Selective reduction via enolate protection

George A. Kraus
Iowa State University, gakraus@iastate.edu

Kevin Frazier
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs

Part of the Inorganic Chemistry Commons, Organic Chemistry Commons, Other Chemistry Commons, and the Polymer Chemistry Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/chem_pubs/790. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Selective reduction via enolate protection

Abstract
The use of enolate anions as protecting groups in order to effect the selective reduction of dicarbonyl compounds is studied.

Disciplines
Chemistry | Inorganic Chemistry | Organic Chemistry | Other Chemistry | Polymer Chemistry

Comments
Reprinted (adapted) with permission from The Journal of Organic Chemistry, 45(21); 4262-4263. Doi: 10.1021/jo01309a052. Copyright 1980 American Chemical Society.
Selective Reduction via Enolate Protection

Summary: The use of enolate anions as protecting groups in order to effect the selective reduction of dicarbonyl compounds is studied.

Sir: Many procedures are available for the reduction of a ketone or aldehyde in the presence of an ester or lactone.\(^1\) In order to achieve the complementary selectivity, a sequence involving protection, reduction, and deprotection must be employed. In addition to the obvious operational inconvenience, olefin isomerization and other acid-catalyzed rearrangements can occur during protection and deprotection. The concept of using selective enolate formation in combination with hydride reduction was first conceived by Barton\(^2\) for the reduction of steroidal ketones. Both Schlessinger\(^3\) and Goldsmith\(^4\) have also used this method. However, aside from these interesting applications, no study of this reduction strategy has been reported.

We now present an investigation of its scope and limitations.

Ketone deprotonation was effected with either lithium diisopropylamide or lithium 2,2,6,6-tetramethylpiperidide. These reagents are nonnucleophilic and capable of completely deprotonating ketones at low temperatures. The reducing agents employed included lithium aluminum hydride, diisobutylaluminum hydride, and lithium triethylborohydride. A variety of substituted dicarbonyl compounds was used. The results are illustrated in Table I.

This method is advantageous for the unambiguous synthesis of certain aldols, as evidenced by entries 1 and 4. Hirano and co-workers\(^5\) have studied the acid-catalyzed aldol condensation between ketones and formaldehyde. Although the reaction of 2-methylcyclopentanone and formaldehyde affords a mixture of products, the major product is identical by NMR and IR with compound 1 prepared by our method. Reduction of the keto nitrile (entries 5 and 6) affords either a keto aldehyde or cyclic imine 2, depending on the choice of reducing agents. The yields in both cases were somewhat reduced due to the volatility of the products. Imine 2 was identical by NMR with the compound produced by reduction of 4,4-dimethyl-5-nitro-2-pentanone.\(^6\) The change in reaction conditions for entries 7 and 8 was necessitated by the extremely slow rate of reduction in tetrahydrofuran (incomplete after 48 h).

In contrast to the successful results in Table I, compounds I–IV failed to afford synthetically useful yields of the desired reduction products.

Thin-layer chromatography of the enolate solution\(^7\) before the addition of the hydride reagent indicated, in the cases that failed, that new products have already begun to form. Thus, the failure was due to enolate anion instability. Such instability could arise from intramolecular

Table 1. Selective Reductions

<table>
<thead>
<tr>
<th>entry</th>
<th>reactant</th>
<th>reaction conditions</th>
<th>time, h</th>
<th>yield</th>
<th>producta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>A</td>
<td>1</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>A</td>
<td>0.5</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>A</td>
<td>0.5</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>A</td>
<td>0.5</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>B</td>
<td>2.0</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>A</td>
<td>0.5</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>C</td>
<td>8</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>C</td>
<td>8</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

* All products exhibited satisfactory IR, \(^1\)H NMR, \(^13\)C NMR and mass spectral data and analytical analyses. See footnote 8 for experimental procedure.

(7) TLC of enolate solutions in reactions which were successful showed only starting material. Aliquots for TLC could be either first quenched and then chromatographed or simply chromatographed directly.
cyclizations or anion exchange followed by polymerization. Efforts to circumvent this limitation by forming the magnesium enolate with (diisopropylamino)magnesium bromide or by deprotonation and reduction at -78 °C were unsuccessful.

Acknowledgment. We thank the National Cancer Institute (Grant No. CA23663) for generous financial support.

The reaction could be carried out in a shorter time and with an even higher stereoselectivity by adding a THF solution of 2 containing 1.7 equiv of methanol to a solution (THF) of 2.0 equiv of the cuprate reagent (1) (100 °C, 15 min; -78 °C, 3 h). Under these conditions the conjugate addition product consisted of essentially pure E isomer 5 (79% yield, <1% 7). On the other hand, reaction of 2 with 1.2 equiv of 1 at -78 °C for 15 min and at -48 °C for 4 h, followed by protonation (methanol) and workup, afforded (76%) the two isomers 5 and 8 in a ratio of 2:98, respectively. In similar fashion, ethyl 2-butyrate (8) could be converted into either ethyl (E)-3-(trimethylstannyl)-2-butenoate (6) (78% yield, >99% stereoselectivity) or the corresponding Z isomer 9 (76% yield, 98% stereoselectivity), and methyl 5-(tert-butyldimethylsiloxy)-2-pentyne-4-oate (10) was transformed into either of the two isomers 7 (82% yield, 96% stereoselectivity) or 10 (81% yield, 96% stereoselectivity).

It is clear from the above results that the E isomers (5-7) are the products of kinetic control, while the Z isomers (8-10) are produced under thermodynamically controlled conditions. Apparently, at low temperatures (e.g., -100 °C) the “kinetic” intermediate (cf. 11) is reasonably stable and isomerizes only very slowly. At somewhat higher temperatures (e.g., -78 °C), isomerization of 11 into 12 does occur, but this transformation can be minimized by the presence of a proton source such as methanol (protonation of 11 faster than isomerization). If the reaction mixtures are allowed to warm to -48 °C in the absence of methanol, equilibration (11 12) takes place, with the equilibrium largely favoring intermediate 12. Subsequent protonation results in the formation of the nearly pure Z isomers (8-10). These observations parallel to some extent those

Stereoactive Conjugate Addition of Lithium (Phenylthio) (trimethylstannyl)cuprate to α,β-Unsaturated Esters. Preparation of (E)- and (Z)-4-Lithio-1,3-pentadienes and Their Reaction with Electrophiles

Summary. Depending on experimental conditions, reaction of lithium (phenylthio) (trimethylstannyl)cuprate (1) with α,β-acetylenic esters 2-4 affords, highly stereoselectively, either the (E)- (5-7) or the (Z)-3-[(trimethylstannyl)3-phenylthio]cuprate [(PhC6H4S(Me3Sn)CuLi, 1)] is an excellent reagent for transferring, in a conjugate sense, the trimethylstannyl group to α,β-unsaturated carbonyl systems. This reagent was shown to be particularly effective in converting α,β-unsaturated ketones into the corresponding α,β-unsaturated esters, which, in principle, can serve as convenient precursors of α,β-acylvinylin anion equivalents. We report herein (a) that the cuprate reagent 1 smoothly transfers one Me3Sn group to α,β-acetylenic esters, (b) that the course of the reaction can be controlled experimentally so as to produce, highly stereoselectively, either the (E)- or the (Z)-3-[(trimethylstannyl)3-phenylthio]cuprate, α,β-unsaturated esters, and (c) that the products can be converted into functionalized 4-lithio-1,3-pentadienes, species which exhibit considerable promise as reagents in organic synthesis.

When ethyl 2-pentyne-4-oate (2) was allowed to react with 2.5 equiv of 1 at -100 °C (THF, argon atmosphere) for 6 h and the resultant solution was treated with methanol, the two geometric isomers 5 and 8 were obtained (Scheme I) in a ratio of approximately 97:3 (81%).

1) A dark red solution of this reagent is prepared simply by addition of 1 equiv of solid (phenylthio)cuprate to a cold (-20 °C) solution of (trimethylstannyl)lithium in THF.
7) The product ratios reported herein were determined by gas-liquid chromatography, employing a column (1/8 in. x 6 ft) packed with 3% OV-17 on Chromosorb W (200-90 mesh).
8) All new compounds reported herein exhibited spectral data in full accord with assigned structures and gave satisfactory elemental analyses and/or high-resolution mass spectrometric measurements.
9) If the reaction was allowed to proceed at -78 °C for 15 min and at -48 °C for 4 h, followed by protonation (methanol) and workup, afforded (76%) the two isomers 5 and 8 in a ratio of 2:98, respectively. In similar fashion, ethyl 2-butyrate (8) could be converted into either ethyl (E)-3-(trimethylstannyl)-2-butenoate (6) (78% yield, >99% stereoselectivity) or the corresponding Z isomer 9 (76% yield, 98% stereoselectivity), and methyl 5-(tert-butyldimethylsiloxy)-2-pentyne-4-oate (10) was transformed into either of the two isomers 7 (82% yield, 96% stereoselectivity) or 10 (81% yield, 96% stereoselectivity).