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tabulated in Table 4.1. These values indicate that ROI 3 has the largest non-convexity. This

information is very valuable to understand the kinetic pathways for coagulation of the precipitates.

ROI 1: Scandium precipitate 
ROI 1: Convex Hull

Figure 4.10 ROI 1: (a) Non-convex surface of precipitate. (b)Convex hull of precipitate

Figure 4.11 ROI 2: (a) Non-convex surface of precipitate. (b)Convex hull of precipitate

This measure of non-convex volume provides a meaningful parameter that is gained through this

technique. For example, by identifying the large change in volume for ROI 3, we are able to identify

it as an example of a cluster that is formed by initial stage coagulation of two clusters. Quantitative

evidence of this stage is not obtained through typical analyses. An additional advantage of the

GraPTop technique is the more defined procedure for defining precipitates, as opposed to typical
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ROI 3: Scandium precipitate ROI 3: Convex Hull

Figure 4.12 ROI 3: (a) Non-convex surface of precipitate. (b)Convex hull of precipitate

approaches where the primary effort is in defining concentration thresholds and voxel sizes which

provide an image matching the assumed shape of the precipitate. By defining precipitates based

on a parameter that has a clear guideline for selection (εopt), a single measure of area and volume is

determined. This provides a significant advantage over the typical approach of reporting values for

multiple concentration thresholds, as shown in Figure 4.13, where the definition of precipitate is

based on visual bias.This figure demonstrates a standard approach for defining precipitates, where

the threshold is defined based on visual bias, resulting in arbitrary measurements of precipitate size

and volume. The GraPTop approach removes this arbitrariness from defining the precipitates.

Figure 4.13 Concentration isosurfaces of precipitates as a function of Sc concentration thresh-
old value
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Table 4.1 Quantitative Results for ROI 1,2,3
Parameter ROI 1 ROI 2 ROI 3
εopt 1.1264 0.8512 0.9389
Area(nm2) 76.0146 99.2236 168.0230
Convex Volume (nm3) 44.7701 86.1100 962.5300
Non-convex Volume (nm3) 25.9072 41.9127 58.3814
% Change in Volume 72.8095 105.4509 1548.6930

4.5 Conclusion

In this paper,we formulate the problem of characterization of the precipitates from point cloud

APT data as a graph problem. We present a robust, heuristic-free graph-theoretic methodology to

solve the formulated problem and provide an implementation of it along with the results obtained

by applying the GraPTop framework to three APT point cloud datasets of Al-Mg-Sc alloy. Our

framework is robust due to its independence from heuristics like concentration level. We envision

applying this framework on an array of datasets obtained from atom probe reconstruction where

each dataset is prepared by regulated variation in the process of fabrication. This process of

parametric study of the space can give insights into the relationship between the topology of

the precipitates and the fabrication process. We are currently also extending and integrating

this framework to analyze the homological properties [74] of precipitates. We are also currently

working on a mathematical formulation based on random graphs to extend the current framework

to account for epistemic uncertainties. This will enable us to provide probabilistic bounds on

precipitate descriptors due to the inherent uncertainty in APT measurements.
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CHAPTER 5. CONCLUSION

Large materials data generated using high-throughput experimentation formed a rich source of

information to establish process-structure-property relationships. This necessitated the develop-

ment of several mathematical models and scalable techniques to analyze the data.

In the first part of the thesis, we have detailed a mathematical framework of selected nonlinear

dimensionality reduction techniques for constructing reduced order models of complicated datasets

and discussed key questions involved in data selection. During that process we have also introduced

the basic principles behind data dimensionality reduction and illustrated their use with the help of

example apatite dataset in materials science using both linear and non-linear methods 1. Another

significant contribution of this paper is that we also describe a rigorous technique (based on graph-

theoretic analysis) to estimate the optimal dimensionality of the low-dimensional (or parametric)

representation. These techniques are packaged into a modular, computational scalable software

framework with a graphical user interface - Scalable Extensible Toolkit for Dimensionality Reduc-

tion (SETDiR). This interface helps to separate out the mathematics and computational aspects

from the scientific applications, thus significantly enhancing utility of DR techniques to the scientific

community.

In order to cater to the needs of larger datasets we illustrated a systematic analysis of spectral

dimensionality reduction techniques in the second part of the thesis. We also recast these tech-

niques into a unified view that can be exploited by dimensionality reduction algorithm designers.

We subsequently identified the common computational building blocks required to implement a

spectral dimensionality reduction method. We used this insight to design and implement a parallel
1 A comprehensive catalogue of nonlinear dimensionality reduction techniques along with the mathematical pre-

requisites for understanding dimensionality reduction could be found at: [84]
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framework for dimensionality reduction that can handle large datasets, and scales to thousands of

processors. We demonstrated the capability and scalability of this framework on several test data-

sets. We finally showcased the applicability and potential of the framework towards unravelling

complex process-morphology relationships in the manufacture of plastic solar cells.

In the third part of the thesis, we formulate the problem of characterization of the precipitates

from point cloud APT data as a graph problem. We present a robust, heuristic-free graph-theoretic

methodology as well as an implementation to solve the formulated problem. The applicability of the

framework was illustrated on 3 different regions of Scandium precipitate in Al-Mg-Sc alloy. Inter-

esting quantitative measures of area, volume and non-convexity were extracted, which can be used

to understand parameters like degree of kinetic coagulation of the precipitates in a heterogenous

mixture.

5.1 Future Work

Dimensionality Reduction (DR) techniques have proved to be quite successful on a set of mi-

crostructure evolution data in image (or pixel) space in extracting process-structure-property rela-

tionships. We are currently applying DR to a set of microstructures defined, not in image space,

but in topology space (with each high dimension axis representing one topological property like:

connectivity, domain-size, interfacial area of a binary microstructure). These topological properties

of a given binary microstructure are extracted using a Graph-based Structure Property Investigator

(GraSPI) [151]. We anticipate to map a much more efficient low-dimensional representation with

this novel metric, and extract interesting quantitative correlations between the process variables,

microstructures and specific topological properties. Furthermore, applying DR techniques can also

give us insights into an optimal quantitative representation of a given microstructure. Another

interesting problem in the pipeline stems from the fact that a change in the choice of solvent, sol-

vent properties like evaporation rate can affect the structure (or nanomorphology) and hence the

performance of organic solar cells [5, 54]. We plan to apply our in-house DR framework to a set

of potential solvents described in property space along with the performance variables in order to
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establish process-structure-property relationship.

The current version of parallel DR framework (PaDRe) has a capability of solving thousands

of points in a million dimensional space. However, due to several calls of large, dense, matrix-

matrix multiplications (O(n3)), as the problem size increases it begins to grow extremely slow. To

overcome this difficulty, we are currently implementing matrix-matrix multiplication routines from

BLAS [38] package in our framework. We anticipate a significant performance difference not just

with respect to the DR framework but also with respect to the power-iteration based eigensolver

since majority of the latter solver involves performing matrix-vector multiplications.

As a part of future work, we envision applying the GraPTop framework on an array of datasets

obtained from atom probe reconstruction where each dataset is prepared by regulated variation

in the process of fabrication. This process of parametric study of the space can give insights into

the relationship between the topology of the precipitates and the fabrication process. We are

currently also extending and integrating this framework to analyze the homological properties [74]

of precipitates. We are also currently working on a mathematical formulation based on random

graphs to extend the current framework to account for epistemic uncertainties. This will enable us

to provide probabilistic bounds on precipitate descriptors due to the inherent uncertainty in APT

measurements.
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