7-3-2008

Corn Following Corn in 2008

Mahdi Al-Kaisi
Iowa State University, malkaisi@iastate.edu

Roger W. Elmore
Iowa State University, relmore@iastate.edu

Antonio P. Mallarino
Iowa State University, apmallar@iastate.edu

Palle Pedersen
Iowa State University, palle@iastate.edu

Alison E. Robertson
Iowa State University, alisonr@iastate.edu

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Entomology Commons, and the Plant Pathology Commons

Recommended Citation
http://lib.dr.iastate.edu/cropnews/806

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Corn Following Corn in 2008

Abstract
Corn following corn is in rough shape in areas across Iowa. Many wonder what is happening. The crop's condition in general is not normal for this time of year. For example, last Sunday the USDA rated this year’s Iowa corn crop as 54 percent in ‘Good’ to ‘Excellent’ condition and 15 percent is ‘Poor’ or ‘Very Poor.’ Last year 72 percent was rated ‘Good’ to ‘Excellent’ and 5 percent was in ‘Poor’ or ‘Very Poor’ condition during the same week. Average plant height as of Sunday was 24 inches compared to 40 inches at end of the same week last year. Growing Degree Days continue to lag behind normal all over the state.

Keywords
Agronomy, Plant Pathology, Entomology

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences | Entomology | Plant Pathology

Authors
Mahdi Al-Kaisi, Roger W. Elmore, Antonio P. Mallarino, Palle Pedersen, Alison E. Robertson, John E. Sawyer, and Jon J. Tollefson

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/806
Corn Following Corn in 2008

By Mahdi Al-Kaisi, Roger Elmore, Antonio Malarino, Palle Pedersen, Alison Robertson, John Sawyer, and Jon Tollefson

Corn following corn is in rough shape in areas across Iowa. Many wonder what is happening. The crop’s condition in general is not normal for this time of year. For example, last Sunday the USDA rated this year’s Iowa corn crop as 54 percent in ‘Good’ to ‘Excellent’ condition and 15 percent is ‘Poor’ or ‘Very Poor.’ Last year 72 percent was rated ‘Good’ to ‘Excellent’ and 5 percent was in ‘Poor’ or ‘Very Poor’ condition during the same week. Average plant height as of Sunday was 24 inches compared to 40 inches at end of the same week last year. Growing Degree Days continue to lag behind normal all over the state.

![Image of corn following corn and soybeans]

FIGURE 1. Plant height differences between corn following soybeans (left) and corn following corn (right) in the Long-term Nitrogen Study conducted by John Sawyer and Dan Barker. Nitrogen application rate on both plots was 240 lbs/acre, spring applied. Thus, N is not limiting plant growth. Iowa State University. Photos taken on 30 June 2008 by Roger Elmore.

Certainly, plant heights and crop conditions in late June are not necessarily correlated with yield. There is a lot of the growing season to go yet. In baseball language, although the crop is only perhaps in the 3rd inning, it really hasn’t had a lot of chance to bat. Warmer weather in the last week has helped immensely.

So why is the corn following corn in this condition?

Yields – what can we expect?

First remember why we rotate corn and soybean: crop rotation usually results in maximum yield of both crops. In the very best of years corn following corn will yield as well as corn following soybean. In the worst
of years lower yields occur when corn follows corn. These are years with climatic stresses – most notably dry years and those with wet springs.

Over the last eight years, Iowa corn yields following corn have ranged from almost the same to 27 percent less than yield of corn following soybeans. The eight-year average is 14 percent less (Table 1). Crop rotation is an important tool for us to maximize yield and profitability. Planting corn after corn usually results in reduced yield which results from a less than ideal growing environment.

<table>
<thead>
<tr>
<th>Year</th>
<th>SC</th>
<th>CC</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>160</td>
<td>158</td>
<td>2</td>
</tr>
<tr>
<td>2001</td>
<td>146</td>
<td>115</td>
<td>31</td>
</tr>
<tr>
<td>2002</td>
<td>155</td>
<td>120</td>
<td>35</td>
</tr>
<tr>
<td>2003</td>
<td>162</td>
<td>119</td>
<td>44</td>
</tr>
<tr>
<td>2004</td>
<td>203</td>
<td>203</td>
<td>-1</td>
</tr>
<tr>
<td>2005</td>
<td>190</td>
<td>161</td>
<td>29</td>
</tr>
<tr>
<td>2006</td>
<td>197</td>
<td>131</td>
<td>15</td>
</tr>
<tr>
<td>2007</td>
<td>199</td>
<td>172</td>
<td>27</td>
</tr>
</tbody>
</table>

Average: 178 | 154 | 24 | 14.2

Table 1. Corn yields following soybean (SC) and following corn (CC) across multiple Iowa locations. To insure N was not limiting, the yields for each rotation are at the maximum yield response to applied N. Iowa State University, 2000-2007.

Agronomics

Reasons for lower yields (Table 1) when corn is planted after corn are multifaceted. Many publications are available on the subject (for one example, see ICM news, Feb. 12, 2007, in the archives). Some of these reasons include: **allelopathy**, autotoxicity, increased residue, residue breakdown products, organic acids, nitrogen, N, issues, lower soil temperatures especially with no-till in poorly drained soils, **reduced plant stand**, and slower early vegetative growth. Slower growth could result in tasseling and silking occurring during drier periods, as well as delayed maturity with an increased risk of fall frost damage.

Regarding nitrogen (N) issues, N immobilization, low soil inorganic N, and inadequate N to meet early corn N needs (either applied before or at planting), can all result in poorer performance of corn following corn. More information on **N fertilization for corn following corn** and an **N-rate calculator** are available.

The beneficial effects of starter N and Phosphorus are more likely for corn following corn than for corn following soybean. This is especially true in areas with large residue accumulation, resulting from reduced tillage systems, and with excessively wet and cool soils.

Continuous corn can impact soil biological diversity by limiting microbial biomass. The microbial biomass is essential for nutrient cycling. Production of corn following corn often encourages the use of intensive tillage due to the increased residue production. More intensive tillage affects microbial diversity and the soil’s physical, chemical, and biological condition.

Seedling Diseases

An increase in the prevalence of seedling disease may be another reason why corn following corn looks so bad this year. The risk of
disease in corn following corn fields is always greater than in fields that have been rotated to nonhost crops because of increased amounts of inoculum. Many corn pathogens survive in infested corn residue. Continuous-corn fields, in particular those with crop residues left on the surface, are more prone to seedling diseases due to higher inoculum pressure and cooler, wetter soils. This year the very wet and cool start to the growing season has further favored the development of seedling diseases.

Infection by seedling pathogens results in seed rot, root rot, and mesocotyl rot. Affected seedlings are stunted, off-color, and/or lack vigor. Why? Because the developing seedling relies on the seminal roots and mesocotyl for water and nutrient uptake up until around growth stage V6, then the crown roots become active. Thus, it is possible that the poor looking corn we are seeing in continuous corn fields is in part a result of increased seedling disease.

Insects

Insects are another possibility as we ponder the reason why corn following corn looks worse than when it is grown following soybeans. Corn rootworms have adapted to crop rotation, but they still are more serious pests when corn is grown continuously. The above-ground effects of their root feeding, and their impacts on yield, will be more severe when continuous corn is under stress. Early growing conditions many of us have experienced, saturated soils and cool temperatures, will magnify their impact. Heavy amounts of rain filled the soil with water resulting in shallower root systems. Cool temperatures cause slower root growth and regrowth after insect feeding injury. Remember also that the corn rootworm eggs will be distributed in clumps in the fields.

Finally, none of the control options, insecticides or genetically-modified rootworm corn, will control all of the larvae. Consequently as you search for a reason for patches of uneven, short, yellow corn make sure you look at the root systems for corn rootworm larval feeding. Larvae root pruning could cause the symptoms you are seeing.

Risk Management

Remember the corn and soybean rotation as a system and not as two separate crops. Consider risk, especially when we have such small profit margins with our crops. By alternating corn and soybean, we minimize risk compared to a two-year corn and one-year soybean rotation or similar combinations. Many producers think corn will never fail because of the high yields we have experienced within the last five years. Nonetheless, anything is possible when dealing with our current volatile weather systems. Alternating corn and soybean is likely still the most profitable rotation sequence to maximize profit for most farmers in Iowa. Information to help make the most profitable decisions regarding crop rotation can be found on the Ag Decision Maker website.

Summary

The poor performance of corn under continuous corn system is very complex and multifaceted. Yield reductions are often associated with continuous corn due to the host of factors that are listed above as compared to corn following soybean or any extended crop rotation.

Additional links:
Yield penalty when corn follows corn

Mahdi Al-Kaisi is an associate professor in agronomy with research and extension responsibilities in soil management and environmental soil science.
Roger Elmore is a professor of agronomy with research and extension responsibilities in corn production.
Antonio P. Mallarino is a professor of agronomy with research and
extension responsibilities in soil fertility and nutrient management.
Palle Pedersen is an assistant professor of agronomy with research
and extension responsibilities in soybean production.
Alison Robertson is an assistant professor of plant pathology with
research and extension responsibilities in field crop diseases.
John Sawyer is a professor of agronomy with research and extension
responsibilities in soil fertility and nutrient management.
Jon Tollefson is a professor of entomology with responsibilities in field
crop pest management.

This article was published originally on 7/3/2008. The information contained within the article may or
may not be up to date depending on when you are accessing the information.

Links to this material are strongly encouraged. This article may be republished without further
permission if it is published as written and includes credit to the author, Integrated Crop Management
News and Iowa State University Extension. Prior permission from the author is required if this article
is republished in any other manner.