Interpreting P and K soil test results

John E. Sawyer
Iowa State University, jsawyer@iastate.edu

Antonio P. Mallarino
Iowa State University, apmallar@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/cropnews

Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Soil Science Commons

Recommended Citation

http://lib.dr.iastate.edu/cropnews/2229

The Iowa State University Digital Repository provides access to Integrated Crop Management News for historical purposes only. Users are hereby notified that the content may be inaccurate, out of date, incomplete and/or may not meet the needs and requirements of the user. Users should make their own assessment of the information and whether it is suitable for their intended purpose. For current information on integrated crop management from Iowa State University Extension and Outreach, please visit https://crops.extension.iastate.edu/.
Interpreting P and K soil test results

Abstract
Soil testing is a key component for determining the need for phosphorus (P) and potassium (K) fertilization. Also, if fertilization is required, test results guide the rate of application recommended to optimize production. Through extensive field research, specific soil tests are calibrated against the expectation of response to applied P and K; that is, they provide both a relative index of the availability of P and K to the crop being grown and an indication of the magnitude of yield increase one might expect when nutrients are applied, thus providing the interpretation of text results.

Keywords
Agronomy

Disciplines
Agricultural Science | Agriculture | Agronomy and Crop Sciences | Soil Science

This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cropnews/2229
Interpreting P and K soil test results (1/18/1999)

Soil testing is a key component for determining the need for phosphorus (P) and potassium (K) fertilization. Also, if fertilization is required, test results guide the rate of application recommended to optimize production. Through extensive field research, specific soil tests are calibrated against the expectation of response to applied P and K; that is, they provide both a relative index of the availability of P and K to the crop being grown and an indication of the magnitude of yield increase one might expect when nutrients are applied and thus providing the interpretation of test results.

In Iowa, P and K soil tests are reported in parts per million (ppm), with interpretative ranges from very low (very deficient level of available P or K in the soil), low, optimum, high, on to very high (much more than adequate level of available P or K in the soil). According to ISU field research, the optimum category is the most profitable to maintain over time due to several factors, including uncertainty in soil tests, greater penalty for under-fertilization, and the possibility of skipping fertilization one year (like this year with low crop prices). Crop removal P and K applications are suggested at optimum test levels. Example soil-test P (Bray P₁ and Olsen P) and soil-test K (Ammonium Acetate K) interpretations for corn, along with suggested broadcast P₂O₅ and K₂O application rates, are shown in Table 1. Note that the rate of fertilization decreases as soil tests increase, and eventually the suggestion is to not apply any P or K.

Is it really alright to not apply P or K when soils test high or very high, as these recommendations suggest? In general the answer is yes. Long-term research results, like those shown in Figure 1, below, indicate that the economic return to P or K application is low at high or very high test levels. Some specific soil or climatic conditions may result in small yield increase from nutrient application at these test levels (e.g., starter may be recommended for corn at high test levels), but for most situations the probability and magnitude of response is low.

In the short term, P and K can be withheld on soils testing slightly above optimum; however, realize that with crop harvest and resultant removal of nutrients soil tests will decline and increased fertilization will eventually be required. Soils testing very high have little probability of yield increase from nutrient application, and could have P and K withheld for several years before fertilization would be required. Soils should be tested regularly to monitor changes in test levels when fertilization is withheld.

For more information on soil testing, especially for interpretations and recommendations for P and K, please refer to ISU Extension Publication Pm-1688. This publication is available from county extension offices or from the Extension Distribution Center (515-294-5247).
Recommendations in Pm-1688 may be viewed at http://extension.agron.iastate.edu/fert/.

Table 1. Phosphorus and potassium recommendation for corn grain production.

<table>
<thead>
<tr>
<th>Phosphorus (P) soil test (ppm)</th>
<th>Very low</th>
<th>Low</th>
<th>Optimum</th>
<th>High</th>
<th>Very high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bray P$_1$:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low subsoil P</td>
<td>0-8</td>
<td>9-15</td>
<td>16-20</td>
<td>21-30</td>
<td>31+</td>
</tr>
<tr>
<td>High subsoil P</td>
<td>0-5</td>
<td>6-10</td>
<td>11-15</td>
<td>16-20</td>
<td>21+</td>
</tr>
<tr>
<td>Olsen P:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low subsoil P</td>
<td>0-5</td>
<td>6-10</td>
<td>11-14</td>
<td>15-20</td>
<td>21+</td>
</tr>
<tr>
<td>High subsoil P</td>
<td>0-3</td>
<td>4-7</td>
<td>8-11</td>
<td>12-15</td>
<td>16+</td>
</tr>
<tr>
<td>P_2O_5 to apply (lb/acre)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>75</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Optimum: removal at 140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bu/acre.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potassium (K) soil test (ppm)</th>
<th>Very low</th>
<th>Low</th>
<th>Optimum</th>
<th>High</th>
<th>Very high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium acetate extractable K:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low subsoil K</td>
<td>0-60</td>
<td>61-90</td>
<td>91-130</td>
<td>131-170</td>
<td>171+</td>
</tr>
<tr>
<td>High subsoil K</td>
<td>0-40</td>
<td>41-80</td>
<td>81-120</td>
<td>121-160</td>
<td>161+</td>
</tr>
<tr>
<td>Fine textured</td>
<td>120</td>
<td>90</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sandy textured</td>
<td>100</td>
<td>70</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Optimum: removal at 140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bu/acre.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interpreting P and K soil test results

Figure 1.

Last updated 7/12/1999 by John VanDyk.
This information subject to a usage policy.