge the financial support of the Korean Research Foundation made in the program year of 2000 (project No. DP0222).

References

Sheldrick, G. M. (1997). \(SHELXL97 \) and \(SHELXS97 \). University of Göttingen, Germany.
