Influence of Land Rolling on Soybean Production and Associated Weeds

Andrew W. Lenssen
Iowa State University, alenssen@iastate.edu

Terry L. Basol
Iowa State University, tlbasol@iastate.edu

Joel L. DeJong
Iowa State University, jlddejong@iastate.edu

John D. Holmes
Iowa State University, jdholmes@iastate.edu

Mark A. Licht
Iowa State University, lichtma@iastate.edu

See next page for additional authors

Follow this and additional works at: http://lib.dr.iastate.edu/farms_reports

Part of the _Agricultural Science Commons_, _Agriculture Commons_, and the _Agronomy and Crop Sciences Commons_

Recommended Citation

http://lib.dr.iastate.edu/farms_reports/1977

This report is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State Research Farm Progress Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
Influence of Land Rolling on Soybean Production and Associated Weeds

Abstract
Land rolling soybean has become a common practice in some areas of northern Iowa. Land rolling pushes rocks and corn root balls down to the soil surface, improving combine harvest operations. However, land rolling field pea, barley, and summer fallow in eastern Montana essentially doubled density of several troublesome broadleaf weeds, including horseweed (also called marestail), kochia, Russian thistle, tumble mustard, prickly lettuce, and redroot pigweed. Iowa has different weed community and environments from Montana, and little is known how, or if, land rolling might influence weed community in Iowa. We conducted a replicated study on eleven Iowa farms on the influence of land rolling on soybean stand density, yield, and early-season weed density.

Keywords
Agronomy

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences

Authors
Andrew W. Lenssen; Terry L. Basol; Joel L. DeJong; John D. Holmes; Mark A. Licht; Zachary A, Koopman; Micah B. Smidt; and Joshua L. Sievers

This northwest and allee research and demonstration farm is available at Iowa State University Digital Repository:
http://lib.dr.iastate.edu/farms_reports/1977
Influence of Land Rolling on Soybean Production and Associated Weeds

RFR-A1257

Andy Lenssen, associate professor
Department of Agronomy
Terry Basol, Joel DeJong, John Holmes, Mark Licht, Extension field agronomists
Zachary Koopman and Micah Smidt, ISU FARM ag specialists
Josh Sievers, farm superintendent

Introduction
Land rolling soybean has become a common practice in some areas of northern Iowa. Land rolling pushes rocks and corn root balls down to the soil surface, improving combine harvest operations. However, land rolling field pea, barley, and summer fallow in eastern Montana essentially doubled density of several troublesome broadleaf weeds, including horseweed (also called marestail), Kochia, Russian thistle, tumble mustard, prickly lettuce, and redroot pigweed. Iowa has different weed community and environments from Montana, and little is known how, or if, land rolling might influence weed community in Iowa. We conducted a replicated study on eleven Iowa farms on the influence of land rolling on soybean stand density, yield, and early-season weed density.

Materials and Methods
All farming operations were done by cooperating farmers, including tillage, soybean variety selection, planting date and rate, herbicide applications, and harvest. Treatment on each farm was land rolling or no land rolling. Replication number within farms ranged from three to eight. Individual plot size varied by farm, ranging from 30 ft to 48 ft in width; plot lengths were as great as one half-mile. Row spacing was 30 in. for all fields. Most cooperators used a preplant herbicide tank mix with residual activity as part of their weed management. Soybean stand density was determined by counting the number of plants from four 1-m of row in each plot at about growth stage V2. Weed density was determined in each plot by counting by species present in ten 0.1 m² circular quadrats at about V2 growth stage, prior to the first in-crop herbicide application. Soybean yield data were collected by producer yield monitors or by determining weight and area of a single combine pass for each plot with seed weighed on a portable scale. Statistical analyses were done with the PROC MIXED procedure (SAS, v.9) with farm and land rolling as fixed effects. Replication was considered a random effect. Treatment effects were considered significant at $P = 0.05$. Mean separations were done with the least square means procedure at $P = 0.05$.

Results and Discussion
Soybean stand density differed by farm, however, the effects of land rolling and farm by land rolling were not significant (Table 1). Stand densities were typical for Iowa soybean production systems. Soybean yields varied for farm and farm by land rolling (Table 1). Eight of the ten farms with yield results did not show a significant influence of land rolling. However, for the two farms where land rolling did influence yield, treatment effect was not consistent. One farm had greater yield for soybean that was not rolled while one other farm had greater yield for soybean that was land rolled. The effects of farm and farm by land rolling were significant for total weed density (Table 1). Total weed density was similar between rolled and not-rolled treatments on 9 of 10 farms, however, land rolling resulted in a significantly greater weed density compared with soybeans that were not
land rolled. Weed community was not particularly diverse in this study, with only 13 species identified. Weed species encountered included the annuals volunteer corn, velvetleaf, tall waterhemp, yellow foxtail, redroot pigweed, horseweed, black nightshade, common lambsquarters, purslane, Venice mallow, and woolly cupgrass (results not presented). The only perennial found was dandelion, and due to the surmised lack of influence of land rolling on previously established weeds, this species was not included in the calculation of total weed density. Most soybean fields had received a preplant herbicide application with residual activity, likely resulting in our generally low weed densities. Land rolling rarely influenced weed community, soybean stand density, or soybean yield.

Table 1. Influence of land rolling and farm on soybean stand density, yield, and weed density.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Stand¹</th>
<th>Yield¹</th>
<th>Total weeds¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm</td>
<td>Not rolled</td>
<td>Rolled</td>
<td>P > F</td>
</tr>
<tr>
<td>Barnett</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Blomgren</td>
<td>112,000</td>
<td>116,000</td>
<td>0.4782</td>
</tr>
<tr>
<td>Dordt</td>
<td>115,200</td>
<td>120,600</td>
<td>0.4632</td>
</tr>
<tr>
<td>Hustoft</td>
<td>140,000</td>
<td>137,100</td>
<td>0.6600</td>
</tr>
<tr>
<td>MBS Family</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metzger</td>
<td>126,600</td>
<td>113,100</td>
<td>0.0516</td>
</tr>
<tr>
<td>Rietema</td>
<td>133,000</td>
<td>132,100</td>
<td>0.8886</td>
</tr>
<tr>
<td>Schwab</td>
<td>111,200</td>
<td>111,500</td>
<td>0.9594</td>
</tr>
<tr>
<td>Treis till</td>
<td>126,300</td>
<td>122,600</td>
<td>0.5770</td>
</tr>
<tr>
<td>Treis no-till</td>
<td>130,900</td>
<td>124,300</td>
<td>0.3156</td>
</tr>
<tr>
<td>Mean</td>
<td>124,400</td>
<td>122,200</td>
<td>53.0</td>
</tr>
<tr>
<td>P > F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm (F)</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land rolling (L)</td>
<td>0.3458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F × L</td>
<td>0.5419</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Means within farm and parameter followed by different letters differ significantly.