VACCINATION AGAINST LAWSONIA INTRACELLULARIS DECREASES SHEDDING OF SALMONELLA ENTERICA SEROVAR TYPHIMURIUM IN CO-INFECTED PIGS AND CHANGES THE HOST GUT MICROBIOME

Fernando Leite, Connie Gebhart, Randall Singer, Richard Isaacson

University of Minnesota, St. Paul, MN

Introduction

Salmonella enterica is a leading cause of foodborne illness in the world. Attribution studies have suggested pork as a major source for human salmonellosis in different countries (Mughini-Gras et al., 2013, Pires et al., 2014). In the United States, efforts to reduce the incidence of salmonellosis have mainly remained ineffective, the incidence of salmonellosis has not been reduced appreciably since 1996 (Boore et al., 2015). There is a consensus in the field that there is a lack of on farm cost-effective strategies to reduce the prevalence of salmonellosis (Dickson & Hurd, 2013). The source of S. enterica that contaminates pork products are the animals themselves (Dickson & Hurd, 2013) and novel intervention strategies are much needed.

Like S. enterica, Lawsonia intracellularis is a common porcine intestinal pathogen and is prevalent in pig production sites worldwide with prevalence ranging from 48 to 100% in different swine producing countries (Dors et al., 2015). In the United States, it has been estimated that L. intracellularis is present in more than 90% of swine farms (Armbruster et al., 2007). The last study conducted by the USDA found that S. enterica was present in 52.6% of swine production sites (USDA, 2009), thus it is reasonable to assume that co-infection with both pathogens occurs frequently. L. intracellularis causes porcine proliferative enteropathy (PPE). This disease more commonly occurs in post-weaned pigs and leads to decreased weight gain, diarrhea and is often subclinical. Transmission of this organism also occurs by the fecal oral route and lesions are marked by a thickening of the mucosa of the ileum and colon (Lawson & Gebhart, 2000).

The association between L. intracellularis infection and increased shedding of Salmonella was first demonstrated by Beloeil et al., 2004, who performed an epidemiological study and found a significant association between seroconversion to L. intracellularis and increased prevalence of pigs shedding S. enterica. In this study, we hypothesized that vaccination against L. intracellularis would decrease shedding of S. enterica in co-infected animals.

Materials and methods

Animals and experimental design

In this study a total of five treatment groups were used. The treatment groups were: 1) challenged with S. Typhimurium alone, 2) challenged with both S. Typhimurium and L. intracellularis, 3) challenged with S. Typhimurium and vaccinated against L. intracellularis, 4) challenged with both S. Typhimurium and L. intracellularis and vaccinated against L. intracellularis, and 5) a non-infected control. Each treatment group was comprised of 9 pigs housed in three separate isolation rooms with three...
animals per room. The non-challenge control group was comprised of 6 animals divided among two rooms with three animals per room. These rooms were distributed between two isolation buildings. The groups that were vaccinated against *L. intracellularis* received the single dose oral live attenuated vaccine Enterisol Ileitis (Boehringer Ingelheim) at three weeks of age. Twenty-one days post vaccination, animals were challenged with a pure culture of *L. intracellularis* (2 x 10^9 organisms per pig) (strain PHE/MN1-00). One week post *L. intracellularis* challenge, pigs were challenged orally with *S. Typhimurium* (strain 798) (1 x 10^8 organisms per pig). Fecal samples from pigs were obtained on the day of challenge and two days post *S. Typhimurium* challenge and weekly thereafter until 49 days post infection.

Salmonella quantification

To quantify the amount of *Salmonella* shed in feces of pigs, a most probable number (MPN) enrichment method was used as in Borewicz et al., 2015. Briefly, one gram of feces was suspended in 9 ml tetrathionate broth (TTB) and incubated at 41°C for 48 hours. One hundred μl was then transferred to 900 μl Rappaport-Vassiliadis R10 broth and incubated for 24 hours at 41°C. Cultures were then inoculated on to XLT4 agar plates containing 100μg/ml of nalidixic acid (NA) to quantify the challenge strain which is NA resistant. A duplicate inoculation was performed on XLT4 agar without antibiotic to quantify any other potential *Salmonella* strains the animals could harbor. Colonies with typical *Salmonella* morphology were confirmed by PCR using primers specific for the gene *invA* (Singer et al., 2006).

DNA extraction and 16S sequencing

For microbiome analysis, DNA was extracted from fecal samples using the MoBio PowerSoil DNA extraction kit. DNA concentration was measured by Nanodrop. The V1-V3 region of the 16SrRNA gene was amplified following a dual indexing approach as described in Gohl et al., 2016. Quality filtered sequences were analyzed with QIIME (Caporaso et. al, 2010).

Statistical analysis

To test for differences in MPN between treatments over time, a linear mixed model was used with log_{10}(MPN) as the response, treatment, day, and the treatment/day interaction as fixed effects, barn as a fixed block effect, and pen, pig, and day within pen as random effects. Reported are least square means for treatment by day, and pairwise comparisons between treatments for each day, with p-values corrected for multiple comparisons.

Results and discussion

L. intracellularis vaccination reduces *S. Typhimurium* shedding in co-infected animals

No animals had detectable levels of the challenge strain prior to challenge and detection levels of *Salmonella* were similar in XLT4 with *S. Typhimurium*. The greatest difference in shedding level between groups was found at 7 days post infection. At this time point, the co-challenged non-vaccinated group shed 2.94 log_{10} *S. Typhimurium*
organisms per gram of feces while the vaccinated co-challenged group shed 0.82 log_{10}
S. Typhimurium organisms per gram of feces (p=0.003) (Figure 1). The co-challenged
vaccinated group also shed significantly less S. Typhimurium then the singly infected S.
Typhimurium group which shed 2.44 Log_{10} S. Typhimurium organisms per gram
(p=0.03). *L. intracellularis* vaccination did not have a significant impact on S.
Typhimurium shedding when animals were singly infected with *S. Typhimurium*.

Figure 1. Fecal shedding of *Salmonella enterica* serovar Typhimurium measured by the MPN method.
Line graph of *S. Typhimurium* shedding by group in different time points. Significant differences between
treatment groups are designated by different letters (P < 0.05).

L. intracellularis vaccination alters the microbiome in co-infected
animals

To investigate microbiome differences between treatment groups, beta diversity
analysis was performed using the weighted UniFrac distance which measures
dissimilarity in microbiomes based on their phylogenetic composition (Lozupone et al.,
2007). Investigating the 7 day post infection timepoint, different treatment groups had
significant differences in their microbiome community structure (ANOSIM p<0.05).
The co-infected vaccinated group clustered apart from all other treatment groups.
Again, this effect was dependent on an animal receiving both *S. Typhimurium* and *L.
intracellularis* as well as prior *L. intracellularis* vaccination (Figure 2).
Figure 2. Beta diversity analysis, Principal coordinate analysis plot of weighted UniFrac distance among different treatment groups at 7 days post \textit{S}. Typhimurium infection (ANOSIM p< 0.05).

Conclusion

Vaccination against \textit{L. intracellularis} significantly reduced \textit{S}. Typhimurium shedding (p<0.05) in co-infected animals in comparison to the co-infected group without vaccination and the group challenged with \textit{S}. Typhimurium alone. Significant differences in beta diversity were found (ANOSIM p< 0.05) and the co-challenged vaccinated group had a distinct community structure form other groups demonstrating that co-challenge and vaccination lead to different changes in the microbiome compared to single or dual infection and vaccination without challenge. These results indicate that vaccination against \textit{L. intracellularis} impacts the microbiome and reduces shedding of \textit{S}. Typhimurium in co-infected animals. This evidence suggests that \textit{L. intracellularis} vaccination may be used as novel tool to aid in the control of \textit{Salmonella} on swine farms as well as an alternative to reduce the need for antibiotic treatment of pigs and improve food safety.

References

Dickson JS, Hurd HS. Salmonella in the Pork Production Chain. 2013. #03558-3/13 National Pork Board, Des Moines, IA USA.

