1958

Chronic Luxation of the Coxofemoral Articulation in a Dog

Fred Wood
Iowa State College

Follow this and additional works at: https://lib.dr.iastate.edu/iowastate_veterinarian

Part of the Small or Companion Animal Medicine Commons, and the Veterinary Anatomy Commons

Recommended Citation
Available at: https://lib.dr.iastate.edu/iowastate_veterinarian/vol20/iss2/11

This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Veterinarian by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
GAIN CURVES OF BREEDING EWES
A. Prebreeding period (worm, etc.). B. Flush. C. Breed (on good grass pasture). D. Gestation period (months). E. Pregnancy disease may occur.

The weight gain, as indicated by the solid line in the graph, should be an even curve. The dotted line is to indicate weight gain due to changes in feeding and the pattern of gain often seen where pregnancy disease is a problem. These changes might occur when running ewes in a picked corn field followed by confinement and the feeding of hay and low grain rations. Much grain is left on the ground in many of these picked corn fields and accounts for higher intake than one might think. Realization that the ewes are too fat and subsequent reduction in ration is another possibility. Also periods of inclement weather when the ewes do not leave the shelter long enough to consume adequate feed may be a factor. This would appear to be one handicap of feeding long distances from the shelter area to force exercise. It might be noted that neither forced exercise nor feeding of molasses is one of the suggestions previously given. This is contrary to what many men believe but it is not practiced in the flocks being observed. However, forced exercise might have merit in overly fat ewes in late pregnancy when reduction in the T.D.N. and carbohydrate intake seems to be contraindicated.

The above method of prevention of pregnancy disease is entirely based on the breeding of high quality ewes and excellent management. It seems economically sound, since higher-priced (higher quality) ewes can be bred if this plan will reduce the death rate in the ewes, increase the lamb crop, and eliminate the loss of feed previously consumed by the dead ewes. This is exactly what has happened in the flocks under observation. Those men breeding poorer quality ewes and/or having poor management practices undoubtedly will have to combat a certain amount of pregnancy disease.

Treating affected ewes with the corticosteroids, carbohydrate solutions, feeding of molasses, improved nutrition, and forced exercise all appear to give variable results for different men. The same is true with caesareans.

I doubt if anyone gets as good a results as he would like in treating this condition, especially in the advanced cases. Therefore, it seems the old adage, “An ounce of prevention is worth a pound of cure,” applies in pregnancy disease.

— Rodney E. Hall '58

Chronic Luxation of the Coxo-femoral Articulation in a Dog. On Oct. 30, 1957, a 6-year old English Pointer female was admitted to the Stange Memorial Clinic with a history of a chronic luxation of the right coxofemoral articulation caused by an automobile accident about 30 days before admission. During the time from the occurrence of the accident to entry at the clinic the referring veterinarian had made several unsuccessful attempts to correct the condition by closed reduction.

Physical examination at the time of admission revealed an anterior-dorsal luxation of the right coxofemoral joint with atrophy of the muscles of the right gluteal region. The animal placed no weight on the affected limb and evidenced only slight pain upon manipulation. The dog was anesthetized with 4 cc. of surital sodium and a Gordon extender was applied for 20 minutes to accomplish muscle fatigue. Closed reduction was unsuccessful and it was decided to attempt surgical correction.

On October 31, the patient was given 1
grain of morphine 45 minutes prior to anesthesia. The dog was anesthetized with 1½ grains of pentobarbital sodium and immediately vomited and continued to vomit periodically throughout the surgery. The right hip was clipped, shaved, scrubbed, defatted with ether and disinfected with phenylmercuric nitrate. As described by Brown, a 6-inch incision was made vertically over the coxofemoral joint near the anterior edge of the greater trochanter. The incision was deepened through the subcutaneous tissues until the anterior margin of the biceps femoris muscle was identified. The biceps and the tensor fascia lata were separated with scissors at their junction, reflecting them posteriorly and anteriorly respectively. This exposed the superficial gluteal muscle and its aponeurosis which attaches to the third trochanter. The aponeurosis was then severed directly over the greater trochanter, the free ends tagged, and the muscle reflected dorsally. The middle gluteal muscle was then exposed and was bluntly separated from the underlying deep gluteal muscle to reveal the location of the sciatic nerve so it could be avoided. The muscle was then severed through its aponeurosis near the greater trochanter and reflected dorsally after tagging the free ends. The deep gluteal muscle was handled similarly to the middle gluteal and the joint capsule was exposed. The joint capsule was found to be stretched due to the dislocation and a false joint was present dorsal and anterior to the acetabulum. The joint capsule was severed and about a teaspoon of hemorrhagic synovial fluid drained out. The stretched ligamentum teres was severed and the head of the femur was rolled laterally and anteriorly from the pseudoarthrosis. The acetabulum was located and the ventral two-thirds was found to be filled with blood, fibrin, connective tissue and mostly fat. This material was removed by curettage avoiding the synovial membrane as much as possible. The head of the femur was replaced into the acetabulum and the joint capsule was closed with mattress sutures of medium Vetafil® (synthetic suture). The gluteal muscles were sutured to their aponeuroses with medium Vetafil mattress sutures and the fascia lata was closed with interrupted sutures of 000 chromic catgut. The subcutaneous tissue was approximated with a continuous suture of 000 chromic catgut and the skin closure was accomplished with interrupted medium Vetafil sutures. The limb was then held in flexion with a figure-8 bandage.

The patient was kept on intramuscular injections of 2 cc. of a penicillin-streptomycin combination twice the first day and 1 cc. of the same antibiotic twice a day for the succeeding 4 days. The figure-8 bandage was removed on the seventh day post-operative as were the skin sutures.

The dog began to bear weight on the leg slightly on the eleventh day post-operative and increased her use of the limb each day until released on the eighteenth day following surgery at which time she was using the leg most of the time when walking, but persisted in carrying the leg when running.

The purpose of reporting this clinical case has been to review the dorso-lateral approach to the coxofemoral joint as described by Brown and show that chronic coxofemoral luxations can be reduced successfully without using one of the many methods of internal fixation.

— Fred Wood '58


Intramedullary Pinning of the Humerus in the Calf. On November 1 a 2-day old Holstein calf was admitted into the veterinary clinic. The history revealed that a fracture of the right humerus had occurred during parturition. X-ray pictures revealed a simple fracture of the distal one-third of the right humerus.