1961

New Insecticides: Toxicity, Hazards, and Therapy

Charles G. Wilber

Follow this and additional works at: https://lib.dr.iastate.edu/iowastate_veterinarian

Part of the Veterinary Preventive Medicine, Epidemiology, and Public Health Commons, and the Veterinary Toxicology and Pharmacology Commons

Recommended Citation
Available at: https://lib.dr.iastate.edu/iowastate_veterinarian/vol23/iss1/4

This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Veterinarian by an authorized editor of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
New Insecticides

Toxicity, Hazards and Therapy

Charles G. Wilber, Ph.D.*

Repeated news accounts of the poisoning of small children and of pets by insecticides indicate that there is still a lack of information concerning the poisonous nature of these new, potent, economically valuable compounds.

Modern insecticides are essentially of two general kinds: chlorinated hydrocarbons and organic phosphorus compounds. Among the former are: chlordane, dieldrin, aldrin, parachlorophenyl trichloroethane (DDT), heptachlor, toxaphene, benzene hexachloride (BHC, gammexane). Lindane is 99 per cent pure BHC.

The compounds are all of veterinary interest. Lindane is an effective agent against ectoparasites. Toxaphene is a general insecticide; its use in dairy barns or on milking animals is not recommended. Heptachlor is used to control cotton boll weevil; it is reported to cause liver damage in mammals. Aldrin is a general insecticide; it is too volatile to be used widely; it is reported to be a liver poison. Dieldrin is an effective general insecticide. Chlordane is particularly effective against fleas, lice, ticks, mange. These compounds are effective insect killers; but they are also poisonous to warm-blooded animals (Table 1).

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Animal</th>
<th>MSD</th>
<th>MTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td>Sheep</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>BHC</td>
<td>Sheep</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Chlordane</td>
<td>Sheep</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>DDT</td>
<td>Calves</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>Sheep</td>
<td>10</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 2 shows the maximum safe and minimum toxic dose of several chlorinated hydrocarbon insecticides for sheep and calves. Casualties from this group of insecticides are usually seen in small ani-
mals. For example, cats are very susceptible to DDT. One should avoid the use of this insecticide on or around cats.

The precise mechanism by which the chlorinated hydrocarbon insecticides exert their toxic action in insects or in mammals is unknown. It is assumed that some enzyme system is disrupted. The nervous effects observed are probably peripheral in origin.

In addition to acute effects, the chlorinated hydrocarbons persist in body fat and give rise to chronic poisonings. There is evidence that fat animals are more resistant to poisoning than are thin ones.

Ordinarily, one of the first signs of poisoning by agents in this group of compounds is an increased activity and sensitivity of the affected animal. Large animals show evidence of blindness. Anorexia is a consistent feature. Toxic signs usually become apparent within about four to five hours after exposure.

Treatment depends on control of convulsions by means of short acting barbiturates, such as pentobarbital. Prognosis is good unless ventricular fibrillation occurs. In small animals poisoned with DDT, the first ten to eighteen hours after initial signs appear is the critical period. If the animal survives for the first 36 hours, it will, in all probability, recover. Complete recovery may take up to two months. If the poison is ingested it should be removed by saline purges. An oily purgative is contraindicated.

Commonly used organic phosphorus insecticides include: parathion, malathion, tetraethyl pyrophosphate (TEPP), diazinon, chlorothion and bayer compound. The toxicity of some of these compounds for cattle and sheep is shown in Table 3.

Table 3
Maximum Safe and Minimum Toxic Oral Dose of Insecticides

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Animal</th>
<th>MSD</th>
<th>MTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parathion</td>
<td>Cattle</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Parathion</td>
<td>Sheep</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Malathion</td>
<td>Sheep</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Diazinon</td>
<td>Sheep</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Chlorothion</td>
<td>Calves</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Parathion is a very stable compound; it persists on plants for weeks after spraying. TEPP, on the other hand, hydrolyzes to relatively innocuous components in a few hours. Parathion is one of the most toxic of these insecticides (Table 4).

Table 4.
Relative Toxicities of Various Insecticides
Taking Parathion (=1) as Base.
(The larger the index the less toxicity)

<table>
<thead>
<tr>
<th></th>
<th>For Cattle</th>
<th>For Calves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td>2.5</td>
<td>25.0</td>
</tr>
<tr>
<td>BHC</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>2.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Chlorothion</td>
<td>12.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Diazinon</td>
<td>2.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>62.5</td>
<td></td>
</tr>
</tbody>
</table>

The organic phosphorus insecticides are insidious; they may gain entry into the animal body by inhalation, through the skin and through the eyes or by ingestion. By all routes they are toxic. They exert their poisoning effect in insects and in warm-blooded animals by destroying the enzyme, cholinesterase. Excess acetylcholine then accumulates in the body, resulting in disorganization of the nervous system.

Diagnosis depends on the observation of characteristic signs and by estimation of erythrocyte cholinesterase activity. The signs of poisoning may be summarized as follows:

1. **Muscarinic effects;** salivation, sweating, bronchiolar constriction.
2. **Nicotinic effects;** peripheral muscular tremors, heart block, blood pressure effects.
3. **Central nervous effects;** convulsions, central depression of respiration.

Death results from anoxia.

The level of cholinesterase activity of the erythrocytes can be estimated rapidly in the field with a simple color test using bromthymol blue as an indicator.

The treatment of organic phosphate poisoning in animals, and in man, can be effective but must be instituted without...
delay. The skin, if contaminated with insecticide, must be thoroughly cleaned with copious amounts of water and soap if available. Atropine sulfate should be administered in large doses intramuscularly or intravenously until signs of atropinization are evident (dilated pupils, dry mucous membranes, increased heart rate). For a medium sized dog the initial dose of atropine after poisoning, would be 2 mg intravenously, followed by additional doses as needed to produce atropinization. For cattle, the initial dose should be 0.15 mg/kg intravenously. As an adjunct to atropine, pyridine-2-aldoxime methiodide (2-PAM) in a dose of 5 mg/kg body weight is most effective. 2-PAM with atropine has been shown effective therapy against several hundred LD50’s of organic phosphorus compounds in mammals. 2-PAM is also effective prophylactically. In severe poisonings, artificial respiration (with oxygen if available) may be necessary.

All warm blooded animals, including man, are susceptible to poisoning by this group of compounds. Birds are particularly sensitive; avian species in general show marked signs of demyelinations after exposure to organic phosphorus compounds.

The organic phosphorus, anticholinesterase, insecticides have important use in the control of insect pests; but they are far from harmless chemicals. All warm blooded animals can be poisoned fatally by them. Men who use these agents should wear imperious protective clothing and a gas mask. At the end of each work period they should wash down thoroughly with soap and water. Needless to say all persons who use these agents should have regular tests for level of red blood cell cholinesterase activity.

Finally, brief mention should be made of organic thiocyanates which are often used in combination with pyrethrin as household sprays. They are contact poisons which act on nerve ganglia of insects. Lethane and thanlite are trivial names for two of these insecticides. All are toxic to mammals. The lethal dose falls between 0.4 and 2.0 g/kg. In warm blooded animals, the organic thiocyanates paralyze the central nervous system. Signs of acute poisoning include depression, dyspnea, cyanosis and convulsions. Chronic poisoning brings about hyperemia of internal organs with edema and hemorrhage. There is no specific therapy. Treatment, after removal from source of poison, is symptomatic and supportive.

Selected References

For those orphan pups; a combination of two raw eggs to 8 oz. of cows milk is recommended. Feed 2 oz. per pound of body wt. per day. It is increased by ½ oz. per lb. for the second and third weeks.

Law For The Veterinarian And Livestock Owner. This book brings together in ready reference form and in a language understandable to a layman the laws that apply to the care, management and control of livestock. It has been written to enable veterinarians and livestock owners to know their legal rights and responsibilities. This book covers a multitude of legal questions that concern the veterinarian and livestock owner.

Every practicing veterinarian and student of veterinary medicine should find this book a valuable addition to his library.

Law For The Veterinarian And Livestock Owner