2008

Optimization and management of materials in earthwork construction

Longjie Hong
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd
Part of the Civil and Environmental Engineering Commons

Recommended Citation
https://lib.dr.iastate.edu/etd/11519

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Optimization and management of materials in earthwork construction

by

Longjie Hong

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Civil Engineering (Geotechnical Engineering)

Program of Study Committee:
Radhey S Sharma, Co-major Professor
Vernon R. Schaefer, Co-major Professor
David J. White
Sivalingam Sritharan
Matthew Helmers

Iowa State University
Ames, Iowa
2008

Copyright © Longjie Hong, 2008. All rights reserved.
LIST OF FIGURES

LIST OF TABLES

CHAPTER 1. GENERAL INTRODUCTION

1.1 OVERVIEW

1.2 OBJECTIVES AND SCOPE

1.3 THESIS ORGANIZATION

1.4 REFERENCE

CHAPTER 2. OPTIMIZATION OF MATERIALS IN EARTHWORK CONSTRUCTION - PROPORTIONING OF FOUNDATION/SUBGRADE MATERIALS

ABSTRACT

2.1 INTRODUCTION

2.2 EXPERIMENTAL INVESTIGATIONS

2.3 RESULTS AND DISCUSSION

2.4 CONCLUSIONS AND RECOMMENDATIONS

2.5 ACKNOWLEDGEMENTS

2.6 REFERENCES

CHAPTER 3. LABORATORY INVESTIGATION OF OPTIMIZATION OF MATERIALS IN EARTHWORK CONSTRUCTION BY SOIL MIXING

ABSTRACT

3.1 INTRODUCTION

3.2 BACKGROUND

3.3 EXPERIMENTAL INVESTIGATION

3.4 RESULTS AND DISCUSSION

3.5 CONCLUSIONS AND RECOMMENDATIONS

3.6 ACKNOWLEDGEMENTS

3.7 REFERENCES

CHAPTER 4: PERMEABILITY OF COMPACTED GLACIAL TILL RELATED TO VALIDATION AND PREDICTON WITH THE ENHANCED INTEGRATED CLIMATIC MODEL (EICM)

ABSTRACT

4.1 INTRODUCTION

4.2 BACKGROUND

4.3 MATERIALS AND METHODS

4.4 TEST RESULTS AND DISCUSSIONS
4.5 CONCLUSIONS 66
4.6 ACKNOWLEDGEMENTS 66
4.7 REFERENCES 67

CHAPTER 5 FIELD INVESTIGATION OF SETTLEMENT ADJACENT TO HIGHWAY CULVERTS
ABSTRACT 89
5.1 INTRODUCTION 89
5.2 BACKGROUND 90
5.3 FORENSIC INVESTIGATION 93
5.4 LABORATORY TESTING 93
5.5 NUMERICAL ANALYSIS OF PAVEMENT SETTLEMENT 96
5.6 CONCLUSIONS AND RECOMMENDATIONS 97
5.7 REFERENCES 97

CHAPTER 6. GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY
6.1 GENERAL CONCLUSIONS 120
6.2 RECOMMENDATIONS FOR FURTHER STUDY 121

GENERAL ACKNOWLEDGEMENTS 122
LIST OF FIGURES

Figure 2.1. Location of sites 19
Figure 2.2. Grain size distribution of select and unsuitable soils 19
Figure 2.3. Casagrande plasticity chart for the mixtures and unsuitable soils 20
Figure 2.4(a). Compaction curves for mixture of soils No. 1 and No. 3 20
Figure 2.4(b). Compaction curves for mixture of soils No. 6 and No. 3 21
Figure 2.4(c). Compaction curves for mixture of soils No. 8 and No. 3 21
Figure 2.4(d). Compaction curves for mixture of soils No. 9 and No. 3 22
Figure 2.4(e). Compaction curves for mixture of soils No. 10 and No. 3 22
Figure 2.4(f). Compaction curves for mixture of soils No. 11 and No. 3 23
Figure 2.4(g). Compaction curves for mixture of soils No. 1 and No. 12 23
Figure 2.4(h). Compaction curves for mixture of soils No. 6 and No. 12 24
Figure 2.4(i). Compaction curves for mixture of soils No. 8 and No. 12 24
Figure 2.4(j). Compaction curves for mixture of soils No. 9 and No. 12 25
Figure 2.4(k). Compaction curves for mixture of soils No. 10 and No. 12 25
Figure 2.4(l). Compaction curves for mixture of soils No. 11 and No. 12 26
Figure 2.5(a). Dry density vs. moisture content for mixture of soil No. 1 and No. 3 26
Figure 2.5(b). Dry density vs. moisture content for mixture of soil No. 6 and No. 3 27
Figure 2.5(c). Dry density vs. moisture content for mixture of soil No. 8 and No. 3 27
Figure 2.5(d). Dry density vs. moisture content for mixture of soil No. 9 and No. 3 28
Figure 2.5(e). Dry density vs. moisture content for mixture of soil No. 10 and No. 3 28
Figure 5(f). Dry density vs. moisture content for mixture of soil No. 11 and No. 3 29
Figure 2.5(g). Dry density vs. moisture content for mixture of soil No. 1 and No. 12 29
Figure 2.5(h). Dry density vs. moisture content for mixture of soil No. 6 and No. 12 30
Figure 2.5(i). Dry density vs. moisture content for mixture of soil No. 8 and No. 12 30
Figure 2.5(j). Dry density vs. moisture content for mixture of soil No. 9 and No. 12 31
Figure 2.5(k). Dry density vs. moisture content for mixture of soil No. 10 and No. 12 31
Figure 2.5(l). Dry density vs. moisture content for mixture of soil No. 11 and No. 12 32
Figure 2.6. Relationship of Proctor density and optimum moisture content 32
Figure 2.7(a). Unconfined compression strength vs. moisture content for mixture soil No.1 and No.3 33
Figure 2.7(b). Unconfined compression strength vs. moisture content for mixture soil No.6 and No.3 33
Figure 2.7(c). Unconfined compression strength vs. moisture content for mixture soil No.8 and No.3 34
Figure 2.7(d). Unconfined compression strength vs. moisture content for mixture soil No.9 and No.3 34
Figure 2.7(e). Unconfined compression strength vs. moisture content for mixture soil No.10 and No.3 35
Figure 2.7(f). Unconfined compression strength vs. moisture content for mixture soil No.11 and No.3
Figure 2.7(g). Unconfined compression strength vs. moisture content for mixture soil No.1 and No.12
Figure 2.7(h). Unconfined compression strength vs. moisture content for mixture soil No.6 and No.12
Figure 2.7(i). Unconfined compression strength vs. moisture content for mixture soil No.8 and No.12
Figure 2.7(j). Unconfined compression strength vs. moisture content for mixture soil No.9 and No.12
Figure 2.7(k). Unconfined compression strength vs. moisture content for mixture soil No.10 and No.12
Figure 2.7(l). Unconfined compression strength vs. moisture content for mixture soil No.11 and No.12
Figure 3.1. Type MGM 250 soil mixer
Figure 3.2. Grain size distribution of select and unsuitable soils.
Figure 3.3. Casagrande plasticity chart of select, unsuitable and blends.
Figure 3.4. Compaction curves of Soil #1, #2, #3 and #4.
Figure 3.5(a). Compaction curves of #4 and #1 blends.
Figure 3.5(b). Compaction curves of #4 and #2 blends.
Figure 3.5(c) Compaction curves of #4 and #3 blends.
Figure 3.6. Maximum dry density vs. optimum moisture content.
Figure 3.7(a). Unconfined compressive strength of #4 and #1 blends.
Figure 3.7(b). Unconfined compressive strength of #4 and #2 blends
Figure 3.7(c). Unconfined compressive strength of #4 and #3 blends.
Figure 4.1. Permeability and water content, compaction characteristics relationship of compacted clays after Lambe(1958) (a) Jamaica Sandy clay; (b) Siburua clay
Figure 4.2. Effect of air-drying on permeability of compacted soil
Figure 4.3. Compaction, permeability behavior of soil No. A
Figure 4.4. Compaction, permeability behavior of soil No. B
Figure 4.5. Compaction, permeability behavior of soil No. C
Figure 4.6. Compaction, permeability behavior of soil No. D
Figure 4.7. Compaction, permeability behavior of soil No. E
Figure 4.8. Permeability versus void ratio relationship for soil No. A
Figure 4.9. Permeability versus void ratio relationship for soil No. B
Figure 4.10. Permeability versus void ratio relationship for soil No. C
Figure 4.11. Permeability versus void ratio relationship for soil No. D
Figure 4.12. Permeability versus void ratio relationship for soil No. E
Figure 4.13. Permeability versus compaction variables for soil No. A
Figure 4.14. Permeability versus compaction variables for soil No. B
Figure 4.15. Permeability versus compaction variables for soil No. C
Figure 4.16. Permeability versus compaction variables for soil No. D 85
Figure 4.17. Permeability versus compaction variables for soil No. E 86
Figure 4.18. Permeability versus compaction variables for all five soils 86
Figure 4.19. A versus PI*P200 for all five Iowa cohesive select soils 87
Figure 4.20. α versus LL for all five Iowa cohesive select soils 87
Figure 4.21. Comparison of NCHRP 1-37A calculated permeability and measured permeability 88
Figure 4.22. log K vs. PI*P200 88
Figure 5.1. Cross section of pavement 106
Figure 5.2. The effect of soil settlement on (a) rigid and (b) flexible pipes (US Army, 1959) 106
Figure 5.3. Proposed treatment of materials surrounding the pipe (Iowa DOT specification, 2001) 106
Figure 5.4. Locations of three investigated sites 107
Figure 5.5. Topographic profile at mile post 195, Highway 18, Iowa 108
Figure 5.6. Pavement surface distortion, Highway 18 east (mile post 195), Iowa. 108
Figure 5.7. Schematic boring locations on Highway 330S 109
Figure 5.8. Moisture content profile of the embankment 109
Figure 5.9. Stress-strain curves and pore pressure curve for BH1 110
Figure 5.10. Stress-strain curves and pore pressure curve for BH2 111
Figure 5.11. Stress path for BH1 112
Figure 5.12. Stress path for BH2 112
Figure 5.13. Pouring the flowable mortar 113
Figure 5.14. Strength after 24 hours 113
Figure 5.15 (a). Settlement contour of pipe buried in soil (2 m wide trench) 114
Figure 5.15 (b). Settlement contour of pipe buried in soil (4 m wide trench) 115
Figure 5.15 (c). Settlement contour of pipe buried in gravel and flowable mortar (2 m wide trench) 116
Figure 5.15 (d). Settlement contour of pipe buried in gravel and flowable mortar (4 m wide trench) 117
Figure 5.15 (e). Settlement contour of pipe buried in gravel (2 m wide trench) 118
Figure 5.15 (f). Settlement contour of pipe buried in gravel (4 m wide trench) 119
LIST OF TABLES

Table 2.1. Current Iowa DOT specification for cohesive soil classification into “select”, “suitable”, and “unsuitable” categories
Table 2.2. Index properties and classifications of individual soil
Table 2.3. Different proportions of materials for mix design
Table 2.4(a). Summary of properties of select-unsuitable (Unsuitable Soil No. 12)
Table 2.4(b). Summary of properties of select-unsuitable (Unsuitable Soil No. 3) mixtures
Table 3.1. Current Iowa DOT specification for cohesive soil classification into “select”, “suitable”, and “Unsuitable” Categories
Table 3.2. Summary of Properties of Select and Unsuitable Soils
Table 3.3. Summary of Properties of Select and Unsuitable Blends
Table 4.1. Index properties of select soil used in permeability test
Table 4.2. Recommended laboratory hydraulic gradients for various hydraulic conductivities
Table 4.3. Permeability test results for Soil No. A
Table 4.4. Permeability parameters for five cohesive select soils in Iowa
Table 4.5. Regression constants of five cohesive select soils from Iowa
Table 4.6. Comparison of measured permeability to NCHRP 1-37A empirical equations
Table 4.7. Comparison of measured permeability to Benson and Trast’s regression model
Table 4.8. Validation of permeability model Eqs (9) and (10)
Table 5.1. Flowable fill specifications (Hegarty et al. 1998)
Table 5.2. Flowable fill mix design
Table 5.3. ASTM Specification C 76 concrete pipe strength standards
Table 5.4. Locations of investigated sites
Table 5.5 (a). Boring logs of Highway 330S – Borehole 1
Table 5.5 (b). Boring logs of Highway 330S – Borehole 2
Table 5.5 (c). Boring logs of Highway 330S – Borehole 3
Table 5.6. CU Triaxial Tests Summary
Table 5.7. Summary of Consolidation Tests
Table 5.8. Summary of the Flowable Mortar Strength of Different Mixes
Table 5.9. Summary of the materials properties in Sigma/W analysis
Table 5.10. Typical elastic moduli of soil (EM 1110-1-1904, 1990)
CHAPTER 1. GENERAL INTRODUCTION

1.1 OVERVIEW

All kinds of natural earth materials play an important role in the design and construction of geotechnical systems. Different earth materials such as soil and rock have been used in the construction of various geotechnical systems including foundations, retaining walls, embankments and road pavements and air-field pavements, box culverts and bridge abutments. The choice of particular geo-materials for a construction depends on the type and purpose of the geotechnical system itself. Some geo-materials such as peat, muck, expansive/swelling soils and collapsible soils, however, can not be used in any type of construction, for the severity of post-construction damage they may cause can be disconcerting. Often site soils are unacceptable for the intended function and must be replaced with better quality materials or improved. One method of improvement is to mix high quality site materials with lesser quality site materials to provide an acceptable soil material.

A field investigation of some embankments, sub-grades and pavements in the State of Iowa revealed different kinds of site-specific problems such as pavement cracking, and pipe distress. They have been identified as the following during field investigation:

- Cracking of pavements in longitudinal and transverse directions;
- Rutting of pavements, which is due to poor construction;
- Poor compaction of the backfill material (sand and rock backfill) of the drain pipe leading to uneven settlement of pavements;
- Bumps experienced by vehicles on points where drain pipes lie due to depression.

Most of the pavements have been found to develop some amount of depression where drain pipes lie. This leads to vehicles experiencing an inconvenient bump. These problems are related to the poorly compacted backfill (crushed lime stone) of the pipe. The settlement of the backfill material under the traffic loads causes bumps on the pavement surface and distress to the drain pipes buried in the sand backfill. This might lead to cracking of pipes resulting in leakage of water into the subsoil.

Soil permeability is a key parameter to the stability of subgrade soils. Permeability governs such engineering problems as the flow of water through or around embankment, the consolidation of embankment soils under applied loads. It is of great importance in connection with problems of seepage, settlement, and stability of embankment and pavement structures.

A review of the above problems suggested that they could be divided primarily into three groups as follows:
• Pavement cracking due to improper management of pavement geotechnical materials;
• Settlement of soil above the pipe due to improper compaction of the backfill;
• Permeability of mixed subgrade soils.

1.2 OBJECTIVES AND SCOPE

The research project aims at providing solutions to the above problems through a better management and optimization of the available pavement geotechnical materials and through ground improvement, soil reinforcement and other soil treatment techniques. The overall goal will be worked out through simple laboratory experiments such as particle size analysis, plasticity tests, compaction and permeability tests. The geotechnical applications of the material and the various properties of the material would serve as a basis for the prediction of its engineering performance and its suitability.

Overall, the primary objectives and plans of this research were: (1) to evaluate the engineering properties of embankment by mixing different materials such as the select and unsuitable in different proportions. Grain-size distribution, plasticity, compaction characteristics, permeability, and shear strength characteristics were determined on various mixes. Based on the amount of improvement in the engineering behavior, the optimum mix was selected and suggested for the field conditions; (2) to evaluate the use of flowable mortar in place of conventional backfill material around a drainage pipe. A laboratory testing program was conducted wherein the engineering behavior of the subgrade layers and pipe with flowable mortar as the backfill material was studied. Load tests were performed to study the behavior of the concrete pipe placed in flowable mortar. Samples were collected from the flowable mortar after the testing for the determination of engineering properties such as strength, water content and density. A comparative study will also be made on a similar pipe embedded in soil conditions similar to those in the field. The possible reasons causing depression just above the pipe was investigated; and (3) to evaluate the permeability of mixed materials.

1.3 THESIS ORGANIZATION

This dissertation consists of four papers to be submitted to geotechnical journals:
1. Optimization of materials in earthwork construction – proportioning of foundation/subgrade materials
2. Laboratory investigation of optimization of materials in earthwork construction by soil mixing: Fairfield
3. Permeability of compacted glacial till related to validation and prediction with the Enhanced
Integrated Climatic Model (EICM)

4. Field investigation and numerical modeling of culvert settlement

Each paper has respective literature review, research data, important findings, conclusions, suggestions for future research, acknowledgements and references. A general conclusion is made based on the main findings of these four papers. Brief introduction of each paper is presented in the following sections.

Optimization of materials in earthwork construction– proportioning of foundation/subgrade materials

Three materials available for earthwork construction are, based on their suitability, classified as: select, suitable, and unsuitable soils. Unsuitable soils are some expansive/swelling soils or collapsible soils with low density and low strength, which should be disposed of at least 1.0 m below subgrade elevation. As the large amount of money involved in carrying out the remedial measures is a limitation, it is agreed that management and optimization of the available materials be focused upon, by mixing the materials among themselves in various proportions and observing the response. Because of the availability and it is much cheaper than select soils, making use of unsuitable soils can reduce the cost of earthwork construction. In this research, two unsuitable soils were mixed with six select soils at various proportions (unsuitable : select = 25%:75%, 50%:50% and 75%:25%) to investigate how the engineering properties can be improved at different select-unsuitable ratios. Experimental results indicate that maximum dry density and unconfined compression strength both increase while the optimum moisture content decreases linearly with increasing select proportion. Moreover, regression analysis shows that maximum dry density decreases linearly with increasing optimum moisture content. To reduce the cost of earthwork construction, a mixture of select-unsuitable at a ratio of 3:1 can still be used as select soil and be placed on the top 0.6m of subgrade.

Laboratory investigation of optimization of materials in earthwork construction by soil mixing: Fairfield

The site selected for this study is at Fairfield, Jefferson County, Iowa. About 10 miles of Highway 34 bypass will be constructed at this site. According to soil survey (Soil Survey Report, 1992), the typical stratigraphy of this area is, from top to bottom, clay pan, a loess, paleosol (gumbotil), and Kansan glacial till layer. The clay pan and gumbotil have high swell potential, while loess is a collapsible material. These soils are to be used as embankment fills at different elevations based on their performance. They will be removed and tested in laboratory prior to construction.

This paper presents how the engineering properties (such as plasticity index, unconfined compressive strength, compaction characteristics etc.) of select-unsuitable blends change with various mixing proportions. Recommendations of blends used in different locations of an embankment are also
Permeability of compacted glacial till related to validation and prediction with the Enhanced Integrated Climatic Model (EICM)

Moisture and temperature are two environmental variables that affect the performance of pavement structure and subgrade. These variables have been incorporated in the Mechanistic-Empirical Design Guide through a sophisticated climatic modeling tool called the Enhanced Integrated Climatic Model (EICM). Permeability of the subgrade soil is a required input for this model. One of the major tasks undertaken in developing EICM is the development of improved estimates of saturated hydraulic conductivity k_{sat} based on soil index properties such as fine contents, P_{200}, effective diameter, D_{60}, and plasticity index, PI. This estimation is used when field and laboratory data are not available and has been proved to have a good agreement with an extended database. However, EICM model has some limitations that it can only predict the permeability of compacted soils at optimum moisture contents under Standard Proctor compaction. To expand this empirical model for practical purpose, a more comprehensive model is presented in this paper.

It is very difficult to measure in situ soil permeability accurately. Laboratory permeability tests also have some limitations: 1) representative samples are not easy to obtain in the sense that samples prepared in the laboratory represent only soil matrix, primary conductivity characteristics, but not structural defects such as fissures, desiccation cracks, etc.; 2) laboratory tests often last very long time. Thus it is of interest to predict the permeability from some simple laboratory tests for practical purposes. Since permeability is the measure of the ease with which fluid flows through porous material, certain relationships can be expected to exist between permeability and grain-size distribution, void ratio, and compaction characteristics, etc.. Estimating permeability from these parameters takes less time and is less expensive field testing. However, a number of factors are influencing the permeability of clay, such as particle size, void ratio, composition, fabric, and degree of saturation. This makes the prediction of permeability more complicated unless some parameters are chosen such that they are constant. In this work, the cohesive select soils will be used in the embankment construction as pavement subgrade. A number of permeability tests on these soils that will be used at each layer of embankment are performed. The objectives of this research are to (1) study permeability behavior of cohesive select soils in Iowa and provide a predictive method for permeability of embankment soils; (2) verify and compare this method to the EICM model.

Field investigation and numerical modeling of culvert settlement

Culverts are commonly built to deal with the highway drainage needs. However, Settlement adjacent to highway culvert has been found shortly after the new highway is open to the traffic. Although
it is not perceptible to the naked eyes, it is noticeable in a vehicle driving though these locations. To address this issue, the Iowa Department of Transportation (IDOT) initiated a research project to investigate the causes of the problem and develop a solution.

Settlement is a common problem of culvert and is often due to poorly compacted sand backfill and rock backfill (crushed lime stone) materials. It can also result from settlement of the culvert in soft foundation material, displacement of soft material, or piping along the culvert. Poorly compacted backfilled soils are subject to substantial volume reduction once saturated (Selig, 1990). This phenomenon is called collapse. Collapse occurs because the backfill soils lose capillary tension when they become saturated, causing the soil particles to settle into a denser packing. Selig (1990) stated that collapse strain decreases as the degree of compaction increases, and diminished to an insignificant amount once the compaction reaches 85% to 90% standard Proctor density. The settlement of backfill materials causes bumps on the pavement surface and distress to the drain pipes buried in the sand backfill. This might lead to cracking of pipes resulting in leakage of water into the subsoil. If the subsoil consists of problematic soils such as expansive soils or loess collapsible soils, seeping of water into these soils could trigger further intricate problems of volume changes, detrimental to the engineering performance of pavements. Although there is considerable information available on the design and construction of new culverts, there is little information in the literature on how to repair culvert problems and even less on how to rehabilitate, strengthen, or retrofit upgrade culverts. Initiating any kind of remedial measures requires a thorough investigation of the soil profile and properties of different soils in different strata.

The objectives of this study were to: (1) investigate culvert settlement problems in Iowa; (2) review the remediation methods in the literature; and (3) study the select and flowable mortar as backfill options.

Appendices consist of four sections. Appendix A presents tabulated data obtained from the soil mixing program. Appendix B provides field data and laboratory data of soils from Fairfield embankment. Appendix C provides the permeability test data of all soils and blends. Appendix D presents all the laboratory test data of the soils near the culvert at Highway 330, Iowa.

1.4 REFERENCE:

CHAPTER 2: OPTIMIZATION OF MATERIALS IN EARTHWORK CONSTRUCTION –

PROPORTIONING OF FOUNDATION/SUBGRADE MATERIALS

Radhey S. Sharma, Longjie Hong and Vernon R. Schaefer
A paper to be submitted to the ASCE Journal of Materials in Civil Engineering

ABSTRACT

Materials used for earthwork construction are often classified as select, suitable, or unsuitable soils. Unsuitable soils include some expansive/swelling soils or collapsible soils with low density and low strength, which should be disposed of at least 1.0 m below subgrade elevation. As the large amount of money involved in carrying out the remedial measures is a limitation, it is agreed that management and optimization of the available materials be focused upon, by mixing the materials among themselves in various proportions and observing the response. Because of the availability and it is often more difficult to work with, making use of unsuitable soils can reduce the cost of earthwork construction. In this research, two unsuitable soils were mixed with six select soils at various proportions (unsuitable: select = 25%:75%, 50%:50% and 75%:25%) to investigate how the engineering properties can be improved at different select-unsuitable ratios. Experimental results indicate that maximum dry density and unconfined compression strength both increase while the optimum moisture content decreases linearly with increasing select proportion. Moreover, regression analysis shows that maximum dry density decreases linearly with increasing optimum moisture content. Based on the results from this study, a mixture of select-unsuitable at a ratio of 3:1 can be used as select soil and be placed on the top 0.6m of subgrade.

2.1 INTRODUCTION

Earth materials in the form of soil and rock have been used in the construction of various geotechnical systems including foundations, retaining walls, embankments, road and air-field pavements. Performance of the system depends on both the properties of the soil and how the soil is processed (compacted). In general, most soils can be processed such that their engineering properties will be acceptable. Certain geomaterials such as peat, muck, expansive/swelling soils and collapsible soils, however, need to be used carefully in any type of construction, for the severity of post-construction damage they may cause can be disconcerting. In Iowa, for application to roadway construction, a rapid performance-based classification system, the Iowa Empirical Performance Classification (EPC) is used to classify soils into three groups:
select, suitable and unsuitable (White et al. 2002). The choice of particular geo-materials for a construction
depends on the type and purpose of the geotechnical system itself. Select soils are those placed directly
under the pavement structure (0 to 0.6 m) as subgrade. The normal select materials are clay loam, loam, or
sand. Select soils contain either predominantly sand or a good mixture of sand, silt, and clay (Iowa DOT
specification, 2001). Because of the composition of a select soil, the density and the shear strength are
much higher when they are properly compacted. Suitable soils are placed under select soils (0.6 m to 1.5
m) and are usually in the zone of seasonal freeze/thaw and wetting and drying cycles. Unsuitable soils are
buried beneath the suitable soils (1.0 to 1.5 m below top of subgrade). It is a material that cannot be
consolidated properly in the embankment, including highly plastic clays or highly compressible, frost
prone silts. It should be noted that if there is excessive unsuitable, it needs to be removed before
construction. Table 2.1 shows current Iowa DOT specifications for “select”, “suitable” and “unsuitable”
soils.

Based on their limited availability, select soils are generally more expensive to use than unsuitable soils,
while unsuitable soils usually have to be wasted thus increasing costs when they are encountered on a
project site. To reduce the cost of construction, mixing of unsuitable soils with select soils has been
proposed in this research. Engineering properties of the blends have been evaluated and compared with
those of the natural unblended materials. This technique of optimization of the available geotechnical
materials, it is hoped, would serve the purpose, as proportioning and mixing different pavement
geotechnical materials would improve the engineering properties of the blends. Hence, the pavement
constructed on these blends would possibly give a better engineering performance.

Currently, soil mixed with various chemicals such as cement, lime and fly ash has been used in the field
(Hunter 1988; Winterkorn et al. 1991; Petry and Little 1992; Rollings et al. 1999; Acosta et al. 2003;
Hoyos et al. 2004; and Phani Kumar and Sharma 2004). Of the various additives used for stabilizing soils,
lime, fly ash (Chen 1988; Rao 1984; Sankar 1989; Cokca 2001) and calcium chloride (Desai and Oza
1997) have shown promise as they reduced the amount of volume change and improved the strength
characteristics. Most nonexpansive clays pose the problem of large compression and low shear strength at
high water contents. The engineering behavior of nonexpansive clays also showed improvement upon
stabilization with additives like lime, cement, and fly ash (Broms and Boman 1977; Chen 1988; Kaniraj
and Havanagi 2001).

In recent years, natural poor soils mixed with granular materials are also used in construction of base,
subbase, and surface courses of paved facilities. Leelani (1989) studied the properties of an existing active
clay by adding various proportions of a fine sand. It was found that a 20% sand admixture can improve the
properties of the active clay adequately for highway embankment construction. Granular stabilization can
obtain a well-proportioned mixture of particles with continuous gradation (well graded) and the desired
plasticity. The granular constituents form a bearing skeleton while fine portions can provide effective
cohesion and cementation. However, more frequently, the natural soils will lack some constituents needed to form a continuous bearing skeleton or to provide the necessary cohesion and cementation. In these cases, the desired mixture can be compounded by addition of proper proportions of the granular materials or fines.

This paper presents how the engineering properties (such as plasticity index, unconfined compressive strength, compaction characteristics etc.) of select-unsuitable blends change with various mixing proportions. An optimal mix design to ensure a select blend is also provided.

2.2 EXPERIMENTAL INVESTIGATIONS

Materials

Thirteen soils were collected from five different sites within the State of Iowa: Highway 2 near Sidney, Highway 218 near Charles, Highway 20 near Webster, Highway 30 near Le Grand, and Highway 60 near Hospers. At all these sites highway embankment construction projects were in progress. The soils were collected from the embankment or nearby borrow pits. The locations of these sites are shown in Figure 2.1.

Tests Conducted

Laboratory gradation tests, Atterberg limits, compaction, and unconfined compression strength tests were performed in two series. In the first series, these tests were conducted to classify the thirteen native soils into select, suitable and unsuitable according to the Iowa EPC. In the second series, the same tests were conducted on each select-unsuitable soil mixture in various proportions.

Gradation tests were conducted in accordance to the ASTM Standard D2487 Standard Test Method for Classification of Soils for Engineering Purposes. 500 g air-dry soil was pulverized and washed through No.200 sieve. The soil retained on the sieve was oven-dried and sieved through No. 10, 20, 40, 60, 80, 100, and 200 sieves. 50 g of soil passing No.200 sieve was collected and soaked in 125 ml dispersing agent (40g/l of sodium hexametaphosphate) for 16 hours prior to hydrometer test. A 152H hydrometer was used for all hydrometer tests.

Atterberg limits tests were performed according to ASTM D4318 Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. For the mixtures, select soils passing through #40 sieve were mixed with unsuitable soils passing through No. 40 sieve at various proportions.

Compaction tests were performed on 2 in. x 2 in. (0.05m x 0.05 m) cylindrical samples. (See special report “the Iowa State Compaction Apparatus: A Small Sample Apparatus for Use in Obtaining Density and Strength Measurements of Soils and Soil-Additives.”). Standard Proctor compaction sample is made in a 1/30 ft³ (0.028 m³) cylinder mold using three layers each compacted by 25 blows of the 5.5-lb (2.48 kg) rammer dropped 12 inches (0.305 m) for an energy input of 12375 ft-lb/ft³ (59942 m-kg/m³) On the other
hand, ISU 2 in. x 2 in. (0.05m x 0.05m) compaction test method utilizes specimens 2 inches (0.05 m) in
diameter by 2 inches (0.05m) (approximately) high compacted by 10 blows of the 5-lb (2.25 kg) hammer
dropped 12 inches (0.305 m) for an energy input of 13751 ft-lb/ft³ (66606 m-kg/m³) which requires only
about one-tenth of the material and one-third of the time needed for Standard Proctor specimens. However,
maximum dry density and optimum moisture content obtained from two test methods are very close. It has
been proved that ISU 2 in. x 2 in. (0.305m x 0.305m) compaction apparatus can be used in lieu of the
standard Proctor compaction test to increase productivity.

Unconfined compression strength tests were performed on 2 in. x 4 in. (2 inches (0.05m) diameter, 4
inches (0.10m) height) cylindrical samples at different moisture contents in accordance to ASTM D 2166-
00, “Test Method for Unconfined Compressive Strength of Cohesive Soil.” Soil was put in two layers and
the compaction energy was doubled compared to 2 in. x 2 in. (0.05m x 0.05m) samples.

For the 2 in. x 2 in. (0.05m x 0.05m) and 2 in. x 4 in. (0.05m x 0.10m) samples, air-dried select soils
passing through No. 4 sieve were mixed with unsuitable soils passing through No. 4 sieve at various
proportions. The required weight of the soil was determined based on the placement dry unit weight, water
content and the volume of the specimen. The required amount of water was added to the dry soil and
thoroughly mixed.

2.3 RESULTS AND DISCUSSION

2.3.1 Properties of individual soil

The index properties of these thirteen native soils and their classification are summarized in Table 2.2. As
shown in Table 2.2, six native soils are classified as select soils (No.1, 6, 8, 9, 10, and 11), five are suitable
(No. 2, 4, 5, 7, and 13) and the other two are unsuitable (No. 3 and 12) according to EPC classification
procedures. The gradation curves of six select soils and two unsuitable soils are shown in Figure 2.2.

The six select soils are all well-graded glacial tills with coarse-grain proportions, silt content and clay
content ranging from 30% to 46%, 37% to 56% and 10% to 21%, respectively. Soil No.6, No.10 and
No.11 are yellow in color while No.1, No.8 and No.9 are black. They all have a relatively high maximum
Proctor density and low optimum moisture content. The maximum dry densities and optimum moisture
contents of these six select soils range from 1857 to 2030 kg/m³ and from 10% to 14%, respectively. The
liquid limits of these thirteen soils range from 25 to 41 and plasticity indices range from 10 to 21.

The unsuitable soils both have high silt contents. Soil No.12 was collected from Hospers (northwestern
Iowa) and it was dark black in color with high silt content (88%) and very little coarse grain material
(about 4% sand and gravel) and clay particles (8% clay). It also has considerable amount of organic
matters (peat and muck). The Atterberg limits of soil No.12 are in the zone of “silt of medium
compressibility” in the Empirical Performance Classification (EPC) chart (White et al. 2002). In addition,
it was very hard to compact and it was soft. It has very low maximum dry density (1495 kg/m³) and unconfined compression strength (187 kPa) at optimum moisture content of 22%. Soil No.3 was collected from Sydney and it was grey in color with high silt content (88%) and no coarse constituent. Its Atterberg limits fall in low/medium plasticity zone. This soil is frost susceptible and should be buried at least 1 m below top of subgrade. The maximum dry density, optimum moisture content and unconfined compression strength of soil No.3 are 1730 kg/m³, 19% and 302 kPa, respectively. Soil No.3 is a better material than No. 12 but they both are classified as unsuitable soils.

Except for soil No.12, all other soils are low-medium plasticity and classified as CL by Unified Soil Classification System (USCS) and A-6 by AASHTO.

2.3.2 Proportioning and mixing

When extensive quantities of unsuitable materials are encountered on a project site, the cost of removal and disposal of these materials can be quite high. An alternative is the management and optimization of the available materials be focused upon, by mixing the unsuitable materials with better materials in various proportions and observing the response. When select material is available from the project site or from a nearby borrow pit, the select material can be mixed with the unsuitable soil. The mix should be moisture-conditioned for uniform and easy compaction and compacted layer by layer until the required elevation is attained. Sheepsfoot rollers can be used for the compaction. Before actually deciding on the type of the mix to be used in the field, the physical and engineering properties of different mixes need to be investigated. One of the aims of this research project is to make use of mixing select and unsuitable soils and to determine different engineering properties to assess the pavement behavior. In this test program, each select soil (No.1, No.6, No.8, No.9, No.10 or No.11) is mixed with each unsuitable soil (No.3 or No.12) at different mixing proportions as shown in Table 2.3. Five suitable soils were not used in mixing.

Index properties of mixtures

Figure 2.3 is the Casagrande plasticity chart for all the mixtures at various proportions. Most of the soils are located in the CL zone (low/medium plasticity to medium plasticity). The soil index properties for two unsuitable soils are also shown in this chart. Since the variation of the liquid limit and plasticity index is small (25 to 41, and 10 to 21, respectively), it is hard to tell the trend of how the Atterberg limits of these mixtures change with the mixing proportions. However, conclusions can be drawn that the index properties of unsuitable soils have been improved after mixing with select soils.

Compaction characteristics

Figure 2.4 presents Proctor density curves at five mix proportions. Each density curve in Figure 2.4 represents the variation of dry unit weight with moisture content at a specified ratio of the select-unsuitable mixture. For example, in Figure 2.4 (a), select soil No.1 was mixed with unsuitable soil No.3 at
proportions 100% and 0, 75% and 25%, 50% and 50%, 25% and 75%, and 0 and 100%. At least five samples were prepared at different moisture contents for each compaction curve. The zero-air lines of unsuitable soil and select soil are also plotted in Figure 2.4. The upper most curve in Figure 4(a) is the result of the compaction test from soil No.1, which is a select soil (proportion of select : unsuitable = 100% : 0), while the lower most curve represents density curve for unsuitable soil No.3 (proportion of select : unsuitable = 0 : 100%). These results indicate that select soil alone has highest value of dry density at lowest value of optimum moisture content. As the percent unsuitable increases in the mixture, optimum moisture content increases from 12% to 18% and maximum density decreases from 1882 to 1722 kg/m³, the curves shift right and below. The same trend was also found from other mixtures as shown in Figures 2.4(b) to 2.4(l). This effect is attributed to larger select soil particles that decrease the surface area and adsorb less water to attain a higher density.

Observation during compaction of the mixtures revealed that the select soils improved the workability of unsuitable soils for compaction. Higher select content in the mixture was found to be easier to compact.

Maximum Proctor density and optimum moisture content

Figure 2.5 presents maximum Proctor density and optimum moisture content for various select-unsuitable mixtures. These figures show that as the proportion of unsuitable soil increases, the maximum dry density decreases and the optimum moisture content increases linearly. These results are attributed to the presence of larger select particles in the soil constituent. The larger select particles decrease the surface area of the soil and adsorb less water. The select-unsuitable mixtures with higher content of the select soil exhibit higher values of the maximum dry density. This effect is attributed to the dense packing of soil particles since the workability in performing the compaction is significantly improved for the select-unsuitable mixture with higher amounts of select content.

Blotz et al. (1998) developed an empirical method to estimate maximum dry density (γ_dmax) and optimum moisture (w_opt) content of compacted clays from liquid limit (LL). It was found a linear relationship exists between γ_dmax, w_opt, and LL at any compactive effort. Figure 2.6 presents the relationship between optimum moisture content and maximum dry density of all mixtures. The compactive effort used for each sample was equal. A trend line is added to the data points and it shows that maximum density decreases linearly with increasing optimum moisture content, with R² of 0.9321. The relationship between maximum Proctor density (γ_dmax) and optimum moisture content (w_opt) can be expressed by:

\[γ_{dmax} (\text{kg/m}^3) = -39.961 \ w_{opt} + 2410.7 \]

(1)

Strength of mixture

Figure 2.7 presents unconfined compression strength results at different moisture content for each select-unsuitable mixture. When the moisture content is high, soil is very soft. From Figure 2.7(j) it can be seen that at moisture content as high as 33%, soil No.12 has unconfined compression strength of 23 kPa. This is
the lowest strength of all soils including mixtures and occurs at a compressive strain of 16%. While the maximum unconfined compression strength of these mixtures is 651 kPa, which is the strength of soil No.9 at 10% moisture content. This soil is very strong and brittle and it fails at a compressive strain as low as 5%. Figure 2.7 shows a trend that as the moisture content increases, unconfined compression strength decreases. However, at very dry condition (w%<10%), the unconfined compression strength may increase with increasing moisture content. From Figure 2.7 it can also be seen that the maximum unconfined compression strength occurs at moisture content less than optimum moisture content of Proctor compaction. For example, Figure 2.7 (a) shows that soil No.1 has maximum unconfined compression strength of 531 kPa at 10% moisture content, which is less than 12% optimum moisture content.

Classification of mixtures

Table 4 summarizes the index properties, compaction test results, unconfined compression test results and classification of all mixtures. From the table it can be seen that some of the mixtures still can be classified as select soil when the proportion of unsuitable is low (25% unsuitable). When percent unsuitable is as high as 75%, the mixture is either a suitable soil or an unsuitable soil. All the mixtures are poorer materials than select soil alone. However, to reduce the cost of construction, it is recommended that a mixture of select-unsuitable at a ratio of 3:1 be used as top 0.6m of subgrade.

2.4 CONCLUSIONS AND RECOMMENDATIONS

Improved properties of unsuitable soil by mixing select soils were evaluated at various proportions of select-unsuitable soil mixtures: 0:100%, 25%:75%, 50%:50%, and 100%:0. Several conclusions were drawn from the results of this study.

1. The Atterberg limits variation of these soils is very small, with liquid limit and plasticity index ranging from 25 to 41 and 10 to 21, respectively. It is hard to see how the Atterberg limits change as percent unsuitable is increased. It is recommended that more unsuitable soils with high plasticity and more granular select soils be collected in the future research.

2. Experimental results indicate that maximum dry density and unconfined compression strength both increase while the optimum moisture content decreases linearly with increasing select proportion. The maximum dry density decreases linearly with increasing optimum moisture content.

3. When moisture content is greater than about 10%, unconfined compression strength decreases with increasing moisture content. When moisture content is less than 10%, however, the soil is brittle and may have a higher strength at higher moisture content.

4. The select-unsuitable mixture is a poorer material than select soil alone. However, from the test results a 75% select and 25% unsuitable mixture can still be classified as a select soil. To reduce
the cost of construction, a mixture of select-unsuitable at a ratio of 3:1 can still be used as top 0.6m of subgrade.

2.5 ACKNOWLEDGEMENTS

Iowa Department of Transportation sponsored this project under contract TR-501. The opinions, findings, conclusions and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

2.6 REFERENCES

Iowa Department of Transportation Standard Specification for Highway and Bridge Construction, 2001

TABLE 2.1: Current Iowa DOT specification for cohesive soil classification into “select”, “suitable”, and “unsuitable” categories

<table>
<thead>
<tr>
<th>Select soils</th>
<th>Suitable soils</th>
<th>Unsuitable soils</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 45 percent or less silt size fraction (0.075 - 0.002 mm)</td>
<td>a. 1500 kg/m³ or greater density (AASHTO T99 Proctor density)</td>
<td>• Slope dressing only</td>
</tr>
</tbody>
</table>
| 2. 1750 kg/m³ or greater density (AASHTO T99 Proctor density) | b. Group Index < 30 (AASHTO M 145 - 90) | - peat or muck
- soil with plastic limit ≥ 35
- A-7-5 or A-5 having density < 1350 kg/m³
• Disposal 1 m below top of subgrade
- All soils other than A-7-5 or A-5 having density <1500 kg/m³
- All soils other than A-7-5 or A-5 containing 3.0% carbon
• Disposal 1 m below top of subgrade
- A-7-6 (30 or greater)
- Residual clays overlying bedrock regardless of classification
• Disposal 1.5 m below top of subgrade with alternate layers of suitable soils
- shale
- A-7-5 or A-5 soils having density from 1350 kg/m³ to 1500 kg/m³ |
| 3. Plasticity index >10 | | |
| 4. A-6 or A-7-6 soils of glacial origin | | |

Note: (I) Select soils need to meet all requirements 1 through 4;
(II) Suitable soils need to conform to both (a) and (b)
TABLE 2.2: Index properties and classifications of individual soil

<table>
<thead>
<tr>
<th>No.</th>
<th>G<sub>s</sub></th>
<th>LL</th>
<th>PI</th>
<th>% Gravel</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
<th>Proctor Dry Density</th>
<th>Optimum w%</th>
<th>GI</th>
<th>q<sub>u</sub> (kPa)</th>
<th>EPC classification</th>
<th>USCS classification</th>
<th>AASHTO classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.62</td>
<td>35</td>
<td>17</td>
<td>11</td>
<td>25</td>
<td>45</td>
<td>19</td>
<td>1882</td>
<td>12</td>
<td>9</td>
<td>429</td>
<td>Select</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>2</td>
<td>2.67</td>
<td>39</td>
<td>21</td>
<td>0</td>
<td>1</td>
<td>81</td>
<td>18</td>
<td>1746</td>
<td>17</td>
<td>21</td>
<td>341</td>
<td>Suitable</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>3</td>
<td>2.58</td>
<td>34</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>12</td>
<td>1730</td>
<td>19</td>
<td>13</td>
<td>302</td>
<td>Unsuitable</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>4</td>
<td>2.57</td>
<td>32</td>
<td>15</td>
<td>2</td>
<td>30</td>
<td>60</td>
<td>8</td>
<td>1872</td>
<td>12</td>
<td>8</td>
<td>487</td>
<td>Suitable</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>5</td>
<td>2.70</td>
<td>33</td>
<td>13</td>
<td>1</td>
<td>30</td>
<td>58</td>
<td>11</td>
<td>1904</td>
<td>12</td>
<td>7</td>
<td>618</td>
<td>Suitable</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>6</td>
<td>2.70</td>
<td>26</td>
<td>13</td>
<td>1</td>
<td>46</td>
<td>37</td>
<td>17</td>
<td>2030</td>
<td>17</td>
<td>4</td>
<td>356</td>
<td>Select</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>7</td>
<td>2.65</td>
<td>40</td>
<td>16</td>
<td>0</td>
<td>5</td>
<td>78</td>
<td>17</td>
<td>1746</td>
<td>17</td>
<td>17</td>
<td>348</td>
<td>Suitable</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>8</td>
<td>2.69</td>
<td>35</td>
<td>16</td>
<td>3</td>
<td>27</td>
<td>56</td>
<td>14</td>
<td>1938</td>
<td>12</td>
<td>9</td>
<td>336</td>
<td>Select</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>9</td>
<td>2.74</td>
<td>34</td>
<td>16</td>
<td>5</td>
<td>29</td>
<td>56</td>
<td>10</td>
<td>1887</td>
<td>13</td>
<td>8</td>
<td>561</td>
<td>Select</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>10</td>
<td>2.84</td>
<td>25</td>
<td>10</td>
<td>2</td>
<td>44</td>
<td>40</td>
<td>14</td>
<td>1997</td>
<td>11</td>
<td>2</td>
<td>507</td>
<td>Select</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>11</td>
<td>2.71</td>
<td>33</td>
<td>15</td>
<td>3</td>
<td>31</td>
<td>45</td>
<td>21</td>
<td>1857</td>
<td>14</td>
<td>7</td>
<td>444</td>
<td>Select</td>
<td>CL</td>
<td>A-6</td>
</tr>
<tr>
<td>12</td>
<td>2.66</td>
<td>41</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>88</td>
<td>9</td>
<td>1495</td>
<td>22</td>
<td>14</td>
<td>187</td>
<td>Unsuitable</td>
<td>OL</td>
<td>A-4</td>
</tr>
<tr>
<td>13</td>
<td>2.63</td>
<td>41</td>
<td>21</td>
<td>0</td>
<td>23</td>
<td>46</td>
<td>31</td>
<td>1796</td>
<td>15</td>
<td>15</td>
<td>314</td>
<td>Suitable</td>
<td>CL</td>
<td>A-6</td>
</tr>
</tbody>
</table>

Note: q_u was measured at optimum moisture content.

TABLE 2.3. Different proportions of materials for mix design

<table>
<thead>
<tr>
<th>Material</th>
<th>Proportions (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>0 25 50 75 100</td>
</tr>
<tr>
<td>Unsuitable</td>
<td>100 75 50 25 0</td>
</tr>
</tbody>
</table>
Table 2.4 (a). Summary of properties of select-unsuitable (Unsuitable Soil No. 12) mixtures

<table>
<thead>
<tr>
<th>Mixed soil</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>% Gravel</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
<th>Proctor density</th>
<th>Optimum w%</th>
<th>GI</th>
<th>EPC classification</th>
<th>Gs</th>
<th>qu (kPa)</th>
<th>E50 (kPa)</th>
<th>% Unsuitable</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>26</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>46</td>
<td>37</td>
<td>17</td>
<td>2030</td>
<td>10</td>
<td>4</td>
<td>Select</td>
<td></td>
<td>356</td>
<td>9900</td>
<td></td>
</tr>
<tr>
<td>12&6(25%+75%)</td>
<td>30</td>
<td>14</td>
<td>16</td>
<td>1</td>
<td>36</td>
<td>50</td>
<td>13</td>
<td>1866</td>
<td>15</td>
<td>7</td>
<td>Select</td>
<td></td>
<td>411</td>
<td>13733</td>
<td>25</td>
</tr>
<tr>
<td>12&6(50%+50%)</td>
<td>33</td>
<td>18</td>
<td>15</td>
<td>1</td>
<td>25</td>
<td>63</td>
<td>11</td>
<td>1772</td>
<td>15</td>
<td>10</td>
<td>Select</td>
<td></td>
<td>316</td>
<td>7900</td>
<td>50</td>
</tr>
<tr>
<td>12&6(75%+25%)</td>
<td>37</td>
<td>20</td>
<td>17</td>
<td>0</td>
<td>15</td>
<td>75</td>
<td>10</td>
<td>1591</td>
<td>19</td>
<td>14</td>
<td>Suitable</td>
<td></td>
<td>209</td>
<td>5943</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>41</td>
<td>29</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>88</td>
<td>9</td>
<td>1495</td>
<td>22</td>
<td>14</td>
<td>Unsuitable</td>
<td></td>
<td>187</td>
<td>5813</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>35</td>
<td>18</td>
<td>17</td>
<td>11</td>
<td>25</td>
<td>45</td>
<td>19</td>
<td>1882</td>
<td>12</td>
<td>9</td>
<td>Select</td>
<td></td>
<td>429</td>
<td>9350</td>
<td></td>
</tr>
<tr>
<td>12&1(25%+75%)</td>
<td>37</td>
<td>19</td>
<td>18</td>
<td>8</td>
<td>20</td>
<td>56</td>
<td>16</td>
<td>1833</td>
<td>15</td>
<td>11</td>
<td>Select</td>
<td></td>
<td>390</td>
<td>9750</td>
<td>25</td>
</tr>
<tr>
<td>12&1(50%+50%)</td>
<td>37</td>
<td>23</td>
<td>14</td>
<td>6</td>
<td>14</td>
<td>67</td>
<td>14</td>
<td>1733</td>
<td>17</td>
<td>11</td>
<td>Suitable</td>
<td></td>
<td>341</td>
<td>8947</td>
<td>50</td>
</tr>
<tr>
<td>12&1(75%+25%)</td>
<td>39</td>
<td>24</td>
<td>15</td>
<td>3</td>
<td>9</td>
<td>77</td>
<td>11</td>
<td>1629</td>
<td>18</td>
<td>14</td>
<td>Suitable</td>
<td></td>
<td>325</td>
<td>10125</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>41</td>
<td>29</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>88</td>
<td>9</td>
<td>1495</td>
<td>22</td>
<td>14</td>
<td>Unsuitable</td>
<td></td>
<td>187</td>
<td>5813</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>35</td>
<td>19</td>
<td>16</td>
<td>3</td>
<td>27</td>
<td>56</td>
<td>14</td>
<td>1938</td>
<td>12</td>
<td>9</td>
<td>Select</td>
<td></td>
<td>336</td>
<td>10500</td>
<td></td>
</tr>
<tr>
<td>12&8(25%+75%)</td>
<td>37</td>
<td>21</td>
<td>16</td>
<td>2</td>
<td>21</td>
<td>64</td>
<td>13</td>
<td>1830</td>
<td>14</td>
<td>11</td>
<td>Select</td>
<td></td>
<td>290</td>
<td>9120</td>
<td>25</td>
</tr>
<tr>
<td>12&8(50%+50%)</td>
<td>38</td>
<td>24</td>
<td>14</td>
<td>2</td>
<td>15</td>
<td>72</td>
<td>11</td>
<td>1730</td>
<td>17</td>
<td>12</td>
<td>Suitable</td>
<td></td>
<td>254</td>
<td>8340</td>
<td>50</td>
</tr>
<tr>
<td>12&8(75%+25%)</td>
<td>39</td>
<td>25</td>
<td>14</td>
<td>1</td>
<td>9</td>
<td>80</td>
<td>10</td>
<td>1603</td>
<td>20</td>
<td>14</td>
<td>Unsuitable</td>
<td></td>
<td>210</td>
<td>7855</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>41</td>
<td>29</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>88</td>
<td>9</td>
<td>1495</td>
<td>22</td>
<td>14</td>
<td>Unsuitable</td>
<td></td>
<td>187</td>
<td>5813</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>34</td>
<td>18</td>
<td>16</td>
<td>5</td>
<td>29</td>
<td>56</td>
<td>10</td>
<td>1887</td>
<td>13</td>
<td>8</td>
<td>Select</td>
<td></td>
<td>561</td>
<td>18730</td>
<td></td>
</tr>
<tr>
<td>12&9(25%+75%)</td>
<td>35</td>
<td>19</td>
<td>16</td>
<td>4</td>
<td>23</td>
<td>64</td>
<td>10</td>
<td>1790</td>
<td>15</td>
<td>10</td>
<td>Select</td>
<td></td>
<td>468</td>
<td>16220</td>
<td>25</td>
</tr>
<tr>
<td>12&9(50%+50%)</td>
<td>38</td>
<td>23</td>
<td>15</td>
<td>3</td>
<td>16</td>
<td>72</td>
<td>9</td>
<td>1675</td>
<td>17</td>
<td>12</td>
<td>Suitable</td>
<td></td>
<td>378</td>
<td>13100</td>
<td>50</td>
</tr>
<tr>
<td>12&9(75%+25%)</td>
<td>39</td>
<td>24</td>
<td>15</td>
<td>1</td>
<td>10</td>
<td>80</td>
<td>9</td>
<td>1650</td>
<td>19</td>
<td>14</td>
<td>Suitable</td>
<td></td>
<td>300</td>
<td>8400</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>41</td>
<td>29</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>88</td>
<td>9</td>
<td>1495</td>
<td>22</td>
<td>14</td>
<td>Unsuitable</td>
<td></td>
<td>187</td>
<td>5813</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>16</td>
<td>10</td>
<td>2</td>
<td>44</td>
<td>40</td>
<td>14</td>
<td>1997</td>
<td>11</td>
<td>2</td>
<td>Select</td>
<td></td>
<td>507</td>
<td>18140</td>
<td></td>
</tr>
<tr>
<td>12&10(25%+75%)</td>
<td>29</td>
<td>16</td>
<td>14</td>
<td>2</td>
<td>34</td>
<td>52</td>
<td>13</td>
<td>1889</td>
<td>13</td>
<td>6</td>
<td>Suitable</td>
<td></td>
<td>429</td>
<td>15926</td>
<td>25</td>
</tr>
<tr>
<td>12&10(50%+50%)</td>
<td>34</td>
<td>21</td>
<td>13</td>
<td>1</td>
<td>24</td>
<td>64</td>
<td>11</td>
<td>1761</td>
<td>17</td>
<td>9</td>
<td>Unsuitable</td>
<td></td>
<td>321</td>
<td>8050</td>
<td>50</td>
</tr>
<tr>
<td>12&10(75%+25%)</td>
<td>37</td>
<td>25</td>
<td>13</td>
<td>1</td>
<td>14</td>
<td>76</td>
<td>10</td>
<td>1642</td>
<td>19</td>
<td>11</td>
<td>Unsuitable</td>
<td></td>
<td>329</td>
<td>10312</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>41</td>
<td>29</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>88</td>
<td>9</td>
<td>1495</td>
<td>22</td>
<td>14</td>
<td>Unsuitable</td>
<td></td>
<td>187</td>
<td>5813</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>18</td>
<td>15</td>
<td>3</td>
<td>31</td>
<td>45</td>
<td>21</td>
<td>1857</td>
<td>14</td>
<td>7</td>
<td>Select</td>
<td></td>
<td>444</td>
<td>13060</td>
<td></td>
</tr>
<tr>
<td>12&11(25%+75%)</td>
<td>34</td>
<td>18</td>
<td>16</td>
<td>2</td>
<td>24</td>
<td>56</td>
<td>18</td>
<td>1768</td>
<td>15</td>
<td>10</td>
<td>Select</td>
<td></td>
<td>434</td>
<td>12400</td>
<td>25</td>
</tr>
<tr>
<td>12&11(50%+50%)</td>
<td>37</td>
<td>21</td>
<td>16</td>
<td>2</td>
<td>17</td>
<td>67</td>
<td>15</td>
<td>1682</td>
<td>17</td>
<td>12</td>
<td>Suitable</td>
<td></td>
<td>365</td>
<td>11375</td>
<td>50</td>
</tr>
<tr>
<td>12&11(75%+25%)</td>
<td>38</td>
<td>24</td>
<td>14</td>
<td>1</td>
<td>10</td>
<td>77</td>
<td>12</td>
<td>1593</td>
<td>20</td>
<td>13</td>
<td>Suitable</td>
<td></td>
<td>236</td>
<td>5364</td>
<td>75</td>
</tr>
<tr>
<td>12</td>
<td>41</td>
<td>29</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>88</td>
<td>9</td>
<td>1495</td>
<td>22</td>
<td>14</td>
<td>Unsuitable</td>
<td></td>
<td>187</td>
<td>5813</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 2.4 (b). Summary of properties of select-unsuitable (Unsuitable Soil No. 3) mixtures

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th></th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>21</th>
<th>Suitable</th>
<th>2.67</th>
<th>341</th>
<th>9444</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39</td>
<td>18</td>
<td>21</td>
<td>0</td>
<td>1</td>
<td>81</td>
<td>18</td>
<td>1746</td>
<td>17</td>
<td>14</td>
<td>Unsuitable</td>
<td>2.65</td>
<td>303</td>
<td>7550</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(25%+75%)</td>
<td>35</td>
<td>22</td>
<td>13</td>
<td>0</td>
<td>1</td>
<td>83</td>
<td>16</td>
<td>1742</td>
<td>17</td>
<td>14</td>
<td>Unsuitable</td>
<td>2.63</td>
<td>315</td>
<td>9813</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(50%+50%)</td>
<td>37</td>
<td>26</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>85</td>
<td>15</td>
<td>1720</td>
<td>17</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.60</td>
<td>252</td>
<td>7412</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>24</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>14</td>
<td>1689</td>
<td>18</td>
<td>12</td>
<td>Unsuitable</td>
<td>2.58</td>
<td>302</td>
<td>7500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(25%+75%)</td>
<td>34</td>
<td>17</td>
<td>17</td>
<td>2</td>
<td>23</td>
<td>56</td>
<td>18</td>
<td>1809</td>
<td>15</td>
<td>11</td>
<td>Select</td>
<td>2.71</td>
<td>444</td>
<td>13060</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(50%+50%)</td>
<td>35</td>
<td>19</td>
<td>16</td>
<td>2</td>
<td>15</td>
<td>67</td>
<td>16</td>
<td>1770</td>
<td>17</td>
<td>12</td>
<td>Suitable</td>
<td>2.65</td>
<td>265</td>
<td>7389</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>20</td>
<td>14</td>
<td>1</td>
<td>8</td>
<td>77</td>
<td>14</td>
<td>1696</td>
<td>17</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.61</td>
<td>260</td>
<td>9286</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>17</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>88</td>
<td>12</td>
<td>1730</td>
<td>19</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.58</td>
<td>302</td>
<td>7500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(25%+75%)</td>
<td>34</td>
<td>19</td>
<td>16</td>
<td>3</td>
<td>15</td>
<td>72</td>
<td>11</td>
<td>1807</td>
<td>15</td>
<td>12</td>
<td>Select</td>
<td>2.71</td>
<td>454</td>
<td>18160</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(50%+50%)</td>
<td>35</td>
<td>20</td>
<td>14</td>
<td>1</td>
<td>7</td>
<td>80</td>
<td>17</td>
<td>1708</td>
<td>17</td>
<td>15</td>
<td>Suitable</td>
<td>2.66</td>
<td>312</td>
<td>10540</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>22</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>12</td>
<td>1730</td>
<td>19</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.58</td>
<td>302</td>
<td>7500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>17</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>88</td>
<td>12</td>
<td>1730</td>
<td>19</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.58</td>
<td>302</td>
<td>7500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(25%+75%)</td>
<td>34</td>
<td>19</td>
<td>16</td>
<td>3</td>
<td>15</td>
<td>72</td>
<td>11</td>
<td>1807</td>
<td>15</td>
<td>12</td>
<td>Select</td>
<td>2.71</td>
<td>454</td>
<td>18160</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(50%+50%)</td>
<td>35</td>
<td>20</td>
<td>14</td>
<td>1</td>
<td>7</td>
<td>80</td>
<td>17</td>
<td>1708</td>
<td>17</td>
<td>15</td>
<td>Suitable</td>
<td>2.66</td>
<td>312</td>
<td>10540</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>22</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>12</td>
<td>1730</td>
<td>19</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.58</td>
<td>302</td>
<td>7500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>22</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>12</td>
<td>1730</td>
<td>19</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.58</td>
<td>302</td>
<td>7500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>22</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>12</td>
<td>1730</td>
<td>19</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.58</td>
<td>302</td>
<td>7500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>22</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>12</td>
<td>1730</td>
<td>19</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.58</td>
<td>302</td>
<td>7500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>22</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>12</td>
<td>1730</td>
<td>19</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.58</td>
<td>302</td>
<td>7500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3&2(75%+25%)</td>
<td>34</td>
<td>22</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>88</td>
<td>12</td>
<td>1730</td>
<td>19</td>
<td>13</td>
<td>Unsuitable</td>
<td>2.58</td>
<td>302</td>
<td>7500</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2.1. Locations of the sites

Figure 2.2. Grain size distribution of select and unsuitable soils
Figure 2.3. Casagrande Plasticity Chart for the Mixtures and Unsuitable Soils

Figure 2.4 (a) Compaction Curves for Mixture of Soils No. 1 and No. 3
Figure 2.4 (b) Compaction Curves for Mixture of Soils No. 6 and No. 3

Figure 2.4 (c) Compaction Curves for Mixture of Soils No. 8 and No. 3
Figure 2.4 (d) Compaction Curves for Mixture of Soils No. 9 and No. 3

Figure 2.4 (e) Compaction Curves for Mixture of Soils No. 10 and No. 3
Figure 2.4 (f) Compaction Curves for Mixture of Soils No. 11 and No. 3

Figure 2.4 (g) Compaction Curves for Mixture of Soils No. 1 and No. 12
Figure 2.4 (h) Compaction Curves for Mixture of Soils No. 6 and No. 12

Figure 2.4 (i) Compaction Curves for Mixture of Soils No. 8 and No. 12
Figure 2.4 (j) Compaction Curves for Mixture of Soils No. 9 and No. 12

Figure 2.4 (k) Compaction Curves for Mixture of Soils No. 10 and No. 12
Figure 2.4 (l) Compaction Curves for Mixture of Soils No. 11 and No. 12

Figure 2.5 (a) Dry density vs. moisture content for Mixture of Soil No. 1 and No. 3
Figure 2.5 (b) Dry density vs. moisture content for Mixture of Soil No. 6 and No. 3

Figure 2.5 (b) Dry density vs. moisture content for Mixture of Soil No. 8 and No. 3
Figure 2.5 (d) Dry density vs. moisture content for Mixture of Soil No. 9 and No. 3

Figure 2.5 (e) Dry density vs. moisture content for Mixture of Soil No. 10 and No. 3
Figure 2.5 (f) Dry density vs. moisture content for Mixture of Soil No. 11 and No. 3

Figure 2.5 (g) Dry density vs. moisture content for Mixture of Soil No. 1 and No. 12
Figure 2.5 (h) Dry density vs. moisture content for Mixture of Soil No. 6 and No. 12

Figure 2.5 (i) Dry density vs. moisture content for Mixture of Soil No. 8 and No. 12
Figure 2.5 (j) Dry density vs. moisture content for Mixture of Soil No. 9 and No. 12

Figure 2.5 (k) Dry density vs. moisture content for Mixture of Soil No. 10 and No. 12
Figure 2.5 (l) Dry density vs. moisture content for Mixture of Soil No. 11 and No. 12

\[
y = -39.961x + 2410.7
\]

\[R^2 = 0.9321\]

Figure 2.6. Relationship of Proctor density and optimum moisture content
Figure 2.7(a). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.1 and No.3.

Figure 2.7(b). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.6 and No.3.
Figure 2.7(c). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.8 and No.3.

Figure 2.7(d). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.9 and No.3.
Figure 2.7(e). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.10 and No.3.

Figure 2.7(f). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.11 and No.3.
Figure 2.7(g). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.1 and No.12.

Figure 2.7(h). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.6 and No.12.
Figure 2.7(i). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.8 and No.12.

Figure 2.7(j). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.9 and No.12.
Figure 2.7(k). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.10 and No.12.

Figure 2.7(l). Unconfined Compression Strength vs. Moisture Content for Mixture Soil No.11 and No.12.
CHAPTER 3. LABORATORY INVESTIGATION OF OPTIMIZATION OF MATERIALS IN EARTHWORK CONSTRUCTION BY SOIL MIXING

Longjie Hong, Vernon R. Schaefer, and David J. White
A paper to be submitted to the Journal of Transportation Research Board

ABSTRACT

Different earth materials, such as soil and rock, are used in the construction of geotechnical systems including foundations, retaining walls, embankments and road pavements and air-field pavements. Often site soils are unacceptable for the intended function and must be replaced with better quality materials or improved. One method of improvement is to mix high quality site materials with lesser quality site materials to provide an acceptable soil material. In Iowa, materials for earthwork construction are classified, based on their suitability, as: select, suitable, and unsuitable soils. In this study, three unsuitable soils were mixed with one select soil at various proportions (unsuitable : select = 25%:75%, 50%:50% and 75%:25%) to investigate how the engineering properties can be improved at different select-unsuitable ratios and evaluate the potential of using the blends at various embankment layers. Experimental results indicate that resulting blends are for the most part acceptable and classify as suitable materials for embankments. With the large amount of money involved in carrying out the remedial measures for poor soils, management and optimization of the available materials by mixing the materials among themselves in various proportions can be a viable solution.

3.1 INTRODUCTION

Different earth materials, such as soil and rock, are used in the construction of geotechnical systems including foundations, retaining walls, embankments and road pavements and air-field pavements. Some geo-materials such as peat, muck, expansive/swelling soils and collapsible soils, however, need to be used carefully in any type of construction, for the severity of post-construction damage they may cause can be disconcerting. Government agencies often classify soils into various groups for ease of identification. For example, the Iowa Department of Transportation classifies soils into three groups: select, suitable or unsuitable based on their engineering performance (see Table 3.1) (1). The choice of particular geo-materials depends on the type and purpose of the geotechnical system itself. Select soils are those placed directly under the pavement structure (0 to 0.6 m) as subgrade. Select soils contain either predominantly sand or a good mixture of sand, silt, and clay. When they are properly compacted, the density and the shear
strength are much higher because of the composition. Suitable soils are placed under select soils (0.6 m to 1.5 m) and are usually in the zone of seasonal freeze/thaw and wetting and drying cycles (2). Unsuitable soils are materials that cannot be compacted properly in the embankment, including highly plastic clays or highly compressible, frost prone silts. Generally, unsuitable soils must be removed before construction or placed in areas where they will not affect the performance of the geostructure.

Often a project site will have a considerable amount of unsuitable soils and it becomes costly to have to waste all the unsuitable materials. Additionally, borrowing materials from other sources may prove more expensive than using local available materials (3). One method to optimize and manage these available materials is to selectively mix the on-site soils, for example, mixing of select soils with unsuitable soils. In the field, the blending of soils is accomplished by a pulvamixer or equivalent. Figure 3.1 shows a Multi-Terrain Mixer generally used for soil mixing (4). The mix should be pre-wetted to specified moisture content and thoroughly mixed by mixer to a homogeneous, friable mixture, free from all clods or lumps. Compaction begins immediately after the mixing is completed. The mixtures are compacted layer by layer to the specified density until the required elevation is attained. Compaction is achieved using a vibratory padfoot roller for granular materials and sheepfoot roller for cohesive soils.

The soils used in this study were from a proposed bypass for Highway 34 around the city of Fairfield, in Jefferson County, Iowa. The proposed bypass was approximately 10 miles in length and consisted of numerous cuts and fills some 5 to 6 meters in height. The soils along the route consisted of clay pan, loess, paleosol (gumbotil), and Kansan glacial till layer (5). The clay pan and gumbotil have high swell potential, while the loess is potentially collapsible, resulting in unsuitable ratings for these soils. The glacial till layer was classified as a select soil. Due to the large amount of unsuitable soils along the route, the potential for soil mixing of select and unsuitable soil for improvement of the unsuitable soil was studied.

This paper presents how the engineering properties (such as plasticity index, unconfined compressive strength, compaction characteristics etc.) of select-unsuitable blends change with various mixing proportions. Based on the test results, recommendations of proportions of select-unsuitable blends are provided.

3.2 BACKGROUND

Presently, when soils are deemed unsuitable for a particular engineering purpose (e.g., fill, subgrade), the soils can be removed and wasted or the soils’ engineering properties can be improved through mechanical compaction or chemical stabilization. Some soils are not amenable to sufficient improvement using compaction alone. Chemical stabilization of soils is accomplished by mixing with various chemicals such as cement, lime and fly ash. It has been shown that mixing soils with these chemicals can improve certain
properties of soil to make the soil serve adequately an intended engineering purpose. For example, soil-cement mixture can reduce the volume change tendency and plasticity and increase load-bearing capacity of the soil. However, high plasticity clays require larger amount of cements, which may not be economically viable. The liquid limit, plasticity index and percent passing No. 200 sieve generally are limited to 40, 18, and 35%, respectively (3). In recent years, natural poor soils mixed with granular materials are also used in construction of base, subbase, and surface courses of paved facilities. Leelani (6) studied the properties of an existing active clay by adding various proportions of a fine sand and found that a 20% sand admixture can improve the properties of the active clay adequately for highway embankment construction. Granular stabilization can obtain a well-proportioned mixture of particles with continuous gradation (well graded) and the desired plasticity. The granular constituents form a bearing skeleton while fine portions can provide effective cohesion and cementation. However, generally the natural soils will lack some constituents needed to form a continuous bearing skeleton or to provide the necessary cohesion and cementation. In these cases, the desired blend can be compounded by addition of proper proportions of the granular materials or fines (3).

3.3 EXPERIMENTAL INVESTIGATION

Materials

Soils were collected from the site using a drill rig down to a depth of 5.7 m. Bag samples of each soil layer were collected from the auger, as well as three-inch Shelby tube samples. Based on the texture and color of the soils, the soil profile was divided into four layers, 0 to 1.5m (clay pan), 1.5 to 2.7 m (loess), 2.7 to 4.2 m (weathered gumbotil), and 4.2 to 5.7 m (sandy Kansan glacial till) and named soil #1 to #4, respectively.

Laboratory Tests Conducted

Laboratory gradation tests, Atterberg limits, compaction, and unconfined compression strength tests were performed on the four soils in two series. In first series, these tests are conducted to classify the four soils into select, suitable and unsuitable. In the second series, the same tests were conducted on select-unsuitable blends at various proportions.

Gradation tests were conducted in accordance to ASTM Standard D2487 Standard Test Method for Classification of Soils for Engineering Purposes (7). Atterberg limits tests were performed according to ASTM D4318 Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (7). For the mixtures, select soils passing through #40 sieve were mixed with unsuitable soils passing through #40 sieve at various proportions.

Compaction tests were performed on 2-inch by 2-inch cylindrical samples in accordance with
O’Flaherty et al. (8). A Standard Proctor compaction sample is made in a 1/30 ft³ cylinder mold using three layers each compacted by 25 blows of the 5.5-lb rammer dropped 12 inches for an energy input of 12375 ft-lb/ft³. On the other hand, the ISU 2-inch by 2-inch compaction test method utilizes specimens 2 inches in diameter by 2 inches high compacted by 10 blows of the 5-lb hammer dropped 12 inches for an energy input of 13751 ft-lb/ft³, which requires only about one-tenth of the material and one-third of the time needed for Standard Proctor specimens. However, maximum dry density and optimum moisture content obtained from two test methods are very close. O’Flaherty et al. (8) have shown that the ISU 2-inch by 2-inch compaction apparatus can be used in lieu of the standard Proctor compaction test to increase productivity.

Unconfined compression strength tests were performed on 2-inch by 4-inch cylindrical samples at different moisture contents in accordance with ASTM D 2166-00, Test Method for Unconfined Compressive Strength of Cohesive Soil (7). Soil was put in two layers and the compaction energy was doubled compared to 2-inch by 2-inch samples.

For the compaction and unconfined compression test samples, air-dried select soils passing through #4 sieve were mixed with unsuitable soils passing through #4 sieve at various proportions. The required weight of the soil was determined based on the dry unit weight, water content and the volume of the specimen. The required amount of water was added to the dry soil and thoroughly mixed. The blends were allowed to hydrate for 24 hours prior to testing.

3.4 RESULTS AND DISCUSSION

In Situ Soils

The full depth profiles of soil index properties and classification are summarized in Table 3.2. Figure 3.2 shows the grain size distribution of the four soils. As indicated in Table 3.2 and Figure 3.2, the fines contents decrease from 98% of the top layer (0-1.5 m) to 64% of the bottom layer (4.2-5.7 m). Soils #1 and #3 are fat clays and potentially expansive, and their liquid limit and plasticity index are much higher than those of the other two layers. Soils #1 and #3 classified as CH (A-7-5), while soils #2 and #4 are classified as CL (A-6). Compaction tests results indicate that soils #1 and #3 have relatively high optimum moisture contents and low dry densities compared to soils #2 and #4. Soils #1 and #3 are weaker soils, as indicated by high Group Index (GI) and low unconfined compressive strength. According to Iowa DOT classification, soils #1, #2, and #3 are classified as unsuitable soils, while #4 is classified as select soil. The select soil contains considerably more sand than the three unsuitable soils.

Mixed Soils

To determine the amount of mixing to be used in the field, the physical and engineering properties of
different mixes were investigated. In this test program, the select soil (#4) was mixed with each unsuitable soil (#1, #2, and #3) at 75:25, 50:50, and 25:75 proportions. The engineering properties are summarized in Table 3.3.

Index Properties of Mixtures

Index properties of all the mixed soils were determined at the various blends. The Casagrande plasticity chart for all the soils and blends at various proportions is shown in Figure 3.3. As can be seen in the figure, all the blends are located in the CL zone (low/medium plasticity to medium plasticity) and between the endpoints of individual select and unsuitable soils. As the select proportion increases, the liquid limit and plasticity index of the blends move closer to those of the select soil. Mixing with select soil reduces the plasticity and swelling potential dramatically, especially for blends #4 mixed with #3.

Compaction Characteristics

Figure 3.4 shows the Proctor curves of the four *in situ* soils. From this figure it can be seen that soils #1 and #3 have much lower dry unit weights than the select soil, indicative of their higher plasticity. Soil #2 has a compaction curve very similar to the select soil (#4). Figure 3.5 presents the spectrum of Proctor density curves at five mix proportions. Each density curve in Figure 3.5 represents the variation of dry unit weight with moisture content at a specified ratio of the select-unsuitable blend. At least five samples were prepared at different moisture contents for each compaction curve. The zero-air line is also plotted in Figure 3.5. The upper most curve in Figure 3.5(a) is the result of the compaction test from #4, which is a select soil (proportion of select : unsuitable = 100% : 0), while the lower most curve represents density curve for unsuitable soil #1 (proportion of select : unsuitable = 0 : 100%). It indicates that select soil alone has highest value of dry density at lowest value of moisture content. As the percent unsuitable increases in the mixture, optimum moisture content increases from 13% to 19% and maximum density decreases from 1912 to 1716 kg/m³, the curves shift right and below. The same trend was also found from other blends as shown in Figures 3.5(b) and 3.5(c). This effect is attributed to larger select soil particles that decrease the surface area and adsorb less water to attain a higher density. The line of optimum in Figure 3.5 is approximately linear, which indicates a linear relationship exists between maximum dry density/optimum moisture content and mixing proportion.

Observations during the compaction tests indicate that the select soils improved the workability of unsuitable soils for compaction. Higher select content in the mixture was found to be easier to compact.

Maximum Proctor Density and Optimum Moisture Content
Blotz et al. (9) developed an empirical method to estimate maximum dry density (γ_{dmax}) and optimum moisture (w_{opt}) content of compacted clays from liquid limit (LL). It was found a linear relationship exists between γ_{dmax}, w_{opt}, and LL at any compactive effort. Figure 3.6 presents the relationship between optimum moisture content and maximum dry density of all blends. A trend line is added to the data points and it shows that maximum density decreases linearly with increasing optimum moisture content, with R^2 of 0.98. The relationship between maximum Proctor density (γ_{dmax}) and optimum moisture content (w_{opt}) can be expressed by:

$$\gamma_{dmax} \text{ (kg/m}^3) = -30.284 \, w_{opt} + 2288.5$$

(1)

Strength of Mixture

Figure 3.7 presents unconfined compression strength (UCS) vs. moisture content for each select-unsuitable blend. The unconfined compression strength ranges from 100 kPa to 555 kPa and decreases with increasing moisture content even as the dry density increases. The peak strength occurs at approximately 2 to 5% dry of optimum. Meanwhile, at a specified moisture content $w\%$, when the select proportion increases, the UCS of the blend increases. The USC of the select soil and that of the unsuitable soil are at the endpoints of the spectrum. From Figure 3.7, the UCS of the blend can be determined by mixing proportion and compaction moisture content.

Classification of Blends

Table 3.3 summarizes the index properties, compaction test results, unconfined compression test results and classification of all blends. From the table it can be seen that some of the mixtures still can be classified as select soil when the proportion of unsuitable is low (25% unsuitable). Using 50:50 mixtures results in a suitable soil classification for the soils tested in this study. When the percent unsuitable is as high as 75%, the mixture is either a suitable soil or an unsuitable soil. Only in the case of soil #2, the loess, does the mixture result in an unsuitable classification. All the mixtures are poorer materials than select soil alone. These results provide a means of extending the use of on-site soils using soil mixing. Based on the results shown, 50:50 blends and 25:75 unsuitable to suitable soil blends provide acceptable soils for most purposes. Thus rather than wasting site soils that are deemed unsuitable, the soils can be used in conjunction with select soils to increase the use of on-site soils and decrease the amount of off-site borrow.
3.5 CONCLUSIONS AND RECOMMENDATIONS

Improved properties of unsuitable soil by mixing select soils were evaluated at various proportions of select-unsuitable soil mixtures: 0:100%, 25%:75%, 50%:50%, and 100%:0. Several conclusions were drawn from the results of this study.

1. Mixing with select soil can improve the index properties of unsuitable soil by reducing liquid limit and plasticity index.
2. Experimental results indicate that maximum dry density and unconfined compression strength both increase while the optimum moisture content decreases linearly with increasing select proportion.
3. The unconfined compression strength of the select—unsuitable blends decreases with increasing moisture content.
4. Select blends can be obtained by mixing up to 25% of an unsuitable soil with 75% select soil.
5. Suitable blends can be obtained by mixing 50% of unsuitable soil with 50% of select soil.
6. At 75% unsuitable with 25% select, some soils will be classified as suitable and some as unsuitable.
7. For the soils tested in this study, the addition of unsuitable soils to a select soil in the range of 25 to 50% provides acceptable soils for placement in embankment applications.

3.6 ACKNOWLEDGEMENTS

Iowa Department of Transportation sponsored this project under contract TR-501. The opinions, findings, conclusions and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

3.7 REFERENCES

1. Iowa Department of Transportation Standard Specification for Highway and Bridge Construction, 2001

TABLE 3.1 Current Iowa DOT Specification for Cohesive Soil Classification into “Select”, “Suitable”, and “Unsuitable” Categories (1)

<table>
<thead>
<tr>
<th>Select soils</th>
<th>Suitable soils</th>
<th>Unsuitable soils</th>
</tr>
</thead>
<tbody>
<tr>
<td>(must meet all conditions - typically used in top 0.6 m of subgrade)</td>
<td>(must meet all conditions - used throughout fill except for top 0.6 m of subgrade)</td>
<td>(Requirement for use at different depths)</td>
</tr>
<tr>
<td>2. 45 percent or less silt size fraction (0.075 - 0.002 mm)</td>
<td>3. 1500 kg/m³ or greater density (AASHTO T99 Proctor density)</td>
<td>4. Slope dressing only</td>
</tr>
<tr>
<td>- 1750 kg/m³ or greater density (AASHTO T99 Proctor density)</td>
<td>- Group Index < 30 (AASHTO M 145 - 90)</td>
<td>- peat or muck</td>
</tr>
<tr>
<td>Plasticity index >10</td>
<td></td>
<td>- soil with plastic limit ≥35</td>
</tr>
<tr>
<td>- A-6 or A-7-6 soils of glacial origin</td>
<td></td>
<td>- A-7-5 or A-5 having density < 1350 kg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Disposal 1 m below top of subgrade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- All soils other than A-7-5 or A-5 having density <1500 kg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- All soils other than A-7-5 or A-5 containing ≥3.0% carbon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Disposal 1.5 m below top of subgrade with alternate layers of suitable soils</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- shale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- A-7-5 or A-5 soils having density from 1350 kg/m³ to 1500 kg/m³</td>
</tr>
<tr>
<td>Soil</td>
<td>Depth (m)</td>
<td>LL</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>1 (clay pan)</td>
<td>0-1.5</td>
<td>53</td>
</tr>
<tr>
<td>2 (loess)</td>
<td>1.5-2.7</td>
<td>30.6</td>
</tr>
<tr>
<td>3 (gumbo)</td>
<td>2.7-4.2</td>
<td>58.5</td>
</tr>
<tr>
<td>4 (glacial till)</td>
<td>4.2-5.7</td>
<td>39</td>
</tr>
</tbody>
</table>

Note: qu was measured at optimum moisture content.

U: Unsuitable, S: Select.
TABLE 3.3 Summary of Properties of Select and Unsuitable Blends

<table>
<thead>
<tr>
<th>Soil Blend</th>
<th>U:S</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>% Gravel</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
<th>Proctor density (kg/m³)</th>
<th>Optimum w%</th>
<th>Group index GI</th>
<th>qu (kPa)</th>
<th>USCS /ASSHTO IDOT classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>75:25</td>
<td></td>
<td>47</td>
<td>23</td>
<td>24</td>
<td>0</td>
<td>10</td>
<td>52</td>
<td>38</td>
<td>1765</td>
<td>17.5</td>
<td>23</td>
<td>371</td>
<td>CL/A-7-6 Suitable</td>
</tr>
<tr>
<td>1:4</td>
<td>50:50</td>
<td>44</td>
<td>22</td>
<td>22</td>
<td>0</td>
<td>19</td>
<td>46</td>
<td>35</td>
<td>1816</td>
<td>15.7</td>
<td>18</td>
<td>381</td>
<td>CL/A-7-6 Suitable</td>
</tr>
<tr>
<td>2:4</td>
<td>75:25</td>
<td>40</td>
<td>19</td>
<td>21</td>
<td>0</td>
<td>27</td>
<td>40</td>
<td>33</td>
<td>1861</td>
<td>14.1</td>
<td>14</td>
<td>393</td>
<td>CL/A-6 Select</td>
</tr>
<tr>
<td>75:25</td>
<td></td>
<td>33</td>
<td>19.5</td>
<td>13.5</td>
<td>0</td>
<td>15</td>
<td>57</td>
<td>28</td>
<td>1861</td>
<td>14.1</td>
<td>11</td>
<td>369</td>
<td>CL/A-6 Unsuitable</td>
</tr>
<tr>
<td>2:4</td>
<td>50:50</td>
<td>34.5</td>
<td>17.1</td>
<td>17.4</td>
<td>0</td>
<td>22</td>
<td>49</td>
<td>29</td>
<td>1866</td>
<td>13.7</td>
<td>12</td>
<td>375</td>
<td>CL/A-6 Suitable</td>
</tr>
<tr>
<td>2:4</td>
<td>25:75</td>
<td>37</td>
<td>18</td>
<td>19</td>
<td>0</td>
<td>29</td>
<td>42</td>
<td>29</td>
<td>1893</td>
<td>13.2</td>
<td>12</td>
<td>390</td>
<td>CL/A-6 Select</td>
</tr>
<tr>
<td>75:25</td>
<td></td>
<td>48</td>
<td>24</td>
<td>24</td>
<td>0</td>
<td>17</td>
<td>41</td>
<td>42</td>
<td>1693</td>
<td>19.2</td>
<td>21</td>
<td>401</td>
<td>CL/A-7-6 Suitable</td>
</tr>
<tr>
<td>3:4</td>
<td>50:50</td>
<td>45.4</td>
<td>22.5</td>
<td>22.9</td>
<td>0</td>
<td>23</td>
<td>39</td>
<td>38</td>
<td>1747</td>
<td>17.3</td>
<td>17</td>
<td>359</td>
<td>CL/A-7-6 Suitable</td>
</tr>
<tr>
<td>25:75</td>
<td></td>
<td>40</td>
<td>21</td>
<td>20</td>
<td>0</td>
<td>29</td>
<td>37</td>
<td>34</td>
<td>1819</td>
<td>15.5</td>
<td>13</td>
<td>400</td>
<td>CL/A-6 Select</td>
</tr>
</tbody>
</table>

Note: qu was measured at optimum moisture content.

U: Unsuitable, S: Select.
FIGURE 3.1 Type MGM 250 soil mixer (3)

FIGURE 3.2 Grain size distribution of select and unsuitable soils.
FIGURE 3.3 Casagrande plasticity chart of select, unsuitable and blends.
FIGURE 3.4 Compaction curves of Soil #1, #2, #3 and #4.

FIGURE 3.5(a) Compaction curves of #4 and #1 blends.
FIGURE 3.5(b) Compaction curves of #4 and #2 blends.

FIGURE 3.5(c) Compaction curves of #4 and #3 blends.
FIGURE 3.6 Maximum dry density vs. optimum moisture content.

FIGURE 3.7(a) Unconfined compressive strength of #4 and #1 blends.
FIGURE 3.7(b) Unconfined compressive strength of #4 and #2 blends.

FIGURE 3.7(c) Unconfined compressive strength of #4 and #3 blends.
CHAPTER 4: PERMEABILITY OF COMPACTED GLACIAL TILL RELATED TO VALIDATION AND PREDICTION WITH THE ENHANCED INTEGRATED CLIMATIC MODEL (EICM)

Vernon R. Schaefer, Longjie Hong and Radhey S. Sharma

A paper to be submitted to the ASCE Journal of Geotechnical and Geoenvironmental Engineering

ABSTRACT

A number of permeability tests on Iowa glacial tills that will be used at each layer of embankment were performed. Permeability tests were conducted on these soils to (1) study permeability behavior of compacted cohesive select soils in Iowa; (2) provide a predictive method for permeability of the embankment soils; and (3) verify and compare this method to the EICM model. Testing results indicated that the difference between the measured permeability and the calculated permeability using EICM model is 1 to 2 orders. A model based on Harrop-Williams (1985) model to predict compacted soil permeability is developed.

4.1 INTRODUCTION

The performance of a pavement structure is dependent upon the stability and deformation resistance of the underlying subgrade. Subgrade performance in turn is a function of the permeability of the subgrade materials. Excess moisture in the subgrade soil can lead to degradation of material quality, strength reduction, deformation increase, and loss of bond between pavement layers. As a result, subgrade permeability has been incorporated into the Mechanistic-Empirical Design Guide through a sophisticated climatic modeling tool called the Enhanced Integrated Climatic Model (EICM)(NCHRP 1-37A, 2002). One of the major tasks undertaken in developing the EICM is the development of improved estimates of saturated hydraulic conductivity \(k_{sat} \) based on soil index properties such as fine contents, \(P_{200} \), effective diameter, \(D_{60} \), and plasticity index, PI. This estimation is used when field and laboratory data are not available and has been shown to have a good agreement with an extended database. However, the EICM model has some limitations in that it can only predict the permeability of compacted soils at optimum moisture contents under Standard Proctor compaction. To expand this empirical model for practical purposes, a more comprehensive model is presented in this paper.

The \textit{in situ} soil permeability is difficult to measure accurately (Daniel, 1989). Laboratory permeability
tests also have limitations: 1) representative samples are not easy to obtain in the sense that samples prepared in the laboratory represent only soil matrix, primary conductivity characteristics, but not structural defects such as fissures, desiccation cracks, etc. (Daniel, 1989); and 2) laboratory tests often take a long time (Mitchell et al., 1965). Thus it is of interest to predict the permeability from some simple laboratory tests for practical purposes. Since permeability is the measure of the ease with which fluid flows through porous material, certain relationships can be expected to exist between permeability and grain-size distribution, void ratio, and compaction characteristics, etc. Estimating permeability from these parameters takes less time and is less expensive than field testing. A number of factors influence the permeability of clay, such as particle size, void ratio, composition, fabric, and degree of saturation (Lambe and Whitman, 1969). This number of factors makes the prediction of permeability more complicated unless some of the parameters are selected such that they are constant. In this study, the composition was held constant through the use of a set cohesive select soils comprised of glacial till. The soils chosen were a subset of a larger number of soils studied in a soil mixing project to improve the engineering performance of soils deemed unsuitable for use in embankment construction as pavement subgrade (Sharma, et al. 2007). A number of permeability tests on these soils that will be used at each layer of embankment were performed. Permeability tests were conducted on these soils to (1) study permeability behavior of compacted cohesive select soils in Iowa; (2) provide a predictive method for permeability of the embankment soils; and (3) verify and compare this method to the EICM model.

4.2 BACKGROUND

The permeability of soil is governed by many factors. For coarse-grained soils, the permeability was studied and related to grain-size distribution by Hazen (1892). Hazen (1892) was the first to correlate the permeability of coarse-grained soil to the representative grain sizes. Other investigators (eg., Krumbein and Monk, 1942; Harleman et al., 1963; Masch and Denny, 1966; and Wiebenga et al., 1970) also presented correlations between permeability and grain size of soil. Details on some of these methods and their applications and limitations have been reviewed by Egboka and Uma (1986) and Uma et al. (1989). The common aspect of these studies is the determination of an empirical statistical relationship between permeability and some index parameter such as the geometric mean, mode, standard deviation (dispersion), or effective diameter, etc.

For fine-grained soils, the mechanism controlling permeability is more complex. The permeability is controlled by variables that may be classified as mechanical and physico-chemical (Mesri and Olson, 1970). The mechanical variables of main interest are the size, shape, and the geometrical arrangement of the clay particles. The physico-chemical variables exert great influence on the permeability by controlling the tendency of the clay to disperse or to form aggregates. The more flocculated the soil is, the higher the
permeability, since there are more large channels available for flow in a flocculated soil (Lambe and Whitman, 1969).

Physico-chemical variables are difficult to measure. However, they can be correlated to some soil index parameters. Samarasinghe et al. (1982) studied the permeability of remoulded fine-grained soils and found that at any void ratio, the permeability of soils is best correlated with shrinkage index, irrespective of their liquid and plastic limits. According to Taylor (1948), the relationship between the hydraulic conductivity and the void ratio could be expressed as:

\[
k = C \left[\frac{e^x}{1 + e} \right]
\]

(1)

Where \(C \) can be correlated to shrinkage limit, and \(x \) is a constant depending on soil type. For normally consolidated soils, \(x \) is about 3 to 5, while for overconsolidated soils and compacted soils, this value is much greater, in the range of 10 to 30 (Samarasinghe et al., 1982).

The model shown in Equation (1) has been found valid for a large number of soils (Franzini, 1951; Lambe and Whitman, 1969; Taylor, 1948). Sridharan and Nagaraj (2005) studied this model by a number of tests and found that \(x = 4 \) and \(C = 2.5 \times 10^{-4} (I_S)^{3.69} \), where \(I_S \) is shrinkage index = LL-SL.

In the Mechanistic-Empirical Design Guide, the saturated permeability of compacted soil at optimum moisture content is estimated based on the percent finer than No.200 sieve (\(P_{200} \)), \(D_{60} \) and the plasticity index (PI) as follows:

If \(0 \leq P_{200} PI < 1 \), then

\[
k_{sat} = 118 \times 0.11 \times 10^{-1.1275 (\log D_{60} + 2)^2 + 7.2816 (\log D_{60} + 2) - 11.2891} (\text{ft/hr})
\]

(2)

Valid for \(D_{60} < 0.75 \text{ in.} \).

If \(D_{60} \geq 0.75 \text{ in.} \), set \(D_{60} = 0.75 \text{ mm.} \).

If \(P_{200} PI \geq 1 \), then

\[
k_{sat} = 118 \times 0.11 \times 10^{-0.0004 (P_{200} PI)^2 - 0.0929 (P_{200} PI) - 6.56} (\text{ft/hr})
\]

(3)

Where: \(P_{200} = \) percent finer than No. 200 sieve,

\(PI = \) plasticity index,

\(D_{60} = \) grain size corresponding to 60% passing by weight (mm),

\(k_{sat} = \) saturated permeability (ft/hr).

These empirical equations correlate the saturated permeability directly to \(D_{60}, P_{200}, \) and PI. The mechanical variables are characterized by \(D_{60} \) and \(P_{200} \), while physico-chemical variables are reflected by PI. However, these equations are only applicable to soils under conditions of Standard Proctor compaction at optimum moisture content.

As is well known, the permeability of compacted clay is also influenced by compaction method and molding moisture content. To take the compaction effort into account, Lambe (1958) investigated the
relationship between the soil permeability and compaction effort characteristics on Jamaica sandy clay and Siburua clay, with the experimental results shown in Figure 4.1. It was found that when soil compacted dry of optimum, the permeability decreased with increasing molding moisture content. The permeability was about one to two orders of magnitude lower when 2% more water was added to the soil. The lowest permeability occurred when the soil was compacted at about 2% wet of optimum. And then the permeability increased slightly with increasing moisture content.

Harrop-Williams (1985) derived an empirical equation to predict the permeability of soil from compaction variables and found the relationship presented in the form

\[\ln k = A + \alpha x \]

(4)

Where

\[x = \ln \left(\frac{\gamma_d w G}{G \gamma_w - \gamma_d} \right) \]

(5)

\(k \) = permeability of compacted soil.

\(A, \alpha \) = regression constants

\(\gamma_d \) = dry unit weight of compacted soil

\(\gamma_w \) = unit weight of water

\(G \) = specific gravity of soil

Equations (4) and (5) incorporate molding moisture content and dry density of compacted clay to predict permeability. Harrop-Williams (1985) stated that the regression constants \(A \) and \(\alpha \) are related to soil type, method and level of compaction. The typical value of \(A \) and \(\alpha \) are -20 and -5, respectively.

Benson and Trast (1995) studied thirteen compacted soils and found that the most significant factors affecting hydraulic conductivity are (in decreasing order of importance): (1) initial saturation, (2) compactive effort, (3) plasticity index, and (4) clay content. They developed a regression equation to estimate hydraulic conductivity as shown in equation (6):

\[\ln K = -15 - 0.087 S_i - 0.054 PI + 0.022 C + 0.91E + \varepsilon \]

(6)

Where: \(K \) is hydraulic conductivity in m/s,

\(C \) is clay content in percent,

\(PI \) is plasticity index,

\(E \) is the compactive effort index, assigned as -1, 0, and 1 for modified, standard, and reduced Proctor compactive efforts,

\(S_i \) is initial degree of saturation, and

\(\varepsilon \) is a random error term.
4.3 MATERIALS AND METHODS

Five cohesive select soils of glacial origin from Iowa were used in the permeability tests. These soils were selected from a group of thirteen soils which were extensively studied for soil mixing (Sharma et al., 2007). The soil information and index properties are listed in Table 4.1.

Gradation tests were conducted in accordance to ASTM Standard D2487 *Standard Test Method for Classification of Soils for Engineering Purposes* (ASTM, 2000a). Atterberg limits tests were performed according to ASTM D4318 *Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils* (ASTM, 2000b). The standard Proctor compaction tests were performed according to ASTM 698-78 *Standard Test Methods for Moisture-Density Relations of Soils and Soil-Aggregate Mixtures Using 5.5-lb (2.49-kg) Rammer and 12-in. (305-mm) Drop* (ASTM, 2000c). Prior to compaction, soils were air-dried and pulverized to sizes smaller than No.4 US sieve (4.75mm). Specimens were compacted at five to nine different molding moisture contents, from dry to wet of optimum moisture content.

Hydraulic conductivity tests

Equipment

Permeability tests were performed using a Tri-Flex 2 Permeability Test System. It is designed to have modular expansion capability, with Master Control Panel capable of testing one sample while acting as a controller for up to two Tri-Flex 2 Auxiliary Control Panels. In this research, only one Auxiliary Control Panel was used. Three samples were tested simultaneously, each with its own pressure settings. The system is rated for test pressures up to 150 psi. There are three independent burette channels on the Master Control panel, marked “Lateral”, “Upper”, and “Lower”. These burette channels are connected to respective drainage port on the test cell. Similarly, there are six independent burette channels on the Auxiliary Control Panel. For detailed information, refer to Tri-Flex 2 Permeability Test System Owner’s Manual provided by ELE (Tri-Flex2 Permeability Test System, 2003).

Tests

The hydraulic conductivity tests on remolded samples were tested in the triaxial cell under effective stresses and back pressures equivalent to the *in-situ* condition according to ASTM Designation D 5084 “*Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter*” (ASTM, 2000d). Constant head tests were selected since it is easy to measure both the inflow and outflow of water and thus check the accuracy of the permeability measurement. Triaxial samples with 2.8 inches diameter and 5.6 inches high were prepared using Modified Proctor compaction effort at various moisture contents (about 6% below optimum to 8% above optimum). Samples were cured in the moisture room for one week before tests. A vacuum was applied until the constant-head tank and the burettes were de-aired. Moreover, air was purged from porous stones and cell lines by applying a small pressure to flow the system until a steady state was reached. After samples were
setup in the triaxial cell and the triaxial cell was filled with de-aired water, the saturation procedure commenced. This procedure used the application of the same upper and lower backpressures, which are a few psi (one psi in this research) lower than that of the lateral pressure. Backpressure was applied in a five psi increment, alternating with corresponding increments of lateral pressure, until 95% degree of saturation was achieved (ASTM, 2000d). During the saturation, the saturation percentage was measured by “B” value test by connecting a spare drainage line to an electrical pore pressure transducer and readout system. “B” value was calculated as the percentage of increase in pore pressure to the increase in cell pressure. It took about 24 hours to 48 hours for sample saturation. The permeability test was conducted after saturation was complete. A head differential was imposed across the specimen by applying unequal total heads at the top and bottom of the specimen. On the Tri-Flex 2 system, this was accomplished by adjusting the pressures applied to the upper and lower burette channels. The hydraulic gradients i used in the tests ranged from 10 up to 50, depending on the permeability of the sample (ASTM, 2000d). Table 4.2 shows the selection of hydraulic gradient recommended by ASTM D5084.

The elevated hydraulic gradient was desired to reduce the test durations required to achieve equilibrium between effluent and influent. The permeability was calculated based on the following equation (Tri-Flex2 Permeability Test System, 2003).

$$K = \frac{V(t_1, t_2) L}{P_B At} \frac{cm}{sec}$$

(7)

Where: $V(t_1, t_2) =$ Volume of flow from t_1 to t_2 (cm3)

$L =$ Length of sample (cm)

$P_B =$ Bias Pressure psi x 70.37 cm/psi (cm – H$_2$O)

$A =$ Area of sample (cm2)

$t =$ Time from t_1 to t_2 (sec)

The permeability tests lasted one to two days until the measured permeability remained constant. At least three readings for each sample were taken and the averaged value was reported as the permeability for each specimen.

4.4 TEST RESULTS AND DISCUSSIONS

Discussions based on the permeability test results are provided in the following sections. These sections are ordered in such a manner: (1) to verify the permeability test results are reliable; (2) to verify if the permeability behavior of these soils complies with the literature; and (3) to develop a predictive equation for these soils and compare with the EICM model.
Reproducibility of test results

Hydraulic conductivity tests often give highly variable results, thus making it difficult to report values for K in a reliable manner. Identical samples of a single soil were prepared to investigate the reproducibility of the permeability test results. The soil used in these tests was Soil No.A at moisture contents 7.6%, 9.5%, 11.5%, 13.4% and 15.6%. Three to six samples were identically prepared at each moisture content. The averaged permeability values and deviation were computed and listed in Table 4.3. From the results in Table 4.3, it can be seen that the permeability of soil No. A is in the order of 10^{-10} to 10^{-8} m/sec. Test results vary for identically prepared samples. As can be seen from the results in Table 4.3, the reproducibility in permeability for a given water content is quite good. In fact, the largest variation ranges from 1.5 times the average to 0.5 times the average, which is much less than one order of magnitude. The variation of the hydraulic conductivity is largest when the moisture content is 15.6%, but it is still within 50% of the averaged value. For other moisture contents, the variation of permeability falls within 25% of the averaged value. The relatively large scatter in data for samples at a moisture content of 15.6% may be due to the clay clods formed during mixing (Stephen and Daniel, 1985) since the size of clay clods increases with increasing moisture content. The variation of the size of clay clods in samples compacted wet of optimum is large. Other errors may also occur due to sample preparation (samples are not exactly identical) and test procedures such as test duration. Although readings were taken after the flow was constant, the hydraulic conductivity tended to decrease slightly with time. However, this difference was small and can be ignored. Overall, on the basis of these tests results, the reproducibility of permeability tests is good.

Effect of air-drying after compaction

The permeability of compacted soil in the field may be different due to moisture content change even though the dry density is the same. Previous work shows that wet-dry cycles affect the permeability (Lin et al., 2000). The permeability may change dramatically due to swell-shrinkage of soil. Stephen and Daniel (1985) found that permeability increased due to desiccation cracks that formed a few hours after samples were air-conditioned with a temperature of 78°C. These cracks closed when the testing effective stress was as high as 8 psi. On the other hand, Mitchell et al. (1965) found that the permeability of samples cured in the moist room for a period of time is about an order of magnitude higher than those tested immediately after being extruded from the mold, especially when the samples are compacted wet of optimum. To evaluate the effect of moisture on permeability of compacted soil, two sets of identical samples of Soil No. A compacted at various moisture contents were tested. One set of compacted samples was air-dried before testing, with the samples exposed to the air until the weight was constant, while the other set of samples was tested immediately after removal from the compaction mold. The measured permeabilities are plotted as a function of moisture content as shown in Figure 4.2.
From the results in Figure 4.2, it can be seen that the air-dried samples have lower permeability than that of wet samples. The permeability of air-dried samples ranges from about 56% to 95% of that of wet samples. When the samples are dry of optimum, air-drying has little effect on the results. The effect of air-drying increases slightly the difference between air-dried and wet permeability results when the samples are wet of optimum. However, the decrease of permeability due to air-drying is not significant. This observation is different from that by Stephen and Daniel (1985) who reported that permeability was increased due to desiccation of samples. No cracks formed after the samples were air-dried. The decrease in permeability might be due to the shrinkage of soil after air-drying.

Effect of compaction moisture content on permeability

Permeability tests were performed to investigate the effect of compaction moisture content on permeability of Soil No. A, No. B, No. C, No. D and No. E. Samples were compacted at various moisture contents from about 5% dry of optimum to 8% wet of optimum. Drier samples than that range of moisture contents show cracks after being removed from the mold, while wetter samples experience local shear failure around the hammer during compaction. Modified Proctor compaction effort was selected due to its use in Iowa subgrade construction. Figures 4.3 to 4.7 show the dry density, strength and the permeability as a function of moisture content for these soils.

From Figures 4.3 to 4.7, it can be seen that the permeability of compacted soil decreases with moisture content when it is dry, while the permeability increases slightly with moisture content when the soil gets wetter. The results are similar to those found by many other investigators such as Lambe (1958), Seed and Chan (1959), and Mitchell et al. (1965). The minimum permeability occurs at moisture content of about 2 to 4% wet of optimum. The difference in permeability between dry of optimum and wet of optimum is about two to three orders of magnitude. The lower permeability of samples compacted wet of optimum is often attributed to a more dispersed structure that leads to lower permeability (Seed and Chan, 1959).

The strength curves show a trend that the maximum strength occurs at about 2 to 4% dry of optimum. Strength decreases as the moisture content increases when the samples were compacted wet of optimum. When compacted dry of optimum, moisture content has less effect on strength (Mitchell et al, 1965).

Permeability – void ratio relationship of soil samples dry of optimum

The experimental data in Figures 4.3 to 4.7 were replotted in Figures 4.8 to 4.12 using void ratio versus the \(\log K \). The results in Figures 4.8 to 4.12 show that the \(\log K \) vs. \(e \) plot is not strictly a straight line since the \(R^2 \) values are less than one. If the model expressed by Equation (1) is applied to these data, the transformed plot \(\log k(1+e) \) vs. \(\log e \) can be approximated as a straight line. Figures 4.8 to 4.12 show \(\log K \) vs. \(e \) plots and transformed plots \(\log k(1+e) \) vs. \(\log e \) of five cohesive select soils. From the \(R^2 \) values in these figures, it is clear that there is a good correlation between \(\log k(1+e) \) and \(\log e \) when the
samples are compacted dry of optimum. However, the correlation on the wet side is very poor. The C and x values in the model $k = C\left[\frac{e^x}{1 + e}\right]$ (Equation 1) can be obtained directly from these figures: x is the slope of the straight line and C is the intercept. Table 4.4 summarizes these parameters.

From the data in Table 4.4, it can be seen that the exponent x ranges from about 11 to 22, which is similar to values determined for overconsolidated clay (Samarasinghe et al., 1982) and is much greater than that of normally consolidated clay as presented by Sridharan and Nagaraj (2005). The exponent x on the wet side are much different than the values for normally consolidated clay likely due to the low R^2 values obtained.

Permeability – compaction variables relationship

Using the empirical model suggested by Harrop-Williams (1985) as shown in Equation (4), the $\ln k - x$ curves are plotted in Figures 4.13 to 4.18. The regression constants A and α are obtained from these figures and shown in Table 4.5.

From Table 4.5 it can be seen that constant A ranges from -18.58 to -21.16, and α ranges from -4.97 to -7.1 with a relatively high correlation coefficient R^2 (0.88 - 0.96), meaning 88% to 96% of the variance in permeability is explained by this model. The variation of these two constants is small since the five soils are all glacial till and their compaction methods are the same. By applying Harrop-Williams’s model to all the five soils, the regression constants for these Iowa cohesive select soils are obtained with A equal to -20 and α equal to -5.63. These constants are very similar to those suggested by Harrop-Williams (1985) ($A = -19.873$, $\alpha = -5.19$) for compacted clay.

As suggested by Harrop-Williams (1985), A and α depend primarily on the soil type and level of compaction. In this research, the level of compaction is the same for all soils so that the soil type is the only factor that influences A and α. As discussed previously, the permeability of fine-grained soils is influenced by specific surface area, which can be correlated to some soil index properties, such as liquid limit, plasticity limit, plasticity index, and fine contents. These correlations were investigated and it was found that strong correlations exist between constant A and $P_{200}\cdot\text{PI}$, α and LL. Figures 4.19 and 4.20 show the plots A versus $P_{200}\cdot\text{PI}$, and α versus LL, respectively. From Figures 4.19 and 4.20, it is clear that there is a good correlation of A with $P_{200}\cdot\text{PI}$ ($R^2 = 0.95$), and α with LL ($R^2 = 0.80$).

These results indicate that a model using the liquid limit and the percent finer than No. 200 sieve can estimate the permeability of these compacted clays.

Comparison of measured permeability to NCHRP 1-37A empirical equations

As mentioned previously, equations (2) and (3) are incorporated in EICM model to estimate the saturated permeability of compacted soil at optimum moisture content. The soil parameters used in these equations
are P200, PI, and D60. To evaluate these equations, the k_{sat} was calculated and compared to the measured values as shown in Table 4.6 and Figure 4.21.

It can be seen from Figure 4.21 that the difference of measured and calculated permeability using equations (2) and (3) is between 1 to 2 orders of magnitude. One of the objectives of this study is to find an improved model to estimate permeability. A regression analysis from measured permeability and PI*P200 is given in Figure 4.22.

Figure 4.22 shows that permeability of compacted soils can be expressed by PI*P200. Since P200*PI is greater than one, the regression model is provided in a similar form to equation (3):

$$k_{sat} = 10^{-[0.095\left(P_{200}PI\right)^2 - 1.52\left(P_{200}PI\right) + 1.65]} \text{ (ft/hr)}$$

(8)

Although equation (8) has similar form as equation (3), the permeability value obtained from each equation has one to two orders of magnitude difference, which indicates that k_{sat} may as well depends on other factors.

According to Benson and Trast (1995), the initial saturation (S_i) and compaction effort (E) are more important factors than P200 and PI. Therefore S_i and E were studied in this research. Equation (6) incorporated both factors and is applied. The comparison of calculated k from Equation (6) and measured k is summarized in Table 4.7.

Table 4.7 shows that if initial degree of saturation is included in the model, the difference between calculated permeability and measured permeability is within one order of magnitude. Overall, if PI, P200, LL, and compaction variables such as γ_d and $w^\%$ are all incorporated in the model, according to Eq (4), Figures 4.19 and 4.20, permeability can be expressed as follow:

$$\ln k = 0.24(PI*P_{200})^2 - 3.78(PI*P_{200}) - 6.2 + [0.13*LL]^2 - 7.68*LL + 106.6]ln\frac{\gamma_d wG}{G\gamma_w - \gamma_d}$$

(9)

Equation (9) provides a general prediction model for permeability of compacted clay.

For Iowa cohesive select soils, A is about -20, α is about -5.63. This model can be simplified as follow:

$$\ln k = -20 - 5.63ln\frac{\gamma_d wG}{G\gamma_w - \gamma_d}$$

(10)

Where: $k =$ permeability of compacted soil (m/s),

- PI = plasticity index,
- P200 = percent finer than No.200 sieve,
- γ_d = dry unit weight of compacted soil,
- γ_w = unit weight of water,
- G = specific gravity of soil

To validate equations (9) and (10), all the test data is presented in Table 4.8.
It can be seen from Table 4.8 that the new model predicts the permeability very well, the ratio of predicted permeability and the measured permeability ranges from 0.16 to 1.78. Compared to equation (3), equation (9) is a more comprehensive model in that it incorporates the index properties (PI, P200 and LL), compaction characteristics and initial degree of saturation (which is implied by moisture content, specific gravity and dry unit weight). For Iowa soil, the permeability of select soil can be predicted by equation (10) even in the absence of the index properties.

4.5 CONCLUSIONS

The permeability of five compacted cohesive select soils from Iowa were evaluated. Several conclusions were drawn from the results of this study.
1. Permeability test is reproducible, provided that the variance of test results are between 49% below averaged value and 52% above averaged value. The higher the moisture content, the higher the variance.
2. Air-dried samples have lower permeability than that of wet samples tested right after extruded from compaction mold. The permeability of air-dried samples is from about 56% to 95% of that of wet samples. Air-drying has less effect on the results when the sample are compacted dry of optimum than wet of optimum.
3. Permeability of compacted soil decreases with moisture content when it is dry, while the permeability increases slightly with moisture content when the soil gets wetter. The lowest permeability occurs at moisture content of about 2 to 4% wet of optimum.
4. There is a good correlation between \(\log[k(1+e)] \) and \(\log e \) when the samples are compacted dry of optimum. However, the correlation in the wet side is very poor. When equation (1) applies, the x value ranges from 11 to 22 for overconsolidated clays.
5. Permeability can be predicted using Harrop-Williams (1985) model (eq (4)), where A ranges from -18.58 to -21.16, and \(\alpha \) ranges from -4.97 to -7.1 for Iowa cohesive soils.
6. The difference between the measured permeability and the calculated permeability using EICM model is 1 to 2 orders of magnitude.
7. Eqs (9) and (10) provide a more comprehensive model based on Harrop-Williams (1985) model to predict compacted soil permeability, which incorporated PI, LL, P200, w% and \(\gamma_{\text{dry}} \).

4.6 ACKNOWLEDGEMENTS

Iowa Department of Transportation sponsored this project under contract TR-501. The opinions, findings, conclusions and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.
4.7 REFERENCES

Table 4.1. Index properties of select soil used in permeability test

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Gs</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>% Gravel</th>
<th>% Sand</th>
<th>% Silt</th>
<th>% Clay</th>
<th>Proctor density (kg/m3)</th>
<th>Optimum w%</th>
<th>Degree of Saturation at Optimum w%</th>
<th>Classification USCS, AASHTO</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.7</td>
<td>26</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>46</td>
<td>37</td>
<td>17</td>
<td>1951</td>
<td>11</td>
<td>57</td>
<td>CL, A6</td>
<td>HW20, Webster County</td>
</tr>
<tr>
<td>B</td>
<td>2.69</td>
<td>35</td>
<td>19</td>
<td>16</td>
<td>3</td>
<td>27</td>
<td>56</td>
<td>14</td>
<td>1855</td>
<td>14</td>
<td>20</td>
<td>CL, A6</td>
<td>HW30, Le Grande</td>
</tr>
<tr>
<td>C</td>
<td>2.74</td>
<td>34</td>
<td>18</td>
<td>16</td>
<td>5</td>
<td>29</td>
<td>56</td>
<td>10</td>
<td>1893</td>
<td>13</td>
<td>22</td>
<td>CL, A6</td>
<td>HW30, Le Grande</td>
</tr>
<tr>
<td>D</td>
<td>2.84</td>
<td>25</td>
<td>15</td>
<td>10</td>
<td>2</td>
<td>44</td>
<td>40</td>
<td>14</td>
<td>1969</td>
<td>11.6</td>
<td>35</td>
<td>CL, A6</td>
<td>HW30, Le Grande</td>
</tr>
<tr>
<td>E</td>
<td>2.71</td>
<td>33</td>
<td>18</td>
<td>15</td>
<td>3</td>
<td>33</td>
<td>45</td>
<td>21</td>
<td>1816</td>
<td>16</td>
<td>45</td>
<td>CL, A6</td>
<td>HW60, Hopster</td>
</tr>
</tbody>
</table>

Table 4.2. Recommended laboratory hydraulic gradients for various hydraulic conductivities (ASTM D5084, 2000d).

<table>
<thead>
<tr>
<th>Hydraulic Conductivity (m/s)</th>
<th>Recommended Maximum Hydraulic Gradient i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^{-5} to 1×10^{-6}</td>
<td>2</td>
</tr>
<tr>
<td>1×10^{-6} to 1×10^{-7}</td>
<td>5</td>
</tr>
<tr>
<td>1×10^{-7} to 1×10^{-8}</td>
<td>10</td>
</tr>
<tr>
<td>1×10^{-8} to 1×10^{-9}</td>
<td>20</td>
</tr>
<tr>
<td>Less than 1×10^{-9}</td>
<td>30</td>
</tr>
</tbody>
</table>
Table 4.3. Permeability test results for Soil No. A

<table>
<thead>
<tr>
<th>Sample</th>
<th>Moisture content w (%)</th>
<th>Permeability K (m/sec)</th>
<th>Average K (m/sec)</th>
<th>Deviation from Average(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.6</td>
<td>5.42E-08</td>
<td>7.23E-08</td>
<td>-25</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7.52E-08</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>8.75E-08</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>9.5</td>
<td>3.45E-08</td>
<td>3.53E-08</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3.45E-08</td>
<td></td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3.68E-08</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>11.5</td>
<td>3.66E-09</td>
<td>3.61E-09</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4.10E-09</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4.02E-09</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.43E-09</td>
<td></td>
<td>-33</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>4.35E-09</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>3.08E-09</td>
<td></td>
<td>-15</td>
</tr>
<tr>
<td>1</td>
<td>13.4</td>
<td>6.99E-10</td>
<td>6.93E-10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>6.69E-10</td>
<td></td>
<td>-3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>7.44E-10</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>6.62E-10</td>
<td></td>
<td>-5</td>
</tr>
<tr>
<td>1</td>
<td>15.6</td>
<td>1.95E-09</td>
<td>1.31E-09</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1.73E-09</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>6.32E-10</td>
<td></td>
<td>-52</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>9.21E-10</td>
<td></td>
<td>-29</td>
</tr>
</tbody>
</table>
Table 4.4. Permeability parameters for five cohesive select soils in Iowa

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Optimum w%</th>
<th>Maximum dry unit weight γd(pcf)</th>
<th>Dry side</th>
<th>Wet side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>C (m/s)</td>
</tr>
<tr>
<td>A</td>
<td>11.5</td>
<td>122</td>
<td>15.06</td>
<td>1.14E-02</td>
</tr>
<tr>
<td>B</td>
<td>14</td>
<td>116</td>
<td>19.68</td>
<td>0.29</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>118</td>
<td>21.66</td>
<td>4.00E-01</td>
</tr>
<tr>
<td>D</td>
<td>11.6</td>
<td>122</td>
<td>10.58</td>
<td>1.61E-04</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>113</td>
<td>15.92</td>
<td>8.63E-04</td>
</tr>
</tbody>
</table>

Table 4.5. Regression Constants of five cohesive select soils from Iowa

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Optimum w%</th>
<th>Maximum dry unit weight γd (pcf)</th>
<th>Variables</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>P200 (%)</th>
<th>PI*P200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td>α</td>
<td>R²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>11.5</td>
<td>122</td>
<td>-21.16</td>
<td>-6.24</td>
<td>0.92</td>
<td>26</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>B</td>
<td>14</td>
<td>116</td>
<td>-18.58</td>
<td>-4.97</td>
<td>0.88</td>
<td>35</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>118</td>
<td>-19.42</td>
<td>-5.14</td>
<td>0.88</td>
<td>34</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>D</td>
<td>11.6</td>
<td>122</td>
<td>-19.49</td>
<td>-4.94</td>
<td>0.96</td>
<td>25</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>113</td>
<td>-19.77</td>
<td>-7.10</td>
<td>0.91</td>
<td>33</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All 5 soils</td>
<td>-20</td>
<td>-5.63</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.6. Comparison of measured permeability to NCHRP 1-37A empirical equations

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>D₆₀ (mm)</th>
<th>PI</th>
<th>P₂₀₀</th>
<th>calculated kₘₐₜ (ft/hr) (from eq. (3))</th>
<th>calculated kₑ (m/sec) (from eq. (3))</th>
<th>Measured kₘ (m/sec)</th>
<th>kₑ/kₘ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.13</td>
<td>13</td>
<td>54</td>
<td>7.58E-06</td>
<td>6.42E-10</td>
<td>3.61E-09</td>
<td>0.18</td>
</tr>
<tr>
<td>B</td>
<td>0.06</td>
<td>16</td>
<td>70</td>
<td>3.33E-06</td>
<td>2.82E-10</td>
<td>3.33E-08</td>
<td>0.01</td>
</tr>
<tr>
<td>C</td>
<td>0.06</td>
<td>16</td>
<td>66</td>
<td>3.77E-06</td>
<td>3.19E-10</td>
<td>7.33E-09</td>
<td>0.04</td>
</tr>
<tr>
<td>D</td>
<td>0.1</td>
<td>10</td>
<td>54</td>
<td>1.05E-05</td>
<td>8.91E-10</td>
<td>1.31E-08</td>
<td>0.07</td>
</tr>
<tr>
<td>E</td>
<td>0.04</td>
<td>15</td>
<td>66</td>
<td>4.28E-06</td>
<td>3.63E-10</td>
<td>8.73E-09</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Table 4.7. Comparison of measured permeability to Benson and Trast’s regression model (1995)

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>D60 (mm)</th>
<th>PI</th>
<th>P200</th>
<th>S_i</th>
<th>calculated k_c (m/sec) (from eq. (7))</th>
<th>Measured k_m (m/sec)</th>
<th>k_c/k_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.13</td>
<td>13</td>
<td>54</td>
<td>57</td>
<td>1.39E-9</td>
<td>3.61E-09</td>
<td>0.38</td>
</tr>
<tr>
<td>B</td>
<td>0.06</td>
<td>16</td>
<td>70</td>
<td>20</td>
<td>6.5E-8</td>
<td>3.33E-08</td>
<td>1.26</td>
</tr>
<tr>
<td>C</td>
<td>0.06</td>
<td>16</td>
<td>66</td>
<td>22</td>
<td>3.23E-8</td>
<td>7.33E-09</td>
<td>4.41</td>
</tr>
<tr>
<td>D</td>
<td>0.1</td>
<td>10</td>
<td>54</td>
<td>35</td>
<td>1.11E-8</td>
<td>1.31E-08</td>
<td>0.85</td>
</tr>
<tr>
<td>E</td>
<td>0.04</td>
<td>15</td>
<td>66</td>
<td>45</td>
<td>4.61E-9</td>
<td>8.73E-09</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Table 4.8. Validation of Permeability Model Eqs (9) and (10)

<table>
<thead>
<tr>
<th>Soil No.</th>
<th>Optimum W%</th>
<th>Maximum dry unit weight γ_d (pcf)</th>
<th>G</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>P200 (%)</th>
<th>PI*P200</th>
<th>calculated k_c (m/sec) using eq(9)</th>
<th>calculated k_c (m/sec) using eq(10)</th>
<th>Measured k_m (m/sec)</th>
<th>k_c/k_m eq(8)</th>
<th>k_c/k_m eq(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11.5</td>
<td>122</td>
<td>2.70</td>
<td>26</td>
<td>13</td>
<td>13</td>
<td>54.1</td>
<td>7</td>
<td>2.37E-09</td>
<td>6.44E-09</td>
<td>3.61E-09</td>
<td>0.66</td>
<td>1.78</td>
</tr>
<tr>
<td>B</td>
<td>14</td>
<td>116</td>
<td>2.69</td>
<td>35</td>
<td>19</td>
<td>16</td>
<td>70.2</td>
<td>11.2</td>
<td>1.71E-08</td>
<td>5.35E-09</td>
<td>3.33E-09</td>
<td>0.51</td>
<td>0.16</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>118</td>
<td>2.74</td>
<td>34</td>
<td>18</td>
<td>16</td>
<td>65.9</td>
<td>10.5</td>
<td>1.01E-08</td>
<td>7.50E-09</td>
<td>7.33E-09</td>
<td>1.38</td>
<td>1.02</td>
</tr>
<tr>
<td>D</td>
<td>11.6</td>
<td>122</td>
<td>2.84</td>
<td>25</td>
<td>15</td>
<td>10</td>
<td>54.1</td>
<td>5.4</td>
<td>1.11E-08</td>
<td>1.22E-08</td>
<td>1.31E-08</td>
<td>0.85</td>
<td>0.93</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>113</td>
<td>2.71</td>
<td>33</td>
<td>18</td>
<td>15</td>
<td>66.5</td>
<td>10</td>
<td>4.04E-09</td>
<td>4.37E-09</td>
<td>8.73E-09</td>
<td>0.46</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Figure 4.1. Permeability and water content, compaction characteristics relationship of compacted clays after Lambe(1958) (a) Jamaica Sandy clay; (b) Siburua clay

Figure 4.2. Effect of air-drying on permeability of compacted soil
Figure 4.3. Compaction, Permeability Behavior of Soil No. A
Figure 4.4. Compaction, Permeability Behavior of Soil No. B
Figure 4.5. Compaction, Permeability Behavior of Soil No. C
Figure 4.6. Compaction, Permeability Behavior of Soil No. D
Figure 4.7. Compaction, Permeability Behavior of Soil No. E

- **Dry Unit Weight (pcf)**
 - Maximum \(\rho_d = 113 \text{pcf} \)
- **Unconfined Compressive Strength \(q_u \)**
- **Optimum \(w\% = 16\% \)**
- **Permeability (m/sec)**
 - \(1 \times 10^{-9} \) to \(1 \times 10^{-6} \)
Figure 4.8. Permeability versus void ratio relationship for Soil No. A
Figure 4.9. Permeability versus void ratio relationship for Soil No. B
Figure 4.10. Permeability versus void ratio relationship for Soil No. C
Figure 4.11. Permeability versus void ratio relationship for Soil No. D

- $y = 8E-05x^{10.242}$
 $R^2 = 0.8341$
- $y = 10.582x - 3.7926$
 $R^2 = 0.8429$
- $y = 0.1973x - 7.7208$
 $R^2 = 0.0264$
Figure 4.12. Permeability versus void ratio relationship for Soil No.E

\[y = 0.0004x^{15.562} \]
\[R^2 = 0.8739 \]

\[y = 15.918x - 3.0642 \]
\[R^2 = 0.8787 \]

\[y = -0.0777x - 8.0834 \]
\[R^2 = 0.0004 \]
Figure 4.13. Permeability versus compaction variables for Soil No. A

Figure 4.14. Permeability versus compaction variables for Soil No. B
Figure 4.15. Permeability versus compaction variables for Soil No. C

Figure 4.16. Permeability versus compaction variables for Soil No. D
Figure 4.17. Permeability versus compaction variables for Soil No. E

Figure 4.18. Permeability versus compaction variables for all five soils
\[y = 0.2393x^2 - 3.7782x - 6.1767 \]
\[R^2 = 0.9472 \]

Figure 4.19. A versus PI*P_{200} for all five Iowa cohesive select soils

\[y = 0.1286x^2 - 7.6792x + 106.55 \]
\[R^2 = 0.8045 \]

Figure 4.20. \(\alpha \) versus LL for all five Iowa cohesive select soils
Comparison of calculated permeability and measured permeability

Figure 4.21. Comparison of NCHRP 1-37A calculated permeability and measured permeability

Figure 4.22. log K vs. PI*P200

\[y = 0.0946x^2 - 1.5209x + 1.6472 \]

\[R^2 = 0.882 \]
CHAPTER 5 FIELD INVESTIGATION OF SETTLEMENT ADJACENT TO HIGHWAY CULVERTS

Radhey S. Sharma, Longjie Hong, and Vernon R. Schaefer
A paper to be submitted to the ASCE Journal of Materials in Civil Engineering

ABSTRACT

Settlement issues adjacent to culverts and/or pipes have occurred in Iowa State. Investigation shows that it is mostly due to the unstable foundation and inadequate compaction of backfill materials around the culverts, which lead to the common dip in the road over the culverts. The solution to the potential causes, in general, is to use materials that could be compacted easily or would possess a high stability to resist the deformation from the repeated loadings. Select materials and flowable mortar was studied in this research to evaluate if these materials can be used as backfill. Test results and discussion was provided in this paper.

5.1 INTRODUCTION

Culverts are commonly installed to deal with the highway drainage needs. Installation of a culvert generally necessitates an excavation in natural or fill materials, with subsequent compaction of soil materials to fill back in the excavated materials. Unfortunately, settlement adjacent to highway culverts has often been found shortly after the road is open to traffic. Although not perceptible to the naked eye, the settlement near a culvert is noticeable in a vehicle driving though these locations. To address this issue, the Iowa Department of Transportation (IDOT) initiated a research project to investigate the causes of the problem and come out with a solution.

Settlement is a common problem following culvert installation and is often due to poorly compacted sand backfill and rock backfill (crushed lime stone) materials. Displacement of soft material or piping along the culvert can cause significant damage to the culvert. Poorly compacted backfilled soils are subject to substantial volume reduction once saturated (Selig, 1990). This phenomenon is called collapse compression. Collapse occurs because the backfill soils lose capillary tension when they become saturated, causing the soil particles to settle into a denser packing. Selig (1990) noted that collapse compression strain decreases as the degree of compaction increases, and diminished to an insignificant amount once the compaction reaches 85% to 90% of standard Proctor unit weight. The settlement of backfill materials causes bumps on the pavement surface and distress to the drain pipes buried in the sand backfill. This might lead to cracking of pipes resulting in leakage of water into the subsoil. If the subsoil consists of
problematic soils such as expansive soils or collapsible loess soils, seeping of water into these soils could trigger further intricate problems of volume changes, detrimental to the engineering performance of pavements. Although there is considerable information available on the design and construction of new culverts, there is little information in the literature on how to repair culvert problems and even less on how to rehabilitate, strengthen, or retrofit upgrade culverts. Initiating any kind of remedial measures requires a thorough investigation of the soil profile and properties of different soils in different strata.

Figure 5.1 shows the general nature of the problem. The 2-foot diameter pipe under the poorly compacted rockfill is subjected to distress owing to the settlement of the rockfill under traffic loads. The effect of soil settlement is shown in Figure 5.2. Field investigation indicates that settlement occurs near the pavement surface right above the pipe. Settlement of backfill material and movement of the structure can have serious structural consequences in pipes such as misalignment or rupture of the pipe system. A stable soil envelope around pipes is necessary for side support that will reduce settlement of rigid pipe. Figure 5.3 shows the remediation alternatives. It is proposed that, to ward off large amounts of settlement, the backfill above the center of pipe is replaced by flowable mortar, the major components of which are fly ash, cement, sand and water.

The objectives of this study were to: (1) investigate culvert settlement problems in Iowa; (2) review the remediation methods in the literature; and (3) study the select and flowable mortar as backfill options.

5.2 BACKGROUND

The pipe (culvert) and the soil surrounding it work as an integral system, which means that weakness in the surrounding soil affects the performance of the drainage pipe. Thus the quality of backfill materials is of vital importance to the pipeline safety regarding bearing capacity and settlement issues. For culvert systems, compacted, well-graded, angular, granular backfill materials provide the best structural support. These backfill materials comprise primarily selected soils restricted to A-1, A-2, and A-3 classifications and are compacted to a density of more than 90% of standard Proctor maximum dry unit weight (US Army, 1959). However, the use of conventional backfill materials is hard to meet the compaction criteria due to site restriction, soil conditions, equipment limitation, and workmanship, especially in the area right next to the pipe and below the spring line. Therefore, materials that can be compacted easily or possess a high stability to resist the deformation from the repeated loading have been used recently. These materials are granular backfill, concrete sand, well graded crushed stone, recycled Portland cement concrete, flowable mortar, etc.

The following factors are considered when selecting a backfill material: ease of compaction, labor requirements, degree of inspection, and cost (US Army, 1959). Granular backfill or sand and flowable
mortar would be the best choices. Currently, flowable mortar is becoming more and more popularly used as pipeline backfill (ACI Report 229R-94, 1994). As the American Concrete Institute (ACI) Report 229R-94 (1994) outlines, this material possesses some potential advantages over conventional soil fill. A literature review of this material is provided in the following section.

Controlled Low Strength Material

Flowable mortar is also called “Controlled Low Strength Material-Controlled Density Fill” (CLSM-CDF) by ACI Committee 229 (ACI Report 229R-94, 1994). It is a low-strength material mixed to a wet, flowable slurry and used as an economical fill or backfill material. In the case of CLSM-CDF the material components, when mixed and placed, must possess the following properties: flowability, removability, strength, and a competitive price. (ACI Report 229R-94, 1994) The basic components for CLSM-CDF are Portland cement, fine aggregate, fly ash, and water.

Portland Cement

Type I or Type II Portland cement that conforms to ASTM C 150 (ASTM, 1995) is usually used. The amount is approximately 3% of the total mixture’s weight. The purpose of the cement is to provide cohesion and strength control in the mixtures. For typical backfills, where future removability is anticipated, the compressive strength (c') should be less than 100 psi at 28 days (ACI Report 229R-94, 1994).

Fine aggregate

The fine aggregate, known as filler, makes up the major portion (72%) of a typical CLSM-CDF mixture. This material was utilized because of its availability and proved to be an excellent CLSM-CDF filler. The filler should possess adequate gradation similar to the requirement as set forth in ASTM C33 (ASTM, 1995) to insure proper flowability. Another filler material consideration is the material’s particle angularity. Naturally, a material containing particles with sharp edges will result in less desirable flow characteristics. Aggregates such as pea gravel with sand, sand with 10% silt, and quarry waste products have been proved to be working well in CLSM.

Fly ash

Fly ash used in Portland cement concrete usually complies with ASTM C618 (ASTM, 1995). Fly ash makes up approximately 8% of a typical CLSM-CDF mixture (ACI Report 229R-94, 1994). The majority of the CLSM research has been conducted using Class F fly ash (ACI Report 229R-94, 1994). In addition to finding a suitable use for an industrial by-product, fly ash used in CLSM mixtures also provides several benefits such as: better workability, lower cost, reduced hydration heat, reduced shrinkage upon drying, greater strength gain beyond the first 28 days (Sargand et al., 2001).

Water

Water is used in a CLSM mixture for flowability and hydration. Water increases in CLSM mixtures do not affect its compressive strength. However, water reductions, below the design level, will increase the
compressive strength. A typical CLSM-CDF mixture would consist of approximately 17% water.

Flowable fill design

The purpose of flowable fill is to provide a structural substitute for compacted granular soil. As such, it needs sufficiently low strength to allow for future excavation while providing adequate support for the pipe (Hitch *et al.*, 2002). Discussions with producers of flowable fill and literature research yielded the flowable fill specification shown in Table 1 and the recommended starting point for lab investigations for CLSM mix design for strengths of 100 psi or less is shown in Table 5.2:

Flowability

CLSM is able to flow into places that are hard to reach (haunches) or in narrow trenches where space limited, thus eliminating all labor requirements for placing. Flowability tests were conducted on all trial batches by placing a freshly mixed sample of CLSM in a 75mm diameter (3 in.) by 150 mm (6in.) high open ended tube, and quickly lifting the tube vertically allowing the CLSM sample to slump into a circular mound. The circular sample spread was then measured. A minimum acceptable spread of 200 mm (8 inches) and no segregation of water were adopted acceptance criteria based on guide specifications of the Texas Aggregates and Concrete Association. To achieve this number, a water/solid ratio of 0.4 to 0.6 can be used for flowability design.

Removability

If the CLSM is to be excavated in the future, removability must be considered. As stated in ASTM D 4832 (ASTM, 1995), the only structural requirement for the flowable mortar is that its minimum compressive strength is slightly higher than the surrounding soil; 50 psi is a typical value. However, to ensure removability, unconfined compressive strength of less than 100 psi is required.

Advantages of CLSM compared to conventional backfills

First, CLSM does not form void spaces during placement like soils and will not settle under loads. CLSM’s load carrying capacity is higher than compacted soils, and its relatively low long-term strength (50 to 100 psi) makes it easy to remove in the future. Second, using CLSM is cost effective since its placement procedure is less labor intensive. Brewer *et al.* (1991) made an illustrative comparison based on the material prices in Ohio and found that for a roadway trench with the following dimensions: width, 3 ft; depth, 6 ft; and length, 40 ft., the total cost of the CLSM and conventional backfill is about equal. However, every one-ft reduction in trench width in this example represents a backfill cost reduction of $255.64 when using CLSM (Brewer *et al.* 1991). The trench width is reduced because conventional compaction requires additional access width around the culvert, and CLSM does not require significant testing and inspection during placement, both of which reduce labor cost.

The end use of the CLSM mixture must be known to design the proper mixture. For example, if removability is not to be a factor, then the compressive strength 100 psi or more would not be a factor. Similarly, if the mixture was to be pumped, then flowability could be reduced.
Flowable mortar in Iowa

Iowa DOT specifications for Highway and Bridge Construction have specified that flowable mortar can be used as backfill material around culvert pipes. The materials including cement, fly ash, fine aggregate, and admixtures must meet the following requirements: Cement should be type I (ASTM C150), fly ash should be either Class F or Class C (AASHTO M295), fine aggregate should be natural sand with the gradation of 100% passing ¾ inch and 0-10% passing No.200 sieve.

Flowable mortar is being used by the Iowa Department of Transportation for culvert backfill with the following requirements: granular backfill for half the height of the culvert and flowable mortar for a maximum of five feet above the culvert. The granular backfill ensures that the culvert does not float and acts as a filter to keep from plugging the drainage system. The required subgrade treatment must be between the pavement and the flowable mortar.

5.3 FORENSIC INVESTIGATION

The pavement surface of Highway 18 (mile post 195), Highway 218 (mile post 211), and Highway 330 (mile post 12) were investigated in this research (see Figure 5.4). The locations of these sites are listed in Table 5.4. When driving through these sites, bumps could be felt around the pavement surface above the pipe. Due to limited time, pavement surface topographic profile was taken only for Highway 18 and was plotted in Figure 5.5. The investigation revealed bumps across the lanes on pavement surface. The “bump” shown in Figure 5.5 is about 0.2 in. deep and it is 20-30 ft away from the pipe. Figure 5.6 shows the pipe location and the pavement surface. Highway 330S was selected for detailed investigation as it had maximum settlement of 0.5 in. Soil samples were collected for laboratory testing. One dimensional consolidation tests and consolidation undrained triaxial tests (CU) were performed. For comparison, flowable mortar strength was obtained from Mr. John Vu from Iowa DOT (see pipe backfill report, 2005)

5.4 LABORATORY TESTING

Soil parameters that are usually considered in the design of pipe are soil type, soil density, moisture content, modulus of elasticity, coefficient of lateral earth pressure, and friction angle, etc.. Shelby tube samples were collected from three bore holes of the embankment at Highway 330, mile post 13.30: Borehole 1 is 2.5 meters south of the culvert; samples were collected up to depth 13 ft (4 m). Borehole 2 is right above the culvert; samples were collected up to depth of 7 ft (2.2 m), which is the top of pipe. Borehole 3 is 5 meters north of the culvert and drilled down to 15.4 ft (4.7 m). The boring logs are provided in Table 5.5; the boring location is schematically shown in Figure 5.7.

Moisture content, Compaction and Unconfined Compressive Strength
It can be seen from Figure 5.8 that the moisture content is consistent at about 20-25% of BH1 and BH3, while it is much dryer at BH2, at the range of 13-18%.

The moisture content at compaction greatly affects the compaction density and unconfined compressive strength of select soils, as discussed in Chapter 3. 2% of moisture content difference can lead to about 50kg/m³ compaction density change (see Figure 3.6 (a) to (c)). The select materials have an averaged unconfined compressive strength of about 400 kPa at optimum moisture content (see Figure 3.8(a) to (c)). The difference in strength over 2% moisture content is quite significant (more than 100 kPa). The information confirms the importance of moisture content during compaction. According to the specifications 2102.04 (Iowa DOT specification, 2001), the moisture content limits for select soil is from 2.5% dry of optimum to no upper limit during compaction. Since there is no upper limit during compaction, it is sometimes believed that the contractor may compact the select when it is too wet, which is hard to compact adequately and will result the low strength of backfill. The stability decrease very quickly once the moisture content exceeds the optimum. The soil is so unstable that it should be obvious that the roller would not walk-out. Since there currently is no upper limit on moisture content for the select, the specifications should be changed to ensure proper moisture content during compaction. Also, this change would help field staff to enforce the discing and drying before compaction. This is essential to obtain good density and stability.

Consolidated-Undrained Triaxial Tests (CU)

For comparison purposes, Consolidated-Undrained Triaxial tests were conducted in general accordance to ASTM Standard D4767-95 *Test Method for Consolidated-Undrained Triaxial Compression Test for Cohesive Soils.* (ASTM, 1995). Three samples were tested for each bore hole at different confining pressures (25, 45, and 65 kPa for BH1; 15, 30, and 45 kPa for BH2) to access the shear strengths of the soils. The confining pressures are equal to the effective overburden pressure in the field. The specimen was initially fully consolidated to an isotropic confining pressure. A loading rate of 0.05 inch (approximately 1% axial strain) per minute was used in performing the tests. This led to testing times of approximately 20 minutes because the tests were continued to 20% axial strain. Peak deviator stress was used as the failure criterion if the peak was reached at 10% axial strain or less. If the peak did not occur below 10% axial strain, the deviator stress at 10% axial strain was used as the failure criterion. Figures 5.9 and 5.10 show the stress-strain and pore water pressure characteristics. During the compression, the pore pressure increased and then decreased to below the original value. It shows that the soils are overconsolidated: contracted (pore pressure increased) at the beginning of compression and then dilated (pore pressure decreased). The strength ranges from 115 kPa to 221 kPa, which is much lower than the averaged unconfined compressive strength (400kPa) at optimum moisture contents. It is believed that the soil around pipe was not compacted at optimum moisture content. The stress path of these two bore holes materials is shown in Figures 5.11 and 5.12. It is evident from Figures 5.11 and 5.12 that at the confining
pressures at which the soils were tested the soils exhibited both cohesion and friction angle. Confining pressure σ_3, peak deviator stress $(\sigma_1-\sigma_3)_p$, cohesion c and friction angles ϕ are summarized in Table 5.6.

Consolidation Tests

Consolidation tests were conducted according to ASTM Standard D2435-96 *Standard Test Method for One-Dimensional Consolidation Properties of Soils.* (ASTM, 1995) The purpose of these tests is to obtain the parameters for settlement analysis. The results are presented in Table 5.7. From Table 5.7, it is noted that the soils are normally consolidated or slightly overconsolidated, with an OCR of 1 to 8. The coefficient of consolidation C_v ranges from 2 to 13 ($\times 10^{-3}$ cm2/sec).

Flowable Mortar Tests

Article 2506.02 (Iowa DOT specification, 2001) allows up to 70 gallons of water per cubic yard of flowable mortar. The amount of water in the mix will be an important factor for fluidity and strength of the mix. In order to obtain the compressive strength that would be close to that of the cohesive select soil, a few mix designs were evaluated by John Vu (Pipe backfill report, 2005). Samples were cast in the plastic molds with holes at the bottom and then the molds were set on a layer of granular backfill to determine the compressive strength. The strength for 3 different mixes is summarized in Table 5.8.

Mix Design 1:

This mix design meets DOT requirement for both critical and non critical applications with a time of efflux of 11 seconds when 67 gallons of water per cubic yard was used to backfill the pipe from the spring-line to the top of the pipe. There was no problem with the efflux time for this mix. It flowed very well. Figure 5.13 shows the construction of pipe using flowable mortar as backfill.

Figure 5.14 shows that the flowable mortar was strong enough after 24 hours to support the inspector’s weight. Stability reading with the Clegg Hammer showed that the strength was equal to a layer of six inches of crushed stone.

Mix Design 2:

This flowable mix design did not flow. The efflux time was not tested but it was very obvious that it would not flow through the testing cone. It was also noted that the strength was too high. For an open trench application fluidity is not a problem. However, the strength is now a concern.

Mix Design 3:

In order to determine what the minimum amount of water in the mix should be, another flowable mortar mix with 55 gallons was used. This mix when tested for the efflux did not flow at all. As before, flowable mortar cylinders were cast for compressive strength. The compressive strength for this mix is still too high when compared with the unconfined compressive strength data for the cohesive select soil. The recommendation for the flowable mix design is the current design in the Iowa DOT specifications. There are two main reasons for this recommendation. The first
reason is the lower strength and the second reason is the fluidity and the ability to penetration into the
granular backfill layer. It will solve the “dip” problem while not create “bump” problem.

Cost
The average cost per location as designed is about $2,100. However, depending on the contractor’s
operation, the cost may be higher. For example, when the contractor placed the pipe in the cut situation,
the contractor cut the trench wide enough to use the pipe bedding machine. If the contractor gets paid for
only the plan quantity for granular backfill (GB) and flowable mortar (FM), the contractor may use some
of the material that was excavated to backfill the trench. This may lead to a settlement problem.

5.5 NUMERICAL ANALYSIS OF PAVEMENT SETTLEMENT

Settlement analysis was performed using Sigma/W provided by Geo-Slope. (Geo-Slope, 2007) The
purpose of this analysis is to analyze the amount and shape of settlement on pavement surface using
different backfill materials: conventional backfill soils, sand and gravel, and flowable mortar. Comparison
was made based on the analysis.

Input parameters are listed in Table 5.9. The Elastic modulus of soil is obtained by taking the slope of
stress strain curves in Figures 5.11 and 5.12. The averaged value is about 10 MPa, which is in the range of
soft clay as shown in Table 5.10. The elastic modulus of gravel (96 MPa) is taken directly from table 5.10.
The elastic modulus of flowable mortar is obtained from the equation (1) (ACI 318-07,2007)

\[E_c = w_c^{1.5} 0.043 \sqrt{f_c'} \]

(1)

where \(E_c \) = modulus of elasticity (MPa)
\(w_c \) = unit weight of flowable mortar (kg/m³)
\(f_c' \) = compressive strength of flowable mortar (MPa)

Based on the tested compressive strength of flowable mortar shown in Table 5.8, which is 613 psi (4.23
MPa) from flowable mortar Mix design 3, and the unit weight of flowable mortar 130pcf (2085 kg/m³),
the \(E_c \) is 8420 MPa.

From the field investigation, the pipe is buried 7 feet (2.1 m) deep from the surface and has 2 feet (0.6 m)
in diameter. The model was set in Sigma/W for three different materials: soil, gravel and flowable mortar.
Based on the Iowa DOT specifications, granular backfill was placed to half the height of the culvert and
flowable mortar to a maximum of 5 feet (1.5 m) above the culvert.

The trench width is about 6.6 ft (2 m). Soil matrix of 4 m wide was also analyzed in order to see the “dip”
problem. From the parametric study, the width of the trench has no effect on the settlement result (see
Figure 5.15(a) and (b)).

The edges of the trench were assumed to be fixed in x direction and free in y direction. From 4 m deep
below the pavement surface, soils were assumed to be fixed in both directions. Analysis results are shown in Figure 5.15. It is noted from Figure 5.15 that the surface settlement is about 1.4 inches (0.035 m) for soil backfill, while it is only about half (0.018 m) for flowable mortar or gravel backfill (0.02 m). The settlement contour also shows that for soil backfill, there is “bump” on pavement surface, while in flowable mortar or gravel backfill, the “bump” does not exist.

5.6 CONCLUSIONS AND RECOMMENDATIONS

Conclusions from the study of select backfill materials and flowable mortars are drawn as follows

1. Moisture content greatly affects the compaction density and strength of select backfill. Improper compaction moisture content can lead to low strength and density, thus causing the dip problem of pipe.
2. If the compaction is done properly, the minimum unconfined compressive strength of the good clay select should be around 700 kPa (100 psi) shortly after compaction. However, this select is not readily available throughout the entire state. The averaged tested strength of select materials is about 400 kPa (58 psi), which may be too low for backfilling purpose.
3. Based on the numerical analysis, the use of flowable mortar as an approach backfill material appears to be a simple and reasonably cost effective method to reduce the potential for developing the bump above the drainage pipe.
4. Because there is no completed project on flowable mortar backfilling option, there is no information available to evaluate the pavement performance. Thus, it is recommended that a follow-up be done to monitor the performance.
5. Since currently there is no upper limit on moisture content for select, this specification should be reviewed to ensure good density and stability.

5.7 REFERENCES

ACI 318-07, 2007. Building Code Requirements for Structural Concrete and Commentary (Includes Errata), American Concrete Institute Code.
American Concrete Institute (ACI), 1994. “Controlled Low Strength Materials (CLSM).” ACI 229R-94 Report, ACI Committee 229, Concrete International, Detroit, MI.

Iowa Department of Transportation Standard Specification for Highway and Bridge Construction, 2001

John Vu, 2005, “Pipe backfill report”.

Sargand S. M., Masada T. and Schehl D. J., 2001. “Soil pressure measured at various fill heights above deeply buried thermoplastic pipe.” Transportation Research Record, n 1770, p 227-235

Table 5.1: Flowable fill specifications (Hegarty et al. 1998)

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit weight</td>
<td>142 pcf (2275 kg/m³)</td>
</tr>
<tr>
<td>Slump (max)</td>
<td>9 in. (22.8 cm)</td>
</tr>
<tr>
<td>Water/cement ratio</td>
<td>0.68</td>
</tr>
<tr>
<td>28-Day compressive strength (max)</td>
<td>100 psi (70310 kg/m²)</td>
</tr>
</tbody>
</table>

Table 5.2: Flowable fill mix design

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland cement (Type I) ASTM C150</td>
<td>100 lbs/yd³ (59.32 kg/m³)</td>
</tr>
<tr>
<td>Fly ash, ASTM C618 Class F</td>
<td>300 lbs/yd³ (177.96 kg/m³)</td>
</tr>
<tr>
<td>Aggregate, ASTM C33</td>
<td>2600 lbs/yd³ (1542.32 kg/m³)</td>
</tr>
<tr>
<td>Water</td>
<td>584 lbs/yd³ (346.43 kg/m³)</td>
</tr>
<tr>
<td>Unit weight</td>
<td>127.8 pcf (2050 kg/m³)</td>
</tr>
<tr>
<td>Compressive strength</td>
<td></td>
</tr>
<tr>
<td>14 days</td>
<td>60 psi (0.41 MPa)</td>
</tr>
<tr>
<td>28 days</td>
<td>60 psi (0.41 MPa)</td>
</tr>
<tr>
<td>90 days</td>
<td>160 psi (1.10 MPa)</td>
</tr>
<tr>
<td>California Bearing Ratio (CBR), %</td>
<td></td>
</tr>
<tr>
<td>0.1 in.</td>
<td>19.7</td>
</tr>
<tr>
<td>0.2 in.</td>
<td>23.7</td>
</tr>
</tbody>
</table>
Table 5.3: ASTM Specification C 76 concrete pipe strength standards

<table>
<thead>
<tr>
<th>Pipe Class</th>
<th>Design Strength psf (kg/m²)</th>
<th>Ultimate Strength psf (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C 76 I</td>
<td>800, (3906)</td>
<td>1200, (5858)</td>
</tr>
<tr>
<td>ASTM C 76 II</td>
<td>1000, (4882)</td>
<td>1500, (7323)</td>
</tr>
<tr>
<td>ASTM C 76 III</td>
<td>1350, (6591)</td>
<td>2000, (9764)</td>
</tr>
<tr>
<td>ASTM C 76 IV</td>
<td>2000, (9764)</td>
<td>3000, (14646)</td>
</tr>
<tr>
<td>ASTM C 76 V</td>
<td>3000, (14646)</td>
<td>3750, (18307)</td>
</tr>
</tbody>
</table>

Table 5.4: Locations of investigated sites

<table>
<thead>
<tr>
<th>No.</th>
<th>Highway</th>
<th>Mile post</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HW18E</td>
<td>195.65</td>
<td>Cerro Gordo (near Mason City)</td>
</tr>
<tr>
<td>2</td>
<td>HW18E</td>
<td>195.73</td>
<td>Cerro Gordo (near Mason City)</td>
</tr>
<tr>
<td>3</td>
<td>HW18E</td>
<td></td>
<td>Cerro Gordo (near Mason City)</td>
</tr>
<tr>
<td>4</td>
<td>HW18E</td>
<td></td>
<td>Cerro Gordo (near Mason City)</td>
</tr>
<tr>
<td>5</td>
<td>HW18E</td>
<td></td>
<td>Cerro Gordo (near Mason City)</td>
</tr>
<tr>
<td>6</td>
<td>HW218N</td>
<td>211.65</td>
<td>Bremer (Waverly City)</td>
</tr>
<tr>
<td>7</td>
<td>HW330S</td>
<td>12.15</td>
<td>Marshall</td>
</tr>
<tr>
<td>8</td>
<td>HW330S</td>
<td>12.4</td>
<td>Marshall</td>
</tr>
<tr>
<td>9</td>
<td>HW330S</td>
<td>12.9</td>
<td>Marshall</td>
</tr>
<tr>
<td>10</td>
<td>HW330S</td>
<td>13.05</td>
<td>Marshall</td>
</tr>
<tr>
<td>11</td>
<td>HW330S</td>
<td>13.3</td>
<td>Marshall</td>
</tr>
</tbody>
</table>
Table 5.5 (a): Boring logs of Highway 330S – Borehole 1

<table>
<thead>
<tr>
<th>Depth below surface (in)</th>
<th>Graphical Log</th>
<th>Shelby Tube#</th>
<th>Top Depth, (in)</th>
<th>Length, (in)</th>
<th>Bottom Depth, (in)</th>
<th>Material Description</th>
<th>γ_t (kN/m3)</th>
<th>σ_v (kPa)</th>
<th>σ_3 (kPa)</th>
<th>Moisture Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Top</td>
<td>Bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>1</td>
<td>33</td>
<td>31</td>
<td>64</td>
<td>2 triaxial samples, 1 consolidation sample</td>
<td>20.85</td>
<td>17.5</td>
<td>33.9</td>
<td>25.0</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>2</td>
<td>63</td>
<td>23</td>
<td>86</td>
<td>2 triaxial samples, 1 consolidation sample</td>
<td>18.37</td>
<td>29.4</td>
<td>40.1</td>
<td>35.0</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>3</td>
<td>86</td>
<td>30</td>
<td>116</td>
<td>3 triaxial samples, 1 consolidation sample</td>
<td>19.05</td>
<td>41.6</td>
<td>56.1</td>
<td>45.0</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td>4</td>
<td>116</td>
<td>28</td>
<td>144</td>
<td>3 triaxial samples, 1 consolidation sample</td>
<td>19.57</td>
<td>56.7</td>
<td>78.5</td>
<td>65.0</td>
</tr>
<tr>
<td>158</td>
<td></td>
<td>5</td>
<td>114</td>
<td>44</td>
<td>158</td>
<td>2 triaxial samples, 1 consolidation sample</td>
<td>19.57</td>
<td>56.7</td>
<td>78.5</td>
<td>65.0</td>
</tr>
</tbody>
</table>
Table 5.5 (b): Boring logs of Highway 330S – Borehole 2

<table>
<thead>
<tr>
<th>Depth below surface (in)</th>
<th>Graphical Log</th>
<th>Shelby Tube#</th>
<th>Top Depth, (in)</th>
<th>Length, (in)</th>
<th>Bottom Depth, (in)</th>
<th>Material Description</th>
<th>(\gamma) (kN/m(^3))</th>
<th>(\sigma_v) (kPa)</th>
<th>(\sigma_3) (kPa)</th>
<th>Moisture Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1</td>
<td>24</td>
<td>7</td>
<td>31</td>
<td>1 consolidation sample</td>
<td>20.93</td>
<td>12.8</td>
<td>16.5</td>
<td>15.0</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>2</td>
<td>31</td>
<td>33</td>
<td>64</td>
<td>2 triaxial samples, 1 consolidation sample</td>
<td>20 15.7</td>
<td>32.5</td>
<td>25.0</td>
<td>17.2</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>3</td>
<td>64</td>
<td>21</td>
<td>85</td>
<td>3 triaxial samples, 1 consolidation sample</td>
<td>19.96</td>
<td>32.4</td>
<td>43.1</td>
<td>35.0</td>
</tr>
</tbody>
</table>
Table 5.5 (c): Boring logs of Highway 330S – Borehole 3

<table>
<thead>
<tr>
<th>Depth below surface (in)</th>
<th>Graphical Log</th>
<th>Shelby Tube#</th>
<th>Top Depth, (in)</th>
<th>Length, (in)</th>
<th>Bottom Depth, (in)</th>
<th>Material Description</th>
<th>γ (kN/m³)</th>
<th>σv (kPa)</th>
<th>σ3 (kPa)</th>
<th>Moisture Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>1</td>
<td>24</td>
<td>22</td>
<td>46</td>
<td>2 triaxial samples, 2 consolidation sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>12.2</td>
<td>23.4</td>
<td>20.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.2</td>
<td>23.4</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>2</td>
<td>40</td>
<td>16</td>
<td>56</td>
<td>2 triaxial samples, 1 consolidation sample</td>
<td></td>
<td>20.3</td>
<td>20.6</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>3</td>
<td>64</td>
<td>14</td>
<td>78</td>
<td>2 triaxial samples, 1 consolidation sample</td>
<td></td>
<td>20</td>
<td>32.5</td>
<td>39.6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td>4</td>
<td>94</td>
<td>20</td>
<td>114</td>
<td>3 triaxial samples, 1 consolidation sample</td>
<td></td>
<td>19.58</td>
<td>46.7</td>
<td>56.7</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
<td>5</td>
<td>120</td>
<td>26</td>
<td>146</td>
<td>4 triaxial samples, 1 consolidation sample</td>
<td></td>
<td>19.53</td>
<td>59.5</td>
<td>72.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>6</td>
<td>160</td>
<td>25</td>
<td>185</td>
<td>4 triaxial samples, 1 consolidation sample</td>
<td></td>
<td>19.66</td>
<td>79.9</td>
<td>92.4</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 5.6: CU Triaxial Tests Summary

<table>
<thead>
<tr>
<th>Bore Hole</th>
<th>σ_3 (kPa)</th>
<th>$(\sigma_1-\sigma_3)$ (kPa)</th>
<th>c (kPa)</th>
<th>ϕ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH1</td>
<td>25</td>
<td>115</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>168</td>
<td>221</td>
<td>35</td>
</tr>
<tr>
<td>BH2</td>
<td>15</td>
<td>123</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>132</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>151</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.7: Summary of Consolidation Tests

<table>
<thead>
<tr>
<th>Boring No.</th>
<th>Shelby Tube Sample No.</th>
<th>Depth (m)</th>
<th>p_c' (kPa)</th>
<th>Compression Index C_c</th>
<th>γ_t (kN/m3)</th>
<th>overburden pressure p' (kPa)</th>
<th>Coefficient of Consolidation C_v (10^{-3} cm2/sec)</th>
<th>OCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH1</td>
<td>ST1</td>
<td>1.23</td>
<td>85</td>
<td>0.14</td>
<td>21</td>
<td>26</td>
<td>3.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ST2</td>
<td>1.89</td>
<td>60</td>
<td>0.173</td>
<td>18</td>
<td>35</td>
<td>12.9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ST3</td>
<td>2.57</td>
<td>78</td>
<td>0.103</td>
<td>19</td>
<td>49</td>
<td>2.9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ST5</td>
<td>3.45</td>
<td>75</td>
<td>0.127</td>
<td>20</td>
<td>68</td>
<td>3.3</td>
<td>1</td>
</tr>
<tr>
<td>BH2</td>
<td>ST1</td>
<td>0.7</td>
<td>110</td>
<td>0.139</td>
<td>21</td>
<td>15</td>
<td>8.3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>ST2</td>
<td>1.22</td>
<td>110</td>
<td>0.136</td>
<td>20</td>
<td>25</td>
<td>2.9</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ST5</td>
<td>3.38</td>
<td>70</td>
<td>0.147</td>
<td>20</td>
<td>66</td>
<td>2.5</td>
<td>1</td>
</tr>
<tr>
<td>BH3</td>
<td>ST6</td>
<td>4.38</td>
<td>88</td>
<td>0.196</td>
<td>20</td>
<td>86</td>
<td>4.7</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5.8: Summary of the Flowable Mortar Strength of Different Mixes

<table>
<thead>
<tr>
<th>Age, days</th>
<th>Mix Design 1 67 gal. (psi)</th>
<th>Mix Design 2 45 gal. (psi)</th>
<th>Mix Design 3 55 gal. (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>101</td>
<td>140</td>
<td>161</td>
</tr>
<tr>
<td>7</td>
<td>107</td>
<td>174</td>
<td>252</td>
</tr>
<tr>
<td>14</td>
<td>158</td>
<td>333</td>
<td>388</td>
</tr>
<tr>
<td>28</td>
<td>259</td>
<td>723</td>
<td>613</td>
</tr>
</tbody>
</table>

Table 5.9: Summary of the materials properties in Sigma/W analysis

<table>
<thead>
<tr>
<th>Materials</th>
<th>Elastic modulus E (MPa)</th>
<th>Unit weight γ (kN/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Flowable mortar</td>
<td>8400</td>
<td>21</td>
</tr>
<tr>
<td>Gravel</td>
<td>100</td>
<td>21</td>
</tr>
</tbody>
</table>
Table 5.10: Typical elastic moduli of soil (EM 1110-1-1904, 1990)

<table>
<thead>
<tr>
<th>Soil</th>
<th>Es, MPa (tsf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td></td>
</tr>
<tr>
<td>Very soft clay</td>
<td>0.48-4.8 (5-50)</td>
</tr>
<tr>
<td>Soft clay</td>
<td>4.8-19.2 (50-200)</td>
</tr>
<tr>
<td>Medium clay</td>
<td>19.2-48 (200-500)</td>
</tr>
<tr>
<td>Stiff clay,</td>
<td>48-96 (500-1000)</td>
</tr>
<tr>
<td>silty clay</td>
<td></td>
</tr>
<tr>
<td>Sandy clay</td>
<td>24-192 (250-2000)</td>
</tr>
<tr>
<td>Clay shale</td>
<td>96-192 (1000-2000)</td>
</tr>
<tr>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td>Loose sand</td>
<td>9.6-24 (100-250)</td>
</tr>
<tr>
<td>Dense sand</td>
<td>24-96 (250-1000)</td>
</tr>
<tr>
<td>Dense sand</td>
<td>96-192 (1000-2000)</td>
</tr>
<tr>
<td>and gravel</td>
<td></td>
</tr>
<tr>
<td>Silty sand</td>
<td>24-192 (250-2000)</td>
</tr>
</tbody>
</table>
Figure 5.1: Cross section of pavement

Figure 5.2: The effect of soil settlement on (a) rigid and (b) flexible pipes (US Army, 1959)

Figure 5.3 Proposed treatment of materials surrounding the pipe (Iowa DOT specification, 2001)
Figure 5.4: Locations of three investigated sites
Figure 5.5: Topographic profile at mile post 195, Highway 18, Iowa

Figure 5.6: Pavement surface distortion, Highway 18 east (mile post 195), Iowa.
Figure 5.7: Schematic boring locations on Highway 330S

Figure 5.8: Moisture content profile of the embankment
Figure 5.9: Stress-strain curves and pore pressure curve for BH1
Figure 5.10: Stress-strain curves and pore pressure curve for BH2
Figure 5.11: Stress path for BH1

Figure 5.12: Stress path for BH2
Figure 5.13: Pouring the flowable mortar

Figure 5.14: Strength after 24 hours
Figure 5.15 (a): Settlement contour of pipe buried in soil (2 m wide trench)
Figure 5.15 (b): Settlement contour of pipe buried in soil (4 m wide trench)
Figure 5.15 (c): Settlement contour of pipe buried in gravel and flowable mortar (2 m wide trench)
Figure 5.15 (d): Settlement contour of pipe buried in gravel and flowable mortar (4 m wide trench)
Figure 5.15 (e): Settlement contour of pipe buried in gravel (2 m wide trench)
Figure 5.15 (f): Settlement contour of pipe buried in gravel (4 m wide trench)
CHAPTER 6. GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

Different kinds of site-specific problems encountered during field investigation initiated the research objectives. Laboratory testing, field testing and numerical modeling were then conducted. Based on the test results and analysis, the most important conclusions and recommendations drawn from the four research papers presented in this dissertation are as follows:

6.1 GENERAL CONCLUSIONS

1. Mixing with select soil can improve the index properties of unsuitable soil by reducing liquid limit and plasticity index.
2. Experimental results indicate that maximum dry density and unconfined compression strength both increase while the optimum moisture content decreases linearly with increasing select proportion.
3. The unconfined compression strength of the select—unsuitable blends decreases with increasing moisture content.
4. Select blends can be obtained by mixing up to 25% of an unsuitable soil with 75% select soil.
5. Suitable blends can be obtained by mixing 50% of unsuitable soil with 50% of select soil.
6. At 75% unsuitable with 25% select, some soils will be classified as suitable and some as unsuitable.
7. For the soils tested in this study, the addition of unsuitable soils to a select soil in the range of 25 to 50% provides acceptable soils for placement in embankment applications.
8. Permeability test is reproducible, provided that the variance of test results are between 49% below averaged value and 52% above averaged value. The higher the moisture content, the higher the variance.
9. Air-dried samples have lower permeability than that of wet samples tested right after extruded from compaction mold. The permeability of air-dried samples is from about 56% to 95% of that of wet samples. Air-drying has less effect on the results when the sample are compacted dry of optimum than wet of optimum.
10. Permeability of compacted soil decreases with moisture content when it is dry, while the permeability increases slightly with moisture content when the soil gets wetter. The lowest permeability occurs at moisture content of about 2 to 4% wet of optimum.
11. There is a good correlation between \[\log[k(1+e)]\] and \[\log e\] when the samples are compacted dry of optimum. However, the correlation in the wet side is very poor. When equation (1) applies, the x value ranges from 11 to 22 for overconsolidated clays.
12. Permeability can be predicted using Harrop-Williams (1985) model, where A ranges from -18.58 to -21.16, and ranges from -4.97 to -7.1 for Iowa cohesive soils.

13. The difference between the measured permeability and the calculated permeability using EICM model is 1 to 2 order.

14. A new model of predicting permeability was developed based on Harrop-Williams (1985) model. The difference between predicted permeability and measured permeability is less than 50%.

15. Moisture content greatly affects the compaction density and strength of select backfill. Improper compaction moisture content can lead to low strength and density, thus causing the dip problem of pipe.

16. If the compaction is done properly, the minimum unconfined compressive strength of the good clay select should be around 700 kPa (100 psi) shortly after compaction. However, this select is not readily available throughout the entire state. The averaged tested strength of select materials is about 400 kPa (58 psi), which may be too low for backfilling purpose.

17. Based on the numerical analysis, the use of flowable mortar as an approach backfill material appears to be a simple and reasonably cost effective method to reduce the potential for developing the bump above the drainage pipe.

6.2 RECOMMENDATIONS FOR FURTHER STUDY

1. The Atterberg limits variation of these soils is very small, with liquid limit and plasticity index ranging from 25 to 41 and 10 to 21, respectively. It is hard to see how the Atterberg limits change as percent unsuitable is increased. It is recommended that more unsuitable soils with high plasticity and more granular select soils be collected in the future research.

2. The difference between measured permeability and the calculated permeability using EICM model suggests that compaction energy of the soil sample is different. More research on the relationship between compaction energy and soil permeability should be conducted.

3. Because there is no completed project on flowable mortar backfilling option, there is no information available to evaluate the pavement performance. Thus, it is recommended that a follow-up be done to monitor the performance.

4. Since currently there is no upper limit on moisture content for select, this specification should be reviewed to ensure good density and stability.
GENERAL ACKNOWLEDGEMENTS

This research was sponsored by Iowa Department of Transportation. The author of this thesis sincerely thanks Dr. Radhey S. Sharma and Dr. Vernon R. Schaefer, major professors, for their invaluable guidance and advice during the progress of this research. The author hopes they can make a great success in their academic career.

Special thank is given to Dr. David J. White, Dr. Sritharan Sivalingam and Dr. Matt Helmers for being a committee member of the author’s program of study.

The contributions of Mr. Donald Davidson, Dr. Hong Yang, Mr. Ho, I-Hsuan and those who participated in different phases of this research are highly appreciated.

Finally, the author would like to thank his family members: his wife, his mother, brother, and sisters. Their supports were invaluable and can’t be expressed in words.