1958

Bad Teeth, Malnutrition, and Pregnancy Disease

Rodney E. Hall
Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/iowastate_veterinarian

Part of the Large or Food Animal and Equine Medicine Commons, and the Veterinary Pathology and Pathobiology Commons

Recommended Citation
Available at: https://lib.dr.iastate.edu/iowastate_veterinarian/vol20/iss2/10

This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Veterinarian by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
The removed cystic calculi.

The dog was placed on chlorethamine tablets in an effort to acidify the urine in order to prevent the formation of more calculi. A urine sample taken after 7 days of this therapy showed a pH of 5.5.

The dog was dismissed on Nov. 16, 1957. A 30-day supply of chlorethamine tablets was dispensed. Instructions to the owner were to feed a meat diet and give one chlorethamine tablet daily. It is thought that if the urine can be kept acidic, the calculi will not reform.

— Don Smith '58

Bad Teeth, Malnutrition and Pregnancy Disease. Once again it is that time of year when the sheep men suffer their losses from the condition known as “Pregnancy Disease.” It is a good guess that many veterinarians are or will be hearing and seeing cases similar to the following one recently presented to the Stange Memorial Clinic.

On Dec. 30, 1957, two ewes were brought to the clinic. The owner suspected poisoning. He stated that the only change in management was the adding of silage to the ration 1 week previously. Three ewes had died and these two were sick. The sheep had access to hog houses which had been painted last summer. He stated that the sheep went down and were apparently blind.

The post-mortem diagnosis was malnutrition and emaciation of aged sheep. Five of the incisors were missing as well as half of the cheek teeth. There was also pneumonia in the ventral portions of the cardiac and apical lobes of the lungs and calcified lesions in the liver. The ewe was in early pregnancy.

It was suggested that the owner contact his veterinarian and between them work up a fortified ration that would be highly nutritious and easily digestible.

Two weeks later, Jan. 13, 1958, the owner brought in three more ewes. Deaths were still occurring and 12 percent of the flock had died. The history this time was that some of the ewes seemed a little stiff and slow in getting up. They moved with some incoordination as though partially paralyzed and a few circled before they went down, became comatose and died.

One of the three ewes presented was immediately taken to post-mortem. The findings were pregnancy disease with severe fatty infiltration of the liver and extensively worn teeth. The remaining incisors were short and loose. Several check teeth were missing and those present were
loose and had sharp points. There was abscessation around the roots of some of the loose teeth.

Listeriosis, which one should always consider, was ruled out by means of negative cultures. However, it was not strongly suspected due to the extremely fatty liver in this animal. It was learned that these ewes had previously been heavily parasitized, but this was not the case with those necropsied.

The second ewe was down and could not get up. The conjunctiva was slightly congested and there was a nasal discharge. The third ewe was somewhat incoordinated and wobbly on its feet. In both of these ewes the temperature, respirations and pulse rate were within the normal ranges. The down ewe had no appetite and a diarrhea, while the other one would eat and had fairly normal bowel evacuations. Within approximately a 15-minute observation period the down ewe urinated once and the other ewe twice.

Treatment consisted of 10 milligrams of prednisolone intramuscularly followed by daily drenching with 1 ounce of molasses in warm water. The down ewe showed no improvement and was taken to post-mortem on the third day. The findings were the same as for the previously necropsied ewes. The third ewe held its own and maybe even improved a little. It was sent home on the sixth day.

Everyone seems to have some remedy which works best for him and differs a little from what anyone else uses. The explanation for this might be that so few men seem to consistently get desired results in all cases.

I hesitate to mention the controversial methods of prevention and treatment of this condition. However, I was told that the following suggestions on prevention of pregnancy disease have been tried successfully on a number of flocks during the past couple of years. Some of the sheep men following them had previously had trouble with the disease. Yet, not one case of pregnancy disease has been diagnosed to date in flocks on this management under the observation of this individual.

1. Use only ewes in good health and physical condition for breeding stock. This eliminates ewes with mouths like the ones in this case report. Younger ewes are usually more desirable, but this does not rule out older ewes provided they have been mouthed to determine that their teeth will permit them to consume adequate feed.

2. Have the ewes thin at breeding time. You do not want the ewes starved or emaciated and you do not want them overly fat either. Thin ewes seem to do better and seem to have a higher incidence of twins. This is contrary to what many would think, since pregnancy disease is associated with multiple births. Twinning has caused no trouble in the flocks being observed.

3. Worm the ewes. If worm infestation is a problem the ewes should be wormed prior to the breeding season. This may not be necessary where clean ground is available and pasture rotation and good management are practiced.

4. Flush the ewes with good quality feed 2 weeks before breeding. This appears to have little or no bearing on pregnancy disease, but is claimed to increase the conception and twinning rate.

5. Have the ewes on good grass pasture at breeding time. Succulent legume pastures are not recommended because of the possible presence of estrogenic substances.

6. Give the ewes good roughage during the first third to half of gestation and add grain to the ration during the last half to two-thirds of the period. Increase the grain gradually so that near the end of gestation they are getting about ¾ to 1 pound per day per ewe depending on their size. The ideal is to have them gain about 25 to 35 pounds during the gestation period. Two-thirds of this gain should come during the last one-third of pregnancy.
GAIN CURVES OF BREEDING EWES
A. Prebreeding period (worm, etc.). B. Flush.
C. Breed (on good grass pasture). D. Gestation period (months). E. Pregnancy disease may occur.

The weight gain, as indicated by the solid line in the graph, should be an even curve. The dotted line is to indicate weight gain due to changes in feeding and the pattern of gain often seen where pregnancy disease is a problem. These changes might occur when running ewes in a picked corn field followed by confinement and the feeding of hay and low grain rations. Much grain is left on the ground in many of these picked corn fields and accounts for higher intake than one might think. Realization that the ewes are too fat and subsequent reduction in ration is another possibility. Also periods of inclement weather when the ewes do not leave the shelter long enough to consume adequate feed may be a factor. This would appear to be one handicap of feeding long distances from the shelter area to force exercise. It might be noted that neither forced exercise nor feeding of molasses is one of the suggestions previously given. This is contrary to what many men believe but it is not practiced in the flocks being observed. However, forced exercise might have merit in overly fat ewes in late pregnancy when reduction in the T.D.N. and carbohydrate intake seems to be contraindicated.

The above method of prevention of pregnancy disease is entirely based on the breeding of high quality ewes and excellent management. It seems economically sound, since higher-priced (higher quality) ewes can be bred if this plan will reduce the death rate in the ewes, increase the lamb crop, and eliminate the loss of feed previously consumed by the dead ewes. This is exactly what has happened in the flocks under observation. Those men breeding poorer quality ewes and/or having poor management practices undoubtedly will have to combat a certain amount of pregnancy disease.

Treating affected ewes with the corticosteroids, carbohydrate solutions, feeding of molasses, improved nutrition, and forced exercise all appear to give variable results for different men. The same is true with caesareans.

I doubt if anyone gets as good a results as he would like in treating this condition, especially in the advanced cases. Therefore, it seems the old adage, “An ounce of prevention is worth a pound of cure,” applies in pregnancy disease.

—Rodney E. Hall ’58

Chronic Luxation of the Coxo-femoral Articulation in a Dog. On Oct. 30, 1957, a 6-year old English Pointer female was admitted to the Stange Memorial Clinic with a history of a chronic luxation of the right coxofemoral articulation caused by an automobile accident about 30 days before admission. During the time from the occurrence of the accident to entry at the clinic the referring veterinarian had made several unsuccessful attempts to correct the condition by closed reduction.

Physical examination at the time of admission revealed an anterior-dorsal luxation of the right coxofemoral joint with atrophy of the muscles of the right gluteal region. The animal placed no weight on the affected limb and evidenced only slight pain upon manipulation. The dog was anesthetized with 4 cc. of surital sodium and a Gordon extender was applied for 20 minutes to accomplish muscle fatigue. Closed reduction was unsuccessful and it was decided to attempt surgical correction.

On October 31, the patient was given 1