Anatomy in feline surgery

Raymond Francis Sis

Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Animal Structures Commons, and the Veterinary Anatomy Commons

Recommended Citation
Sis, Raymond Francis, "Anatomy in feline surgery" (1965). Retrospective Theses and Dissertations. 3319.
https://lib.dr.iastate.edu/rtd/3319

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
This dissertation has been microfilmed exactly as received 66-3010

SIS, D.V.M., Raymond Francis, 1931-
ANATOMY IN FELINE SURGERY.

Iowa State University of Science and Technology
Ph.D., 1965
Anatomy

University Microfilms, Inc., Ann Arbor, Michigan
ANATOMY IN FELINE SURGERY

by

Raymond Francis Sis, D.V.M.

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Veterinary Anatomy

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major Department

Signature was redacted for privacy.

Dean of Graduate College

Iowa State University
Of Science and Technology
Ames, Iowa

1965
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Objectives of Study</td>
<td>2</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>2</td>
</tr>
<tr>
<td>REVIEW OF LITERATURE</td>
<td>4</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>4</td>
</tr>
<tr>
<td>Anatomical Features</td>
<td>6</td>
</tr>
<tr>
<td>Surgical Conditions</td>
<td>17</td>
</tr>
<tr>
<td>Normal Radiographic Anatomy</td>
<td>18</td>
</tr>
<tr>
<td>Different Breeds of Cats</td>
<td>18</td>
</tr>
<tr>
<td>Anomalies</td>
<td>37</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>40</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>45</td>
</tr>
<tr>
<td>Head and Neck</td>
<td>45</td>
</tr>
<tr>
<td>Thorax</td>
<td>133</td>
</tr>
<tr>
<td>Abdomen and Pelvis</td>
<td>163</td>
</tr>
<tr>
<td>Male Genitalia</td>
<td>195</td>
</tr>
<tr>
<td>Female Genitalia</td>
<td>199</td>
</tr>
<tr>
<td>Thoracic Limb</td>
<td>202</td>
</tr>
<tr>
<td>Pelvic Limb</td>
<td>224</td>
</tr>
<tr>
<td>Integument</td>
<td>237</td>
</tr>
<tr>
<td>Anatomy of the Living Animal</td>
<td>239</td>
</tr>
</tbody>
</table>
INTRODUCTION

Not until recent years did veterinary schools pay much attention to the practice of feline medicine. Perhaps due to this inattention, practitioners avoided handling cats. This gave rise to the legitimate complaint of the cat owner, heard even today: "I wish I could find a veterinarian who is really interested in cats!"

According to statistics, the cat is coming into its own as a pet. A recent census shows 28,000,000 cats as compared to 23,000,000 dogs. A careful study of the pet food shelves in any market shows an increase in new brands for cats and cat specialties.

The veterinarian is aware of this increasing number of cat owners and needs more source material to aid him in this lucrative, interesting and challenging field.

Veterinary literature is lacking in anatomical information for the solution of clinical problems in feline surgery. Small animal textbooks are very strong in regard to the dog, but not so with the cat. The present feline anatomy books, although they are excellent books, are not a readily available or acceptable source of anatomical information for the graduate veterinarian and the veterinary student.

Cats are used in physiological and pharmacological research. The brain of the cat is of particular interest,
because it represents a stage of development between lower forms of life and primates. The veterinarian in charge of the animal colonies, at the State University of Iowa Medical School, reported that they use 900 cats each year in the Departments of Anatomy and Neurosurgery. The surgical anatomy of the cat offers a very challenging field of study. The challenge comes from all sides, education, medicine and surgery, and the research laboratory.

Objectives of Study

This research project was a study of feline anatomy as related to surgery. It does not deal with surgical techniques. The idea of this project presented itself through personally observing the need for a usable reference for veterinary students and the need for additional anatomical knowledge in clinical surgery. It is intended that this work on surgical anatomy might act as a means of narrowing the gap which exists between freshman anatomy and operative surgery. It is also intended that this information will illustrate anatomic relationships of old and new surgical techniques in feline surgery.

Experimental Design

The project was designed to present findings of research on the anatomy of the cat to the veterinarian. Nomenclature was studied in an attempt to present a standard anatomical terminology which will be applicable and useful to the veterinarian. The material was assembled by reviewing all anatomical and surgical literature for applications of anatomy to feline surgery. The resulting information was then organized by regions and verified by dissections, maceration, radiographs, photographs and the examination of the living animal.
REVIEW OF LITERATURE

"No work concerning cats, though it occupy a lifetime, can safely be regarded as final in every detail" (Mellen, 1940). A lengthy bibliography has been compiled dealing with all aspects of the cat (see bibliography). However, the veterinary profession needs more books dealing exclusively with cats. The most exclusive feline book, in detail and completeness, was written in 1898 by Jayne. His book of 816 pages covered only the skeleton of the cat. There is an ever increasing amount of information being published in the technical journals on feline anatomy and surgery. The need at the present time is to improve our understanding of the existing information by finding a greater unity in it and developing more concise ways of presenting it to the veterinary profession.

Nomenclature

Anatomical nomenclature was reviewed in five basic references (Taylor and Weber, 1963; Stromsten, 1952; Reichard and Jennings, 1951; Leach, 1961; and Weichert, 1958). The nomenclature was compared with the official list of Nomina Anatomica Veterinaria (N.A.V.) concerning: general terms, osteology, syndesmology, myology and the digestive apparatus. This list was drawn up by the International Committee for the Veterinary Anatomical Nomenclature and
adopted by the General Meeting of the World Association of Veterinary Anatomists, held in Hanover, Germany, in August 1963. Additional parts will be discussed and drawn up in August 1965. All terminology used in this thesis was compared with the most recent anatomy publication in the field, Anatomy of the Dog (Miller et al. 1964).

An example of the problem of varying terminology can be seen when we examine the liver. The lobe termed the papillary process of the caudate lobe by Miller et al. (1964) is called the caudate or Spigelian lobe by Taylor and Weber (1963) and Reighard and Jennings (1951). The same lobe is called the papillary part of the Lobe of Spigel by Montané et al. (1953). The lobe termed the caudate process of the caudate lobe by Miller et al. (1964) is called the caudal division of the right lateral lobe by Taylor and Weber (1963) and Reighard and Jennings (1951) and the caudal part of the Lobe of Spigel in Montané et al. (1953).

A few macroscopical studies on the lymph system of cats were made by Stromsten (1952), Reighard and Jennings (1951). Sugimura et al. (1955) made a very complete study of the lymph system of the cat. Saar (1963) states that the subiliac lymphocenter is absent in the cat. This lymphocenter would include the subiliac ln. and lateral femoral ln. found by Sugimuro et al. (1955). Montané et al. (1953), Reighard
and Jennings (1951) and Taylor and Weber (1963) do not describe ln. femoralis lateralis, ln. prefemoralis, and ln. epigastric cranialis. Sugimura et al. (1959) found them to be inconstant. Out of 48 sides examined they found ln. femoralis lateralis in 11 cases, ln. prefemoralis in 2 cases and ln. epigastrici craniales only once.

The cat has 2 rows of 4 mammary glands and the cephalad pair have lymphatic connections which drain into the axillary ln. The caudal glands have lymphatic connections and they drain into the inguinal ln. No lymphatic connection crosses the midline or penetrates the abdominal wall (Moulton, 1961).

Anatomical Features

Fewer idiosyncrasies, allergies, diseases and troublesome, nonresponsive conditions are found in cats than in dogs. This can be attributed to the fact that for centuries the cat's anatomy has remained virtually unchanged (Stansbury, 1960). To an expert, the ancient cat mummy dug up in Egypt is no different in structure from the household tabby. Because of this genetic fixation, what "happens to a dog" could never happen to a cat (Stansbury, 1960). Table 3 shows that we seldom encounter luxated patellae, hip dysplasias, dorsal luxation of the intervertebral discs, and certain eye diseases in the cat.
The cat has several distinctive anatomical features. There is no evidence that the short face of cats produces dental distortion as occurs in short faced dogs (Cooper, 1951). No lateral motion is possible in the lower jaw, it being a true hinge joint, and therefore the cheek teeth are not grinders. Nature intended that the animal should swallow its food in chunks (Cooper, 1951).

The roots of the fourth premolar in cats do not diverge as in dogs (Stansbury, 1960). This tooth may be removed easily for the purpose of draining the sphenoid (palatine) sinus through the alveolus.

In cats, the radius and ulna can be so extensively rotated upon each other that it is a simple matter to turn the palms so that they exactly face each other (Cooper, 1951).

Anatomical features of purring

It is the opinion of anatomists at Kansas State University that cats purr by vibrating the free edge of the soft palate; purring is not a laryngeal sound (Cooper, 1951). If you put your hand on a cat while it is purring you can feel its whole body vibrating or trembling. Most people believe that when the cat purrs it is feeling pleased, however an agitated and sick cat will also purr.

"Purring in cats occurs under many different conditions and it is not uncommon to hear it in cats when they are
agitated or restless; in fact I have frequently heard loud purring in cats that were definitely angry. Thus it often accompanies tail-lashing, growling, snarling and may be heard in the intervals between rapidly repeated attempts to bite and scratch" (Bard, 1934).

A cat decorticated by Schaltenbrand and Cobb (1931) purred while eating and in response to being petted and brushed. In that animal, however, there remained certain fairly extensive fragments of neocortex.

In the absence of the neocortex the rhinencephalon tends to elaborate behavior which stimulates the normal expression of pleasure. However, Bard and Rioch (1937) observed purring in response to being stroked or fed, when all neocortex, the hippocampus and pyriform lobe were removed on each side. In considering these facts it is well to bear in mind that purring in cats is not invariably an indication of pleasure (Bard and Rioch, 1937).

The cavity of the larynx is divided into three portions. The upper one of these is the vestibule of the larynx. It is bounded caudally by two folds of mucosa that stretch from the caudal surface of the epiglottis near its base to the tips of the arytenoid cartilages. These folds are the superior or false vocal cords. Their vibration is said to produce purring (Mivart, 1881; Reighard and Jennings, 1951).
"The true vocal cords, which bound the glottis, are set vibrating by currents of air transmitted from the lungs and the voice sounds are thus produced" (Reighard and Jennings, 1951).

Ellenberger and Baum (1943) quote Prodinger (1940), "The cat has a special lateral vestibular sinus in the anterior portion of the larynx, anterior to the shallow lateral ventricles and true vocal cords." This sinus may act as a resonator. Prodinger does not give any information in regard to the mechanism of purring.

There is no definite source of information on the effects of cutting the recurrent laryngeal nerves bilaterally.

Salivary glands

The cat has numerous salivary glands, including an intraorbital gland which opens in the mouth behind the last molar. There are many terms given to the infraorbital gland by various authors:

Orbital (sub-zygomatic) (superior molar gland) (Montané et al. 1953)

Infraorbital (Taylor and Weber, 1963)

Infraorbital (orbital) (Reighard and Jennings, 1951)

Infraorbital (zygomatic) (Prince et al. 1960)

Erratic staphyline (shaped like a bunch of grapes) (Montané et al. 1953)
Zygomatic (orbital) (Miller et al. 1964)

Infraorbital (orbital) (Hyman, 1946)

Hyman (1946) says there is a small reddish infraorbital gland (evidently salivary) lying close to the maxillary nerve and it is assumed that this is a counterpart of the dog's zygomatic gland and perhaps of the rabbit's infraorbital gland (Prince et al. 1960).

Reighard and Jennings (1951) and Taylor and Weber (1962) list the infraorbital gland under the heading of salivary glands. However, Taylor and Weber only consider the parotid, submaxillary and sublingual as salivary glands proper.

Montané et al. (1953) state that the orbital (sub-zygomatic) gland represents the superior molar gland. There are two molar glands, an inferior molar and a superior molar gland. The inferior molar gland is located at the inferior part of the cheek and the superior molar (which is displaced in the cat and dog) is located in the region of the sub-orbit.

Miller et al. (1964) state that the salivary glands, broadly speaking, are all of those glands which pour their secretions into the oral cavity. They include: parotid, mandibular, sublingual and zygomatic. They say the zygomatic is found only in the cat and dog and that it represents a posterior condensation of the largely unilobulated dorsal buccal glands of other mammals.
Incidentally, the molar gland discussed by Reighard and Jennings (1951) and termed inferior molar by Montané et al. (1955) and termed inferior buccal gland of carnivores by Trautmann and Fiebiger (1957), is illustrated as the anterior part of the monostomatic part of the sublingual gland in the dog in Miller et al. (1964).

Taylor and Weber (1963) indicate that structurally the salivary glands proper (parotid, submaxillary and sublingual) are compound tubulo-alveolar glands. The parotid is a serous gland which produces a thin, watery secretion containing protein but not mucin. The submaxillary and sublingual glands are mixed glands, their alveoli are lined with mucous cells, with the serous cells occurring in the form of crescents at the peripheries of some of the alveoli. The mucous cells elaborate a viscid secretion containing the glycoprotein mucin. In contrast to man, the mucous cells predominate over the serous cells in the submaxillary gland of the cat. This is also true for the sublingual, although it possesses more serous crescents than the submaxillary.

Mallory (1938) states the salivary glands are composed of two types of glands, the mucous and the serous, which may be grouped separately or in various combinations. At the base of some of the glands, basket cells with epithelial fibrilla occur. The epithelial cells may contain eosino-
philic and zymogen granules, also mucigen droplets and extrude serous and mucous secretions. The routine stains show most of the structures present. Phosphotungstic acid hematoxylin stains the fibrilla of the basket cells sharply after fixation in Zenker's fluid. Mucus can be demonstrated by Mayer's mucicarmine stain after fixation in alcohol.

Gatenby and Painter (1957) reported that iron hematoxylin or the Bensley-Cowdry stain may show the granules extremely well or may fail completely. Basic aniline dyes such as toludin blue, trypan blue or thionine are sometimes of value.

Os penis

The Kansas State University anatomist has never been able to demonstrate an os penis in any of his dissection subjects (Cooper, 1951). In 1902, Jackson accounted for this when he stated that the os penis is inconstant in the cat. It is rarely found except in old animals, and occurs as an ossification within the distal prolongation of the septum between the corpora cavernosa.

Intervertebral discs

Apparently all mammals have the problem of disc protrusion. Based on studies of cats it appears that disc protrusions do not occur in cats less than six years old and don't become common until 14 or 15 years of age, when
they are very common.

If disc protrusions do occur in cats 6 to 15 years of age, chances are good that they will occur in the neck. In cats 14 years of age or older, chances will be about equal that the lesion will be high lumbar or thoracic. All protrusions in the cat are small compared to the dog. This is probably the main reason why the condition is less common than in dogs (King, 1960).

Thoracic duct

There is relatively little published on diagnosis and treatment of ruptured thoracic duct in the cat. Two reports (Graber, 1965 and Patterson and Munson, 1958) indicated the condition was diagnosed and treated by ligation of the thoracic duct caudal to the rupture. Anatomic familiarity is necessary for surgical correction of a ruptured duct.

Aortic embolism

Aortic thrombosis in the cat is unrecognized rather than uncommon (Joshua, 1957). Aortic thrombosis is a misnomer when used to describe this condition (Imhoff and Tashjian, 1961). Aortic embolism in the cat was first described by Collet in 1930 and since then has been reported by Holzworth et al. (1955a); Holzworth et al. (1955b); Freak (1956); Joshua (1957) and Imhoff (1961). The condition was brought to the attention of American practitioners by Holzworth
et al. (1955b) and clinical signs were thoroughly described. Arterial embolism in 23 cats and dogs was attributed to acute vegetative endocarditis by Shouse and Meier (1956). The original clot or thrombus usually forms in the left atrium or ventricle. Pieces of the thrombus are then dislodged and form a clot in the aorta or iliac arteries, usually just anterior to the bifurcation of the posterior aorta.

Anatomical location of tumors

The morphology, incidence and anatomical location of tumors is very important in feline surgery. Reports in the experience of Knight and Douglas (1943) at the Royal Veterinary College, suggest that neoplasms in the cat are present in about 1% of the animals examined at the clinic. Tumors in cats are being encountered with increasing frequency (Cotchin, 1952).

In a study of 226 neoplasms in cats Cotchin (1952) found that about 30% of the tumors were from the skin, 30% from the digestive system, and 10% each from the skeletal, lymphatic, and female genital systems. Note the absence of specimens from the central nervous system and the male genital system. There are few reports in the literature of tumors from these sites. Those reported include a carcinoma of the penis (Lombard, 1940), a glioma of the cervical cord (Milks and Olafson, 1936), a tumor of the choroid plexus of the fourth ventricle (Steensland, 1906) and a
meningioma (Monteagudo and Purpura, 1959).

Cotchin (1956) reported that over two-thirds of the 200 tumors in a series were found in any one of four systems: alimentary (28 per cent) cutaneous (16 per cent) genital and lymphatic (each 12.5 per cent). None of the tumors appeared to originate in the central nervous system nor in the male genital system. The important malignant tumors of the cat found in the series were:

1. Squamous-cell carcinomas of the upper part of the alimentary tract (tongue, gum, palate, tonsil and esophagus)
2. Sarcomas of the intestine and of the skin
3. Adenocarcinomas of the mammary gland
4. Lymphosarcomas
5. Sarcomas of the kidney

Moulton (1961) shows that the most common neoplasms in cats are: papillomas, tumors of skin glands, basal cell tumors, carcinomas of the mammary gland, osteosarcomas, lymphosarcomas, carcinomas of the tongue and esophagus. A significantly high incidence of squamous cell carcinomas of the ears of white cats has been noted in California (Moulton, 1961). Similar tumors have been reported in white cats in Italy (Carta, 1940). The lymphosarcoma is one of the most common in cats. The most common primary sites in the cat are the solitary lymph follicles of the intestinal tract.
(Nielsen and Holzworth, 1953), lymph nodes of the mediastinal area, and kidneys (Holzworth and Nielsen, 1955).

The tumors also originate as generalized growths in lymph nodules of the stomach, visceral and parietal lymph nodes, and spleen (Moulton, 1961).

Adenocarcinoma of the mammary gland is more common in the cat than in all other domestic animals except in the dog. Carcinomas occur in older cats, mostly 8 to 12 years of age (Cotchin, 1952). There is no known breed predisposition. All have appeared in females (two of them ovariectomized) except for one in a castrated male (Thiéry, 1946). Adenomas occur rarely and mixed tumors are not found (Moulton, 1961).

The usual location of the squamous cell carcinoma of the tongue in the cat is on the ventro-lateral surface of the tongue at about the level of the reflection of the frenum. The tumor is usually superficially small but deeply invades the muscles of the tongue.

Papillomas and squamous carcinomas are not uncommon in the esophagus of old cats (Gray, 1935). Cotchin (1952), who found 13 esophageal carcinomas in a series of 66 tumors of the alimentary tract in cats, is of the opinion that the cat is the only animal in which the carcinoma of the esophagus is common. These tumors generally occur in the esophagus near the thoracic inlet.
The following tumors also occur in the cat (Moulton, 1961): fibroma, lipoma, epidermal cysts, melanoma, mastocytoma, leiomyoma, leiomyosarcoma, chondroma, chondrosarcoma, synovioma, hemangioma, hemangiosarcoma, myelogenous leukemia, plasma cell myeloma, bronchogenic carcinoma, adamantinoma, carcinoma of the pancreatic acini, tumors of the pancreatic islets, nodular hyperplasia of the pancreas, hepatoma, bile duct carcinoma, adenoma of the kidney, renal carcinoma, adenoma and carcinoma of the thyroid, astrocytoma, oligodendroglioma, schwannoma, neuroblastoma, ganglioneuroma, ocular squamous carcinoma and retinoblastoma.

Other authors have observed cases of the following tumors in the cat: pigmented adenoma and carcinoma (Darraspen et al. 1939), monocytic leukemia (Holzworth, 1960b), carcinoma of the nasal cavity (Ball and Tapernous, 1924 and Cotchin, 1952) and salivary gland neoplasm (Ball and Collet, 1934).

Surgical Conditions

The problem of where to place the emphasis is important when teaching or learning surgical anatomy. Davis and Frandson, (1954) published a summary of the frequency of surgical conditions from twelve veterinary clinics. They included all species in the summary and did not include a specific tabulation of conditions for the cat. A review
of surgical conditions of the cat encountered at the small animal clinic, Ames, Iowa, is shown in Tables 1-4.

Normal Radiographic Anatomy

In order to avoid placing unnecessary emphasis on radiographic findings that are within normal acceptable limits, normal radiographic anatomy must be known (Morgan, 1964). Some of the common indications for making a radiograph of the cat are: fractures, luxations, hernias, osteomyelitis following a fight, pneumonitis, intestinal blockage and the presence of various foreign bodies in the digestive tract (Banks and Schulz, 1960). Excellent information on normal radiographic anatomy of the feline is reported by Imhoff and Tashjian (1961), Hare (1959), Banks and Schulz (1960), Maksic and Small (1964), Habel et al. (1963) and Carlson (1961).

Different Breeds of Cats

There are around 32 breeds of cats, but in general a grouping would place them into two groups. These are the long-haired, of which the Persian is the most common; and the short-haired which include the Domestic Short Hair, Siamese, Burmese, Manx and Abyssinian.

The Abyssinian is a short-haired, medium sized cat whose coat differs distinctly from that of other breeds.
Table 1. A summary of feline conditions treated at Iowa State University Small Animal Clinic between 1937 and 1945

<table>
<thead>
<tr>
<th>Conditions</th>
<th>1937</th>
<th>1939</th>
<th>1941</th>
<th>1945</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulatory system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic tests</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Digestive tract</td>
<td>8</td>
<td>36</td>
<td>39</td>
<td>91</td>
</tr>
<tr>
<td>Genito-urinary tract</td>
<td>62</td>
<td>48</td>
<td>65</td>
<td>71</td>
</tr>
<tr>
<td>Immunization</td>
<td>11</td>
<td>7</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Infectious diseases</td>
<td>6</td>
<td>7</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>Metabolism</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>14</td>
<td>14</td>
<td>32</td>
<td>74</td>
</tr>
<tr>
<td>Nervous system</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Region of abdomen</td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Region of forelimb</td>
<td>7</td>
<td>5</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Region of head and neck</td>
<td>45</td>
<td>21</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>Region of hindlimb</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Region of thorax</td>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Respiratory system</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Skin</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 2. Total number of feline conditions treated at the Iowa State University Small Animal Clinic since 1937

<table>
<thead>
<tr>
<th>Year</th>
<th>Cases</th>
<th>Year</th>
<th>Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1937</td>
<td>164</td>
<td>1954</td>
<td>611</td>
</tr>
<tr>
<td>1939</td>
<td>156</td>
<td>1960</td>
<td>1485<sup>a</sup></td>
</tr>
<tr>
<td>1941</td>
<td>274</td>
<td>1961</td>
<td>1729</td>
</tr>
<tr>
<td>1945</td>
<td>393</td>
<td>1962</td>
<td>1952</td>
</tr>
<tr>
<td>1949</td>
<td>603</td>
<td>1963</td>
<td>2219</td>
</tr>
<tr>
<td>1950</td>
<td>607</td>
<td>1964</td>
<td>2538</td>
</tr>
</tbody>
</table>

^aNote the continuing increase which is especially significant from 1960-1964.
Table 3. Feline conditions treated at the Iowa State University Small Animal Clinic during 1960 to 1964

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIMENTARY TRACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anal Gland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abscess</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impaction</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gums</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gingivitis</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Intestine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Acute enteritis</td>
<td>5</td>
<td>16</td>
<td>23</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Bacterial enteritis</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Intussusception</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diverticulum or stricture</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolapse</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheilitis</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodent ulcer</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute hepatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomatitis</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pancreas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute pancreatitis</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic pancreatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharynx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Stomach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute gastritis</td>
<td>3</td>
<td>7</td>
<td>16</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Chronic gastritis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulcerative gastritis</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teeth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dental calculus</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Dental pericementitis</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exodontia</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malpositioned teeth</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Tongue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glossitis</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
"Table 3 (Continued)".

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BACTERIAL DISEASES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteremia - Septicemia</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>BLOOD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemia</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>CARDIOVASCULAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic Thrombosis</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Insufficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dilatation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONGENITAL DEFORMITIES</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFICIENCIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineral</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vitamin</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>DISEASES CAUSED BY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Toxins</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Otitis Externa</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Auricular Hematoma</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ceruminosis</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Chronic Otitis Externa</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Otitis Media</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otoacariasis</td>
<td>16</td>
<td>14</td>
<td>36</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>ELECTIVE SURGERY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onychectomy</td>
<td>16</td>
<td>35</td>
<td>55</td>
<td>68</td>
<td>78</td>
</tr>
<tr>
<td>ENDOCRINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adrenal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypocorticoidism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ovaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoestrinism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pseudocytesy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoandrogenism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
"Table 3 (Continued)".

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EYE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Globe, luxation</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globe, luxation with enucleation</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Inflammation of lymphoid tissue on nictitating membrane</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keratitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superficial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punctate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulcerative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOREIGN BODIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>MERNIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaphragmatic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inguinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umbilical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCOMOTOR SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amputation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthritis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fractures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Humerus</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mandible</td>
<td>2</td>
<td></td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Pelvis</td>
<td></td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Radius & Ulna</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tibia</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Others</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Gonitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervertebral Disc Calcification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luxations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coxofemoral</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Patellar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Myositis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spondylitis</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sprain</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Strain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
"Table 3 (Continued)".

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NEOPLASMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenoma</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Carcinoma</td>
<td>7</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fibroma</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemangioma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hematoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lymphosarcoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mastocytoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Mixed Mammary Tumor</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sertoli Cell Tumor</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>NERVOUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concussion</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Convulsions</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Encephalitis</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Myelitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Paralysis</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Psychosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PARASITIC DISEASES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancylostomiasis</td>
<td>32</td>
<td>25</td>
<td>28</td>
<td>23</td>
<td>27</td>
</tr>
<tr>
<td>Ascariasis</td>
<td>66</td>
<td>63</td>
<td>59</td>
<td>61</td>
<td>44</td>
</tr>
<tr>
<td>Capillaria aerophila</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cheyletiella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Coccidioides</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Giardiasis</td>
<td>5</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paregonomiasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physalopteriasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taeniiasis</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Trichuriasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESPIRATORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchitis</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Larynx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laryngitis</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Lungs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empyema</td>
<td>11</td>
<td></td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>6</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 3 (Continued).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumothorax</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulmonary osteoarthropathy</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinitis</td>
<td>1</td>
<td>5</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinusitis</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonsils</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute tonsillitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachea</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SKIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenocephalidiasis</td>
<td>21</td>
<td>23</td>
<td>22</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Dermatitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Allergic</td>
<td>2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Bacteria</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Chemical</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Eczematous</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Interdigital</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermatophymicsis</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Ixodiases</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myiasis</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paronychia</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>UROGENITAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td>8</td>
<td>10</td>
<td>21</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Cystitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female Reproductive</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Estrus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammary Gland</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute mastitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uterus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute metritis</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic metritis</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Dystocia with caesarean section</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovariohysterectomy</td>
<td>67</td>
<td>89</td>
<td>94</td>
<td>78</td>
<td>119</td>
</tr>
<tr>
<td>Parturition</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pyometritis</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retained placenta</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
"Table 3 (Continued)".

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute interstitial nephritis</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute interstitial nephritis with uremia</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic interstitial nephritis</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic interstitial nephritis with uremia</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urolithiasis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male Reproductive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castration</td>
<td>38</td>
<td>42</td>
<td>70</td>
<td>55</td>
<td>78</td>
</tr>
<tr>
<td>Orchitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>VIRAL DISEASES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infectious Enteritis</td>
<td>20</td>
<td>12</td>
<td>23</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>5</td>
<td>16</td>
<td>22</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>Observation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabies</td>
<td>13</td>
<td>15</td>
<td>18</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Serum vs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feline enteritis</td>
<td>5</td>
<td></td>
<td></td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>Vaccine vs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feline infectious enteritis</td>
<td>188</td>
<td>180</td>
<td>257</td>
<td>271</td>
<td>345</td>
</tr>
<tr>
<td>Feline pneumonitis</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabies</td>
<td>106</td>
<td>157</td>
<td>220</td>
<td>223</td>
<td>402</td>
</tr>
<tr>
<td>WOUNDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abrasion</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Abscess</td>
<td>38</td>
<td>55</td>
<td>48</td>
<td>41</td>
<td>47</td>
</tr>
<tr>
<td>Cellulitis</td>
<td>11</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Contusions</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Laceration</td>
<td>19</td>
<td>13</td>
<td>14</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Puncture</td>
<td>9</td>
<td>14</td>
<td>4</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Rupture</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCLASSIFIED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bath</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Board</td>
<td>102</td>
<td>115</td>
<td>137</td>
<td>111</td>
<td>121</td>
</tr>
<tr>
<td>Dead on Arrival</td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Euthanasia</td>
<td>23</td>
<td>46</td>
<td></td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>Examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood</td>
<td>85</td>
<td>108</td>
<td>90</td>
<td>196</td>
<td>144</td>
</tr>
</tbody>
</table>
"Table 3 (Continued)".

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ear</td>
<td>30</td>
<td>27</td>
<td>48</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Endocrine</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ear</td>
<td>7</td>
<td>15</td>
<td>5</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>Fecal</td>
<td>138</td>
<td>183</td>
<td>161</td>
<td>167</td>
<td>134</td>
</tr>
<tr>
<td>Gastro-Intestinal</td>
<td>14</td>
<td>26</td>
<td>41</td>
<td>35</td>
<td>46</td>
</tr>
<tr>
<td>Genital</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td>4</td>
<td>15</td>
<td>17</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>Health with Certificate</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locomotor</td>
<td>28</td>
<td>13</td>
<td>30</td>
<td>40</td>
<td>61</td>
</tr>
<tr>
<td>Nervous</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Oral</td>
<td>22</td>
<td>17</td>
<td>28</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Post Operative</td>
<td>4</td>
<td>15</td>
<td>13</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>Respiratory</td>
<td>22</td>
<td>22</td>
<td>18</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td>Skin</td>
<td>19</td>
<td>42</td>
<td>52</td>
<td>52</td>
<td>58</td>
</tr>
<tr>
<td>Urine</td>
<td>30</td>
<td>37</td>
<td>72</td>
<td>92</td>
<td>71</td>
</tr>
<tr>
<td>Vaginal Smears</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>19</td>
<td>10</td>
</tr>
<tr>
<td>No Diagnosis</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Obesity</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim Hair Mats</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Trim Nails</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>X-ray therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>1485</td>
<td>1729</td>
<td>1952</td>
<td>2219</td>
<td>2538</td>
</tr>
</tbody>
</table>
Table 4a. Clinical conditions diagnosed in the dog but not encountered in the cat during the past five years at the Iowa State University Small Animal Clinic

<table>
<thead>
<tr>
<th>Clinical conditions</th>
<th>Clinical conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal ascites</td>
<td>Meningitis</td>
</tr>
<tr>
<td>Acanthosis nigricans</td>
<td>Myxosarcoma</td>
</tr>
<tr>
<td>Aseptic necrosis</td>
<td>Neuritis</td>
</tr>
<tr>
<td>Cataract</td>
<td>Neurofibroma</td>
</tr>
<tr>
<td>Chronic pyogenic dermatitis</td>
<td>Osteochondroma</td>
</tr>
<tr>
<td>Chronic tonsillitis</td>
<td>Osteogenic sarcoma</td>
</tr>
<tr>
<td>Demodectic mange</td>
<td>Osteomyelitis</td>
</tr>
<tr>
<td>Dew-claw removal</td>
<td>Papilloma</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Perineal hernia</td>
</tr>
<tr>
<td>Ear trim</td>
<td>Periostitis</td>
</tr>
<tr>
<td>Endometritis</td>
<td>Pigmentary keratitis</td>
</tr>
<tr>
<td>Entropion</td>
<td>Prostatic hyperplasia</td>
</tr>
<tr>
<td>Epidermal inclusion cysts</td>
<td>Prostatitis</td>
</tr>
<tr>
<td>Episiotomy</td>
<td>Pyloric spasm or stenosis</td>
</tr>
<tr>
<td>Glaucoma</td>
<td>Retained deciduous teeth</td>
</tr>
<tr>
<td>Granulomatous neoplasia</td>
<td>Reticulum cell sarcoma</td>
</tr>
<tr>
<td>Heat prostration</td>
<td>Retinal detachment</td>
</tr>
<tr>
<td>Histiocytoma</td>
<td>Salivary gland cyst</td>
</tr>
<tr>
<td>Hydrocephalus</td>
<td>Sarcoptic mange</td>
</tr>
<tr>
<td>Hygroma</td>
<td>Sebaceous cyst</td>
</tr>
<tr>
<td>Interdigital cysts</td>
<td>Seborrhea</td>
</tr>
<tr>
<td>Intervertebral disc prolapse syndrome</td>
<td>Seminoma</td>
</tr>
<tr>
<td>Intestinal anastomosis</td>
<td>Staphyloma</td>
</tr>
<tr>
<td>Lacrimal duct occlusion</td>
<td>Strongyloidiasis</td>
</tr>
<tr>
<td>Lipoma</td>
<td>Tail dock</td>
</tr>
<tr>
<td>Melanoma</td>
<td>Unicinariansis</td>
</tr>
<tr>
<td>Meningioma</td>
<td>Urinary incontinence</td>
</tr>
<tr>
<td></td>
<td>Vaginal prolapse</td>
</tr>
</tbody>
</table>
In the show type specimen the coat should look very much like that of the wild rabbit or the eastern tree squirrel. Years ago in England, the Abyssinian was called the "Bunny Cat" because its coat resembled that of the English hare. The preferred color is a rufous or ruddy brown undercoat with the rest of the hair ticked (Fairchild and Fairchild, 1942).

The Domestic Short Hair (Figure 1) is a short-coated cat native to this country and one that shows no evidence of long-haired ancestry. A Domestic Short Hair should not be called an "alley cat." A specimen of true show type is a beautiful animal and many breeders work for years to perfect color or tabby blood lines. Domestic Short Hairs are exceptionally good hunters, intelligent and very hardy. They make good pets and live useful lives in destroying such pests as gophers, mice and rats (Fairchild and Fairchild, 1942).

Many years ago some long-haired cats were called Angoras, probably because of the likeness of their coats to those of the Angora rabbit and goat. However, through years of selective breeding for type, coat, etc.; the Angora and Persians have been intermingled until today most breeders refer to all the long-haired cats as Persians (Figure 2) or simply as "Long Hairs" (Fairchild and Fairchild, 1942).
Figure 1. Domestic Short Hair cat owned by Susan, Valerie, Mark and Michael Sis. Note distinct M on forehead and "tiger" markings.
Figure 2. Persian cat. Note the flat face and unusually long hair.

Figure 3. Siamese cat.
The Burmese cat is so closely related to the Siamese that some authorities feel they are simply a highly pigmented Siamese. However, the American Cat Fanciers Association have Burmese classed as a distinct breed. The coat is darker than that of the Siamese, being almost a chocolate color, while the points are about the same seal brown shade as are the Seal Point Siamese. Some Burmese are so dark in body color that the coat is a "sable." The eye color is golden instead of blue as is found in the Siamese. The head is shorter than that of the Siamese, and rounder. The temperament and characteristics of the Burmese are almost identical with those of the Siamese (Fairchild and Fairchild, 1942).

The Manx cat, originally from the Isle of Man, had no tail whatever. The true show type Manx should have a hollow at the end of the backbone, where on any other cat the tail would begin. Besides the taillessness the Manx is different because of its extra short back and extra long hind legs, with consequent rabbity or hopping gait; especially at paces faster than a walk. Manx cats have large heads with pointed noses. The coat does not lie flat like that of the Siamese but has a warm thick feeling which is produced by medium-length guard hairs and a dense fine undercoat. You can find most any color of Manx except white spotted (Beamer, 1954).
Even the most indifferent observer can tell at a glance that the Siamese (Figure 3) is a breed entirely separate from the other cats, both because of their appearance and their unusual vocal talents. The Siamese is a semialbino which accounts for its peculiar coloration. Since 1929 the popularity of the Siamese breed in the United States has increased enormously; although it made its first appearance in this country as early as 1895. Though poetically called the "royal, sacred Siamese," this is the common cat of Siam and not restricted to palaces and temples. There are two color classes for the show type Siamese, the Seal Point and the Blue Point. In the Seal Point the coat is cream or fawn color and the points (mask, ears, legs and tail) are a seal brown shade. The Blue Point has a light blue or sometimes almost a cream coat, darker blue points and blue eyes. They are medium sized, dainty cats with clean cut limbs, the hind legs being longer than the front and giving them the appearance of "walking down hill." They have a long, wedge shaped head with good width between the ears, and a flat forehead. The ears are large and open wide at the base. The eyes are almond in shape and set at a typical oriental slant. The tail should be long and whip-like, tapering to a point at the end. Although the show standard allows a slight kink at or near the end of the tail, everything else being equal, a perfectly straight tailed cat will win over one with a kink. The only complaint
that can be made against the Siamese as the perfect house pet is its loud voice (Fairchild and Fairchild, 1942).

Cat color with eye color is an important consideration. Blue-eyed white cats are most likely to be deaf, and almost none have perfect hearing. Buckskin-colored cats are almost always male and tricolored or tortoise-shells (calico) are almost invariably female. The few males that are tortoise-shell color are always sterile (Frick, 1962). Siamese kittens are born white, and of all animals, more Siamese are cross-eyed than any others. It is considered a fault. All Siamese should have vivid blue eyes. A crooked tail in a cat is usually a sign of oriental ancestry. A tabby cat is a cat with darker shadings on the body and always a darker distinct M on the forehead (Figure 1). The name "tabby" comes from Atab, a street, in old Bagdad where moire silk, called atabi (later taffeta) was made.

Some cats have been known to live 25 years. It is possible for female cats to have 100 offspring in a lifetime. They have 2 litters a year and average 4 kittens a litter. Cats often make good foster mothers for puppies, fox kits and other small orphans (Frick, 1962).

About half of the estimated 28,000,000 cats in the United States are unattached and 5% are pedigreed fancy cats. Twenty-five per cent of the families in the United States own a cat. International Cat Week starts the first Sunday
in November. The American Feline Society in New York City is the world's largest cat organization. (Frick 1962).

Anomalies

Anomalies are known to occur more frequently in the vascular system of vertebrate animals than in any other system. Mammals in particular are more susceptible to anomalies than are other groups of vertebrates. They are of more common occurrence in the venous system (Butler et al. 1946; Darrach, 1907; Hunt, 1919b and Wilder, 1919) than in the arterial system.

In the cat the usual origin of the right subclavian artery is from the innominate artery at a point slightly posterior to the origin of the right common carotid artery. Leach (1961) reports an anomaly in which the right subclavian artery originates on the arch of the aorta, just to the right of the origin of the left subclavian. He states, "a condition seen but once in approximately 1,000 student dissections."

A recent dissection in an anatomy class (Zucchero, 1964) revealed an abnormal origin and position of the right subclavian artery in one cat. Both the right and left subclavian arteries arose together from a common stem, about 4 mm. in length, on the arch of the aorta. The left subclavian artery followed its normal course to the left shoulder region, but the right subclavian artery passed dorsal to
the vessels which lie ventral to the trachea and esophagus. According to Zuccherio, this was the first appearance of this anomaly with over 1,500 student dissections.

The presence of a persistent right aortic arch has been reported by Uhrich, (1963); Douglas et al. (1960); and Jessop, (1960). A fibrous ring is produced which encircles the esophagus and trachea and produces varied obstructions.

A survey of the literature reveals that gallbladder anomalies (accessory or complete absence) occur quite frequently (1 in 8; Boyden, 1926; 1 in 200; Bartlett, 1951; 1 in 200; Mann and Fratta 1952; 1 in 900; Gribble, 1950) in the cat. The usual pattern of those reported was two functional gallbladders of approximately equal size and length.

Although the cat normally has eighteen digits, five on each front foot and four on each hind foot, the occurrence of individuals with more than that number is not uncommon. Such polydactyl (or more properly hyper-dactyl) cats may sometimes have a total of as many as eight, or possibly even ten, extra digits (Danforth, 1947a). Descriptions of feet from individual polydactyl cats have been published as early as 1868 by Wilder and by Jayne, (1898); and Howe, (1902). Polydactyly in the cat, a trait induced by a single dominant gene, reveals a considerable range of expression with respect to the number and size of extra
digits and the structures related to them (Danforth 1947b).

The probable chief effect of the gene is to incite some changes in the preaxial part of the limb bud causing an excess of growth in that area. The trait is not related to sex, and no evidence is found that its gene is lethal when homozygous (Danforth 1947a).
MATERIALS AND METHODS

Fifty domestic cats (8 mature females, 8 noncastrated males, 2 immature females and 2 immature males, with supplemental sections from 30 other cats) were used in this study. The cats varied from 6 weeks to 16 years of age with the majority ranging from 2 to 6 years of age.

The cats used for gross dissection were prepared according to the following procedure. Sodium pentobarbital was used to produce general anesthesia. The left or right carotid artery was exposed and cannulated. Exsanguination was accomplished through the cannulated vessel. The apparatus described in Figure 4 was used in all embalming and injection procedures. The animals were embalmed with an embalming fluid which consisted of the following: isopropyl alcohol, 60%; formalin, 4%; phenol, 6%; corn syrup, 2.5%; H$_2$O, 27.5%. The cats were injected through the cannulated artery twenty-four hours after embalming with a latex emulsion.¹

Three superannuated cats were used for maceration, one of which was 16 years of age. The cats were skinned and the muscles were removed. The following osteological method was used for macerating, bleaching and defatting the bones:

Table 4b. Data concerning cats used in this study

<table>
<thead>
<tr>
<th>Cat no.</th>
<th>Age (yrs.)</th>
<th>Sex</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>M</td>
<td>Maceration</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>M</td>
<td>Maceration</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>Fe</td>
<td>Maceration</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>M</td>
<td>Histological sectioning</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>Fe</td>
<td>Radiographs</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>M</td>
<td>Radiographs</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>M</td>
<td>Dissection</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>M</td>
<td>Dissection</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Fe</td>
<td>Dissection</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>Fe</td>
<td>Dissection</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>Fe</td>
<td>Dissection</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>Fe</td>
<td>Dissection</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>M</td>
<td>Dissection</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>M</td>
<td>Dissection</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>Fe</td>
<td>Dissection</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>Fe</td>
<td>Dissection</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>M</td>
<td>Radiograph</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>Fe</td>
<td>Dissection</td>
</tr>
<tr>
<td>19</td>
<td>4 mon.</td>
<td>Fe</td>
<td>Radiograph</td>
</tr>
<tr>
<td>20</td>
<td>6 wks.</td>
<td>M</td>
<td>Dissection</td>
</tr>
<tr>
<td>21-50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 All animals used in this study were Domestic Short Hair cats.

2 Supplemental sections for gross dissection were used from cats number 21-50.
Figure 4. Apparatus used in embalming and injection procedures
1 quart laundry ammonia, 1 pound potassium nitrate, 1 cup detergent, and 15 gallons of water.

The solution was brought to a boil and then allowed to simmer until the bones were ready for washing.

Euthanasia was performed on an eight year old male short hair domestic cat weighing eight pounds. The following tissues were collected from the cat:

1. Infraorbital gland
2. Parotid gland
3. Lacrimal gland
4. Mandibular (submaxillary) gland
5. Sublingual

A specimen of each gland was fixed in Zenker's fluid and one of each in alcohol. Ten slides were stained with thionine stain for mucin. The tissues were fixed in absolute alcohol. Ten slides were stained with toluidine blue stain for mucin and the tissues were fixed in absolute alcohol.

Seven slides were stained with hematoxylin and eosin and the tissues were fixed in Zenker's solution. Seven slides were stained with phosphotungstic acid-hematoxylin and the tissues were fixed in Zenker's solution.

Four domestic cats were used in the study of the normal radiographic anatomy. The nomenclature for radiologic
anatomy was taken from Habel et al. (1963). The following radiologic views were used:

1. By the direction of the rays through the body from tube to film, e. g., dorsoventral
2. By the surface of the body adjacent to the film, e. g., right lateral
3. By a combination of 1 and 2

When describing views of the limbs, right or left limb was used along with the direction of the rays; e. g. left mediolateral means that the rays are passing from the medial to the lateral surface of the left limb. Two views at right angles to each other were taken of all structures.

Three factors remained constant in the radiographic technique used in this study. They were:

1. Time - two seconds
2. Tube-film distance - 36 inches
3. Milliamperes - 10

A variable kilovolt value was used. It was determined by taking 2 times the thickness, in centimeters, of the part to be radiographed and adding 40 to it, e. g. if the thickness of the part is 6 cm. then the kvp = \(2 \times 6 \div 40 = 52\).
RESULTS AND DISCUSSION

Head and Neck

Skull

The skull is divided into a cranial and facial portion. The cranium protects the brain and houses the organs of hearing and equilibrium. The facial portion supports the nose and the eyes.

The cranial portion of the skull is composed of one occipital, one interparietal, two temporals, two parietals, the sphenoid, the presphenoid, the two frontals and the ethmoid. The facial portion includes: the paired premaxilla, nasal, maxilla, nasoturbinate, maxilloturbinate, zygomatic, palatine, lacrimal, pterygoid and mandible; and the unpaired vomer.

The exterior of the skull can be viewed from 3 different positions, dorsal, ventral and lateral.

Dorsal aspect of the skull From the dorsal aspect (Figure 5), the cranial part of the skull shows portions of five bones; the occipital, the right and left parietals and frontals. They are united by sutures which have interlocking jagged edges. The suture that unites the frontal and parietal bones runs across the skull from side to side and is known as the coronal suture. The suture which unites the occipital to the two parietals is known as the lambdoid
Figure 5. Skull, dorsal aspect

1. External nares
2. Nasal bone
3. Opening into lacrimal canal
4. Maxillary bone
5. Zygomatic process of frontal bone
6. Frontal bone
7. Mastoid process of temporal bone
8. Premaxillary bone
9. Maxillary bone
10. Lacrimal bone
11. Malar bone
12. Frontal process of malar bone
13. Zygomatic process of temporal bone
14. Coronal suture
15. Sagittal suture
16. Parietal bone
17. Lambdoidal crest
suture, resembling the Greek capital letter Lambda. The posterior boundary of the dorsal surface is marked by the lambdoidal crest which passes from the middle anteroventrally along each side to the zygomatic arch. The two zygomatic arches curving laterally are also seen from the dorsal view. The zygomatic arch is formed by the zygomatic process of the temporal bone and malar or zygomatic bone. A portion of the floor of the orbit and the lacrimal canal may be seen in the dorsal view.

The sagittal suture (after sagitta which means arrow) extends along the midline from the occipital to the frontal bones and is continued forward by the frontal suture to the nasal bone.

The dorsal surface of the facial part of the skull is formed by the nasal, incisive and maxillary bones and the nasal processes of the frontal bones. With the exception of the Persian, which has a flat face, its shape does not vary between breeds as it does in the dog. Just anterior to the nasal bones is the large opening, the nares, leading into the nasal cavity.

Ventral aspect of the skull The ventral aspect of the cranial part of the skull (Figure 6) extends from the foramen magnum to the hard palate. The foramen magnum, the largest bony foramen in the skull, is the opening through which the medulla oblongata becomes continuous with
Figure 6. Skull, ventral aspect

1. Premaxillary bone
2. Incisors
3. Palatine fissure
4. Canine tooth
5. Premolars
6. Molar
7. Frontal bone
8. Zygomatic process of frontal bone
9. Zygomatic arch
10. Foramen ovale
11. External acoustic meatus
12. Jugular foramen
13. Hypoglossal foramen
14. Maxillary bone
15. Major palatine foramen
16. Minor palatine foramen
17. Palatine bone
18. Posterior nares
19. Presphenoid bone
20. Mandibular fossa
21. Basisphenoid bone
22. Tympanic bulla
23. Occipital condyle
24. Foramen magnum
25. Lambdoidal ridge
26. Occipital bone
the spinal cord. The rounded occipital condyles lie at the margins of the foramen magnum. The basilar portion of the occipital extends forward between the tympanic bulla. The lateral surface of the tympanic bulla presents the external acoustic meatus, the stylomastoid foramen and the mastoid process. Between the bulla and the occipital condyle is the small circular hypoglossal foramen for the 12th cranial n. and the larger jugular foramen for the 9th, 10th and 11th cranial nerves. Just anterior to the bulla is the osseous auditory tube. A large oval foramen lies medial to the mandibular fossa. The mandibular fossa is the smooth articular surface on the transverse posterior part of the zygomatic arch. A spadelike retroglenoid process prevents posterior dislocation of the mandible which articulates in the mandibular fossa. Anterior to the foramen ovale the foramen rotundum is faintly seen. The pterygoid canal, a minute opening, is located on the surface of the sphenoid just anterior to the bulla. The orbital fissure and optic foramen are not seen from the ventral aspect.

The narrow middle region between the two orbits forms a shallow fossa bounded laterally by the pterygoid process of the sphenoid and the perpendicular plates of the palatines. Lateral to the median fossa, parts of the temporal and orbital fossa are visible, bounded laterally by the
Canine tooth
Mandible
Maxilla
Zygomatic arch
Foreign body (bullet)
Tympanic bulla
External acoustic meatus
Atlas
Axis
C3
Clavicle
Scapula
Humerus

Figure 7. Normal radiographic anatomy of figure 8
Figure 8. Radiograph, dorsoventral view of head and neck of adult cat
zygomatic arches.

The anterior (facial) part of the ventral aspect of the skull is occupied by the hard palate. It is formed by the palatine processes of the maxilla and the horizontal plates of the palatine bones and the incisive (pre-maxilla) bone. Laterally and anteriorly this area is bounded by the alveolar borders of the maxillaries and incisives bearing the teeth. The major palatine foramina, medial to the last premolar teeth, lie anterior to the minor palatine foramina. The oval palatine fissures (incisive foramina) lie medial to the canine teeth. The two halves of the hard palate join to form the palatine suture.

Lateral aspect of the skull The three main features of the cranial part of the lateral aspect of the skull (Figures 9, 11 and 12) are the temporal fossa, orbital fossa and the zygomatic arch. Posteriorly the occipital condyles, lambdoidal crest, external occipital protuberance and the sagittal crest are seen. Anterior to the occipital condyle are the jugular and mastoid processes and the tympanic bulla with the stylomastoid foramen and the larger external acoustic meatus located on the dorsal surface of the bulla.

The temporal fossa is formed by parts of the parietal, temporal, sphenoid and frontal bones. The zygomatic process of the frontal bone and the frontal process of the zygomatic bone normally do not meet and fuse except in very
Figure 9. Skull, lateral aspect

1. Parietal bone
2. Occipital bone
3. Squamous portion of temporal bone
4. Manubrium of malleus
5. External acoustic meatus
6. Tympanic bulla
7. Retroglenoid process
8. Hamulus of pterygoid
9. Frontal bone
10. Fused zygomatic process of frontal bone and frontal process of malar bone
11. Orbit
12. Nasal bone
13. Premaxillary bone
14. Maxillary bone
15. Malar bone
16. Canine
17. Third premolar
18. Molar

Figure 10. Mandible

1. Coronoid process
2. Ramus of mandible
3. Condylloid process
4. Incisors
5. Canine
6. Mandibular foramen
7. Angular process
8. Masseteric fossa
9. Body of mandible
10. Molar
11. Premolars
12. Mental foramina
mature cats (Figure 9). The cat shown in Figure 9 was 16 years old.

Below the zygomatic arch proceeding anteriorly from the tympanic bulla is a row of 4 foramina, the foramen ovale, foramen rotundum, orbital fissure and optic foramen. Ventral to the medial surface of the orbit, bounded dorsally by the ventral orbital crest is a smaller fossa the pterygopalatine fossa.

Ventral to the cranial portion of the orbit is the dorsally located sphenopalatine foramen which is separated from the posterior palatine foramen by a narrow septum of bone.

The lateral surface of the facial part of the skull is formed primarily by the maxilla which is pierced by the infraorbital foramen just anterior to the orbit. The nasal and incisive bones are located anteriorly. The teeth, implanted along the alveolar border of the maxillary and incisive bones, are prominent along the lateral surface.

Interior of the skull The cranial cavity (Figure 14) has a top part or skull cap and a floor. The skull cap is concave and presents depressions for the convolutions of the cerebrum and many furrows for the branches of the meningeal vessels.

The base of the skull on its inner surface is divisible into three cranial fossae: anterior, middle and pos-
Figure 11. Normal radiographic anatomy of figure 12
Figure 12. Radiograph, left lateral view of head of adult cat
terior. The small anterior fossa is for the olfactory bulb of the brain, the middle fossa for the cerebrum and the posterior fossa for the cerebellum.

The posterior (cerebellar) fossa contains the following openings: foramen magnum, internal opening of the hypoglossal canal, the condyloid canal (anterior opening), jugular foramen, internal auditory meatus, and a canal for the trigeminal nerve. At the anterior end of the posterior fossa is the large opening bounded by the free edges of the tentorium osseum.

The floor of the middle (cerebral) fossa is bounded posteriorly by the prominent dorsum sellae. Just anterior is the hypophyseal fossa in which the pituitary lies and anterior to it is the tuberculum sellae. Anterior to the cranial tip of the petrous portion of the temporal bone is the small foramen lacerum for the internal carotid artery. Anterior and lateral to it is a row of four foramina: the posterior one is the foramen ovale, the foramen rotundum, the orbital fissure and the optic foramen. Another small foramen is located on the floor of the sphenoid and it transmits the nerve of the pterygoid canal or vidian nerve.

Numerous openings in the cribiform plate connect the anterior (olfactory) fossa with the nasal cavity and transmit olfactory fibers.
The nasal cavity (Figures 14 and 15) is composed of two symmetrical halves (nasal fossae) which are separated from each other by the nasal septum. The nasal cavity opens anteriorly by the large nares (piriform aperture). Almost the entire space of the nasal cavity is occupied by the three turbinates. The turbinate portion of the ethmoid is more extensive than in the dog. The three nasal meatuses are narrowed by spongy tissue. The medial concha is well developed and folded while the ventral concha is relatively small and simply constructed. The attachments of the dorsal and ventral turbinate bones are more widely separated from each other than in the dog.

The sphenoid sinus is relatively large and is located within the sphenoid. It is divided by a median longitudinal partition and continues anteriorly into the cavities of the ethmoid.

Paranasal sinuses The frontal sinus of each side (Figure 17) is a single compartment which has one entry (on each side) into the superior ethmoid meatus. It is relatively smaller when compared to the dog. The frontal sinus is located chiefly between the two tables of the frontal bone and may be partly divided by osseous septa which extend into the sinus from the periphery.

Besides the frontal sinus the cat reveals, as paranasal sinuses, a maxillary recess and an ethmoid sinus on each
Figure 13. Skull, ventral lateral aspect

1. Stylomastoid foramen
2. External acoustic meatus
3. Foramen ovale
4. Foramen rotundum
5. Orbital fissure
6. Optic foramen
7. Foramen magnum
8. Jugular foramen
9. Tympanic bulla
10. Malar bone
11. Maxillary bone
12. Infraorbital foramen
13. Nasal bone
14. Palatine fissure
15. Incisors
16. Canine
17. Zygomatic arch
18. Molar
19. Premolars

Figure 14. Skull, sagittal section

1. Frontal bone
2. Nasal bone
3. Premaxillary bone
4. Parietal bone
5. Cerebral fossa
6. Tentorium osseum
7. Cerebellar fossa
8. Internal auditory meatus
9. Hypoglossal canal
10. Tympanic bulla
11. Bone of nasal septum
12. Olfactory fossa
13. Cribriform plate
14. Sphenoid sinus
15. Optic canal
16. Hamular process
Figure 15. Sagittal section of head with nasal septum removed revealing turbinates

1. Frontal sinus
2. Cerebrum
3. Cerebellum
4. Hypophysis
5. Pons
6. M. semispinalis capitis
7. Atlas
8. Axis
9. Spinal cord
10. Foramen magnum
11. Sphenoid sinus
12. Nasopharynx
13. Hard palate
14. Soft palate
15. Oral cavity
16. Base of tongue
17. M. geniohyoideus
18. Epiglottis
19. Larynx with vocal cord
20. Esophagus
21. Thyroid cartilage
22. Cricoid cartilage
23. Symphysis of mandible
24. Maxilloturbinate
25. Ethmoturbinate
26. Nasoturbinate

Figure 16. Transverse section through head showing ear canal
Figure 17. Skull with dorsal portion of frontal bone removed, dorsal aspect

1. Frontal sinus
2. Dorsal recess of nasal cavity
side (Loeffler, 1959). The cat does not have a maxillary sinus.

Mandible

The mandible (Figure 10) of the cat is composed of two halves joined together at the mandibular symphysis, which is a strong, rough-surfaced, fibrous joint. Each half consists of a horizontal part, a body and a vertical part, the ramus. Anteriorly, the lateral surface of the body presents two or more small foramina. These openings transmit the mental nerves and vessels. The dorsal border is slightly curved and bears the alveoli for the teeth.

On the lateral surface of the triangular ramus is a deep fossa the masseteric fossa. The medial surface is smooth and has the mandibular foramen which transmits the mandibular artery and vein and the mandibular alveolar (inferior alveolar) nerve into the mandibular canal.

The ramus contains three processes. The coronoid process extends up and back as a thin plate of bone with smooth surfaces and borders. The condyloid or articular process is a transversely elongated, convex articular process which forms the temporomandibular joint by articulating with the mandibular fossa of the temporal bone. The most ventral process is the angular process which serves as a landmark for palpation and for a dental block of the mandibular alveolar nerve (Figure 18).
Figure 18. Location for blocking the mandibular nerve

Figure 19. Location for blocking the maxillary nerve
The hyoid bones The hyoid is attached to the skull dorsally and to the larynx and base of the tongue ventrally. It consists of a single basihyoid and the paired thyrohyoid, keratohyoid, epihyoid and stylohyoid bones and the tympanohyoid cartilages. The body or basihyoid is a transverse bar of bone which gives attachment to the sternohyoid, geniohyoid and hyoglossus muscles. The thyrohyoid, is attached to the thyroid cartilage of the larynx.

Table 5 summarizes briefly the names of the various foramina of the cat's skull, their location, and the structures which pass through them.

Brain

The primitive brain is divided into 3 primary divisions, the prosencephalon or forebrain, the mesencephalon or midbrain and the rhombencephalon or hind brain.

Then quite early the prosencephalon divides into the telencephalon and diencephalon. The mesencephalon doesn't undergo division but the rhombencephalon also divides and its parts are the metencephalon and the myelencephalon. The brain stem includes the diencephalon, mesencephalon, the metencephalon, minus the cerebellum, and the myelencephalon.

The telencephalon gives rise to the olfactory apparatus, the cerebral hemispheres, and the basal ganglia.
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Structures passing through foramina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandibular</td>
<td>Mandible</td>
<td>Inferior alveolar nerve and artery</td>
</tr>
<tr>
<td>Mental</td>
<td>Mandible</td>
<td>Mental nerves and arteries</td>
</tr>
<tr>
<td>Nasolacrimal canal</td>
<td>Maxillary and lacrimal</td>
<td>Nasolacrimal duct</td>
</tr>
<tr>
<td>Olfactory</td>
<td>Ethmoid</td>
<td>Filaments of the olfactory nerve</td>
</tr>
<tr>
<td>Optic</td>
<td>Sphenoid</td>
<td>Optic nerve (2) and ophthalmic artery</td>
</tr>
<tr>
<td>Orbital fissure</td>
<td>Sphenoid</td>
<td>Oculomotor, trochlear, abducens, and the ophthalmic division of the trigeminal nerve</td>
</tr>
<tr>
<td>Ovale</td>
<td>Sphenoid</td>
<td>Mandibular nerve. Middle meningeal artery</td>
</tr>
<tr>
<td>Posterior palatine</td>
<td>Palatine</td>
<td>Greater palatine nerve and descending palatine artery</td>
</tr>
<tr>
<td>Rotundum</td>
<td>Sphenoid</td>
<td>Maxillary nerve</td>
</tr>
<tr>
<td>Sphenopalatine</td>
<td>Palatine</td>
<td>Posterior nasal nerve and vessels</td>
</tr>
<tr>
<td>Stylomastoid</td>
<td>Temporal</td>
<td>Facial nerve (7)</td>
</tr>
<tr>
<td>Zygomatic</td>
<td>Malar</td>
<td>Zygomatic branch of the maxillary nerve</td>
</tr>
<tr>
<td>Pterygoid</td>
<td>Sphenoid</td>
<td>Vidian nerve</td>
</tr>
<tr>
<td>Name</td>
<td>Location</td>
<td>Structures passing through foramina</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Anterior palatine</td>
<td>Premaxillary and maxillary</td>
<td>Nasopalatine branch of the maxillary nerve and nasal artery</td>
</tr>
<tr>
<td>Ethmoidal</td>
<td>Frontal</td>
<td>Ethmoidal branch of the ophthalmic nerve and ethmoidal artery</td>
</tr>
<tr>
<td>Facial canal</td>
<td>Temporal</td>
<td>Facial nerve (7)</td>
</tr>
<tr>
<td>Foramen lacerum</td>
<td>Temporal and sphenoid</td>
<td>Internal carotid artery</td>
</tr>
<tr>
<td>Infraorbital</td>
<td>Maxillary</td>
<td>Intraorbital branch of the maxillary nerve and infraorbital artery</td>
</tr>
<tr>
<td>Internal acoustic</td>
<td>Temporal</td>
<td>Acoustic nerve (8) Facial nerve</td>
</tr>
<tr>
<td>meatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jugular</td>
<td>Occipital and temporal</td>
<td>Glossopharyngeal (9), vagus (10), spinal accessory nerves (11) and the inferior cerebral vein</td>
</tr>
<tr>
<td>Condyloid canal</td>
<td>Occipital</td>
<td>Branch of inferior petrosal sinus</td>
</tr>
<tr>
<td>Hypoglossal canal</td>
<td>Occipital</td>
<td>Hypoglossal nerve (12)</td>
</tr>
<tr>
<td>Foramen magnum</td>
<td>Occipital</td>
<td>Medulla oblongata, vertebral arteries, anterior spinal artery, and the spinal roots of the spinal accessory nerves</td>
</tr>
</tbody>
</table>
The olfactory apparatus consists of the olfactory nerves, the olfactory bulbs and the olfactory tracts. Associated with the olfactory apparatus are the piriform lobe and the hippocampus which is one of the parts used for the detection of Negri bodies for the diagnosis of rabies.

The olfactory bulbs are located in the ethmoidal fossa of the ethmoid bone and the olfactory nerves extend from these bulbs through the cribriform plate of the ethmoid bone to the mucous membrane of the nasal cavity. From the olfactory bulbs the olfactory tracts extend back to be continued as the olfactory striae, both medial and lateral, the lateral one going to the piriform lobe and the medial stria to the cerebral hemisphere. This piriform lobe then curves dorso-medially to become the hippocampus. The outer layer of the cerebral hemisphere is a layer of gray matter. It is made up of gyri or folds and sulci. The cerebral hemispheres are divided into several lobes: 1. Frontal lobe - the center of conscious motor impulses 2. Parietal lobe - sensory lobe for touch, pressure and body sense 3. Occipital lobe - center of vision 4. Temporal lobe - center of hearing and taste.

The basal ganglia, which are masses of nerve cell bodies or gray matter, are located in the white matter in the interior of the cerebral hemispheres. These are centers of control over voluntary muscle action. The basal ganglia include: 1. Clastrum 2. Amygdaloid nucleus 3. Putamen

The internal capsule is white matter and has a striated appearance. The fibers of the internal capsule spread out into the substance of the cerebral hemispheres and are called the corona radiata.

The putamen and globus pallidus form what is called the lentiform nucleus. The lentiform nucleus plus the caudate nucleus and the internal capsule form what is called the corpus striatum. The amygdaloid nucleus and the claustrum are located in the piriform area (Figure 20).

The habenular trigone is located just ahead of the pineal body. It is an important relay station in the olfactory apparatus.

The posterior commissure is made up of white matter composed of tracts between the cerebral hemispheres.

The thalamus is a very important large area of gray matter. Nuclei in the thalamus act as relay stations going to higher centers. There are three important nuclei in the thalamus: 1. Medial geniculate body 2. Lateral
Figure 20. Brain, lateral aspect

Figure 21. Brain, dorsal aspect
geniculate body 3. Pulvinar.

The medial geniculate body is composed of auditory pathways. The lateral geniculate body is composed of visual pathways. The pulvinar is a relay station for both visual and auditory impulses. All but the olfactory sensory impulses are relayed through the thalamus.

The subthalamus is located just ventral to the thalamus. It is composed in part by gray nuclei.

The hypothalamus is also located just ventral to the thalamus. It consists of the: 1. Optic chiasma 2. Mammillary bodies 3. Tuber cinerium 4. Infundibulum 5. Hypophysis or pituitary gland.

The optic chiasma is formed by the convergence of the optic nerves and the crossing over of the major part of the fibers from one side to the other. From the chiasma the optic tracts curve around the cerebral peduncles to the thalamus and to the lateral geniculate body.

The mammillary bodies are small projections behind the tuber cinerium and are important relay stations in the olfactory apparatus.

The tuber cinerium is a small round projection posterior to the optic chiasma from which the infundibulum projects. It relays impulses to the autonomic nuclei. It has a great deal of control over the endocrine glands and also the water and salt balance of the body.
The infundibulum is the stalk that connects the hypophysis to the tuber cinerium. The infundibular recess is a projection of the 3rd ventricle into the infundibulum.

The hypophysis or pituitary gland is a very important structure. It lies in the sella turcica and is divided into an anterior lobe and a posterior lobe.

The anterior lobe consists of a pars anterior and pars intermedia. These take on a glandular appearance in contrast to the posterior lobe or pars nervosa which looks like but is not nervous tissue.

There are two sets of arteries supplying the hypophysis. The inferior or posterior hypophyseal arteries largely supply the pars nervosa. The superior or anterior hypophyseal arteries supply the anterior lobe and the stalk.

The nerve supply to the hypophysis is both sympathetic and parasympathetic. The sympathetic portion comes in via the blood vessels. The parasympathetics come in via the petrosal nerve (branch of the facial nerve).

The mesencephalon or midbrain consists of the: 1. Cerebral peduncles 2. Cerebral aqueduct or aqueduct of Sylvius 3. Corpora quadrigemina.

The cerebral peduncles appear as two stalks which emerge from the hind brain diverging and entering the cerebral hemispheres. The peduncles contain the tracts that connect the spinal cord, medulla, cerebellum and pons with
the thalamus or cerebral hemispheres. The peduncles are divided into a dorsal part containing ascending tracts and a ventral part containing descending tracts. The two parts are separated by a layer of gray matter called the substantia nigra.

The peduncles contain an important nucleus called the red nucleus which is an important relay station from the higher to the lower spinal tracts.

The aqueduct of Sylvius is the canal that extends through the midbrain from the 3rd to the 4th ventricle.

The corpora quadrigemina are 4 rounded prominences that are found on the dorsal part of the midbrain under the posterior part of the cerebral hemispheres in front of the cerebellum.

The superior colliculi are relay centers in the sense of vision. The inferior colliculi are relay stations for hearing.

The next division is the metencephalon which is a division of the hind brain or rhombencephalon. It consists of the pons and cerebellum.

The pons is the part of the brain stem between the cerebral peduncles and the medulla. It is composed of two parts, a dorsal tegmental part and a ventral basilar part. Tracts of the medulla continue up through the tegmental part. The basilar part contains tracts and nuclei which
communicate between the cerebral and cerebellar hemispheres. The pons is connected to the cerebellum by the brachium pontis. This is the middle cerebellar peduncle which carries fibers from nuclei of the pons to the cerebellum.

The cerebellum (Figure 21) is usually divided into 3 parts: 1. Two lateral hemispheres 2. A median vermis. The cerebellum lies partially over the 4th ventricle. From the anterior part of the vermis is a thin layer or lamina of gray matter called the anterior medullary velum which forms the anterior part of the roof of the 4th ventricle and from the posterior part of the vermis comes the posterior medullary velum forming the posterior part of the roof of the 4th ventricle.

The attachment of the cerebellum is by 6 peduncles, 3 on each side. The posterior peduncle is called the restiform body. It connects the spinal cord with the cerebellum. Impulses from the spinal cord to the cerebellum travel over these. The middle peduncle is the brachium pontis. It connects the pons with the cerebellum carrying impulses from the pons to the cerebellum. The anterior peduncle is the brachium conjunctivum. It carries impulses from the cerebellum toward the higher centers.

There are 3 important functions of the cerebellum:
1. Contains reflex centers for the regulation of muscle
tonus 2. Contains reflex centers for coordination of movements 3. Contains reflex centers for balance and equilibrium which is closely associated with the inner ear.

The last division of the brain is the myelencephalon. It connects the spinal cord with the rest of the brain and consists of the medulla oblongata. The medulla consists of the: 1. Trapezoid body 2. Pyramidal tract 3. Olivary body 4. Fasciculus gracilis 5. Fasciculus cuneatum.

The trapezoid body is a rounded band just behind the pons (Figure 22) on the ventral side. The pyramids are made up of corticospinal tracts. The olivary body is located on the pyramids and is a relay center for auditory impulses. The fasciculus gracilis is the smaller medial tract of the medulla, the fasciculus cuneatum is larger and lateral to the gracilis.

Meninges

The brain and spinal cord are covered by connective tissue membranes known as the dura mater, arachnoid and pia mater. The dura mater is the toughest and outer-most of the membranes. The arachnoid, located between the dura and pia, is a thin delicate membrane that extends over the sulci. The inner-most pia mater lies directly on the brain and spinal cord. It continues down into the sulci and follows the convolutions of the brain.
Figure 22. Brain, ventral aspect

Figure 23. Arteries of the brain, ventral aspect
The cranial dura is a tough membrane which serves to protect and support the brain. It consists of two layers, an external layer (endosteal layer) and an internal layer (meningeal layer). The venous sinuses and the meningeal vessels separate the two layers of dura. The dura will extend out along the cranial nerves to the foramina and will join the epineurium of the nerves. The internal (meningeal) layer is comparable to the spinal dura and is continuous with it at the foramen magnum.

The meningeal layer of dura forms four membranes that subdivide the cranial cavities: 1. Falx cerebri - a sickle-shaped membrane on the midline, dividing the two cerebral hemispheres 2. Tentorium cerebelli - a tent-like fold separating the cerebellum and the posterior part of the cerebral hemispheres 3. Falx cerebelli - a sickle-shaped fold separating the two cerebellar hemispheres 4. Diaphragma sellae - a sheet of dura surrounding the infundibulum and overlying the hypophysis.

Intracranial spaces The epidural or extradural space is located above the dura and beneath the skull. The meningeal vessels are in this space. The subdural space is located between the dura and the arachnoid. The subarachnoid space is located between the arachnoid and pia mater. It contains cerebrospinal fluid.
Ventricular system and cerebrospinal fluid

The circulation of cerebrospinal fluid is associated with the ventricular system and the subarachnoid space. The ventricular system is composed of four ventricles. A lateral ventricle is situated within each cerebral hemisphere. Each communicates with the 3rd ventricle by a single opening known as the foramen of Monro. The 3rd ventricle empties into the 4th by way of the aqueduct of Sylvius, which is long and narrow and located in the midbrain. The 4th ventricle is located beneath the cerebellum and above the pons and medulla. It connects with the subarachnoid space by three openings: the two lateral foramina of Luschka and a median foramen of Magendie. It moves out of the subarachnoid sinus through the arachnoid granulations into venous sinuses.

Cerebrospinal fluid is composed of all elements found in blood with the exception of blood cells. It is formed by the choroid plexus and its purpose is nutrition and removal of waste.

Cerebrospinal fluid may best be removed for examination from the atlanto-occipital space.

The subarachnoid space has contact with some peripheral structures. The space runs out into the optic nerve, the ear and along the spinal nerves. Therefore, infection can get into the subarachnoid space and cause meningitis.
For example, a pharyngitis can spread via the eustachian tube to the ear resulting in a meningitis.

Arterial supply The internal carotid arteries and the vertebral arteries supply the brain (Figure 23). The internal carotid arises from the common carotid artery, enters into the formation of the circle of Willis and supplies the anterior portion of the brain. The branches of the internal carotid are: 1. Anterior cerebral artery supplies the olfactory and frontal lobes and anastomoses with the posterior cerebral artery 2. Middle cerebral artery gives a branch off to the basal ganglia and more generally supplies the frontal, parietal and temporal lobes of the brain 3. Posterior communicating branch gives off a branch to the hypophysis and the anterior choroidal artery (to choroid plexus of lateral ventricle).

The vertebral artery arises from the subclavian artery. It is an extremely important artery which is well protected by the bones of the neck. It basically supplies the posterior portion of the brain. The two vertebral arteries become confluent in the area of the foramen magnum to form the basilar artery. From here forward the following branches are given off: 1. Meningeal 2. Medullary branches to the medulla 3. Posterior cerebellar 4. Acoustic 5. Pontine 6. Anterior cerebellar 7. Posterior cerebral. The circle of Willis is a protective measure in case the vertebral or the internal carotid artery is destroyed.
Veins of the brain The veins of the brain empty into venous sinuses of the dura mater. The superior superficial cerebral veins drain into the superior sagittal sinus. The middle group drains toward the cavernous sinus. The inferior cerebral veins drain into the cavernous sinus, superior petrosal sinus and the straight sinus. The internal cerebral veins join to form the great cerebral vein and it drains into the straight sinus. The superior cerebellar veins drain into the transverse, superior petrosal and the straight sinuses. The inferior cerebellar veins drain into the transverse, occipital and inferior petrosal sinuses.

The blood leaves the brain by way of: 1. Internal jugular vein 2. A system of vertebral sinuses 3. Diploic veins (a minor route).

Cranial nerves

There are twelve pair of cranial nerves (Figure 22). They leave the skull via various foramina at its base and are distributed primarily to the head. These nerves are numerically designated from anterior to posterior and are distinguished by their specific names, which are based on their functions or distributions. Table 6 gives the origin of the nerves, how they leave the skull and where they are distributed.
<table>
<thead>
<tr>
<th>Nerve Name</th>
<th>Origin</th>
<th>Exit</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Olfactory</td>
<td>Olfactory bulb</td>
<td>Foramina of cribriform plate</td>
<td>Olfactory mucosa</td>
</tr>
<tr>
<td>II Optic</td>
<td>Optic chiasma</td>
<td>Optic foramen</td>
<td>Retina</td>
</tr>
<tr>
<td>III Oculomotor</td>
<td>Cerebral peduncle</td>
<td>Orbital fissure</td>
<td>All recti muscles except lateral rectus; levator palpebral superioris; retractor oculi; inferior oblique m.</td>
</tr>
<tr>
<td>IV Trochlear</td>
<td>Ant. medullary vellum</td>
<td>Orbital fissure</td>
<td>Superior oblique m.</td>
</tr>
<tr>
<td>V Trigeminal</td>
<td>Pons</td>
<td>Orbital fissure</td>
<td></td>
</tr>
<tr>
<td>A. Ophthalmic division:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Frontal n.</td>
<td></td>
<td></td>
<td>Integument of upper eyelid and contiguous region of nose</td>
</tr>
<tr>
<td>b. Connection to ciliary ganglion</td>
<td></td>
<td></td>
<td>Cornea of eye</td>
</tr>
<tr>
<td>c. Long ciliary</td>
<td></td>
<td></td>
<td>Fibrous coat of eye</td>
</tr>
</tbody>
</table>
Table 6 (Continued).

<table>
<thead>
<tr>
<th>Nerve Name</th>
<th>Origin</th>
<th>Exit</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Ethmoidalis</td>
<td></td>
<td></td>
<td>Nasal mucosa</td>
</tr>
<tr>
<td>e. Infracarotlearis</td>
<td></td>
<td></td>
<td>Integument near medial angle of eye</td>
</tr>
<tr>
<td>B. Maxillary div:</td>
<td>For. rotundum</td>
<td></td>
<td>Soft palate</td>
</tr>
<tr>
<td>a. Zygomatic n.</td>
<td></td>
<td></td>
<td>Skin in front of infraorbital for.; vibrissae; teeth of upper jaw</td>
</tr>
<tr>
<td>b. Lacrimal n.</td>
<td></td>
<td></td>
<td>Skin ventral to lower eyelid</td>
</tr>
<tr>
<td>c. Infraorbital nn.</td>
<td></td>
<td></td>
<td>Middle and ventral portions of nasal mucosa</td>
</tr>
<tr>
<td>d. Sphenopalatine n.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Lesser palatine n.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Posterior nasal n.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
"Table 6 (Continued)."

<table>
<thead>
<tr>
<th>Nerve Name</th>
<th>Origin</th>
<th>Exit</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Mandibular div:</td>
<td>For. ovale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Lingual n.</td>
<td></td>
<td></td>
<td>Mucosa of tongue, submaxillary and sublingual glands</td>
</tr>
<tr>
<td>b. Inferior alveolar n.</td>
<td></td>
<td></td>
<td>Teeth of lower jaw; skin adjacent to mental for., branches to the digastric and mylohyoid m.</td>
</tr>
<tr>
<td>c. Buccinator n.</td>
<td></td>
<td></td>
<td>Oral mucosa; lips, masseter m.</td>
</tr>
<tr>
<td>d. Pterygoideus n.</td>
<td></td>
<td></td>
<td>Ext. and int. pterygoid m.; tensor tympani m.</td>
</tr>
<tr>
<td>e. Auriculotemoral n.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Temporal branch</td>
<td></td>
<td></td>
<td>Skin over zygomatic arch</td>
</tr>
<tr>
<td>2. Auricular branch</td>
<td></td>
<td></td>
<td>Skin of ext. ear</td>
</tr>
<tr>
<td>f. Massetericus n.</td>
<td></td>
<td></td>
<td>Masseter m.</td>
</tr>
<tr>
<td>Nerve Name</td>
<td>Origin</td>
<td>Exit</td>
<td>Distribution</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>g. Deep temporal n.</td>
<td>Pons</td>
<td>Orbital fissure</td>
<td>Temporalis m.</td>
</tr>
<tr>
<td>VI Abducens</td>
<td>Pons</td>
<td>Int. auditory meatus</td>
<td>Lateral rectus m. and retractor oculi</td>
</tr>
<tr>
<td>VII Facial</td>
<td>Pons</td>
<td></td>
<td>Stapedial m.</td>
</tr>
<tr>
<td>a. Stapedial n.</td>
<td></td>
<td></td>
<td>Preganglionic parasympathetic fibers via vidian n. to sphenopalatine ganglion</td>
</tr>
<tr>
<td>b. Superficial greater petrosal n.</td>
<td></td>
<td></td>
<td>To mucosa of ant. 2/3 of tongue (follows lingual n.)</td>
</tr>
<tr>
<td>c. Chorda tympani</td>
<td></td>
<td></td>
<td>Preganglionic parasympathetic fibers via lingual n. to submaxillary and sublingual ganglion</td>
</tr>
<tr>
<td>d. Posterior auricular n.</td>
<td></td>
<td></td>
<td>Muscles caudal to external ear</td>
</tr>
</tbody>
</table>
Table 6 (Continued).

<table>
<thead>
<tr>
<th>Nerve Name</th>
<th>Origin</th>
<th>Exit</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. Ventral ramus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Dorsal buccal n.</td>
<td></td>
<td></td>
<td>Muscles of upper lip and adjacent area</td>
</tr>
<tr>
<td>2. Ventral buccal n.</td>
<td></td>
<td></td>
<td>Muscles of lower lip</td>
</tr>
<tr>
<td>f. Dorsal ramus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Zygomatic n.</td>
<td></td>
<td></td>
<td>Superficial muscles of lower and upper eyelid</td>
</tr>
<tr>
<td>2. Temporal n.</td>
<td></td>
<td></td>
<td>Muscles cranial to external ear</td>
</tr>
<tr>
<td>VIII Acoustic</td>
<td>Junction of pons and medulla</td>
<td>Int. auditory meatus</td>
<td></td>
</tr>
<tr>
<td>a. Vestibular division</td>
<td></td>
<td></td>
<td>Cristae in ampullae of membranous semicircular canals; maculae in sacculus and utriculus</td>
</tr>
<tr>
<td>b. Cochlear division</td>
<td></td>
<td></td>
<td>Hair cells of spiral organ of Corti</td>
</tr>
<tr>
<td>Nerve</td>
<td>Name</td>
<td>Origin</td>
<td>Exit</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>IX</td>
<td>Glossopharyngeal</td>
<td>Medulla</td>
<td>Jugular for.</td>
</tr>
<tr>
<td></td>
<td>a. Nerve of Hering</td>
<td>Medulla</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Muscular branches</td>
<td>Medulla</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Sensory branches</td>
<td>Medulla</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Vagus</td>
<td>Medulla</td>
<td>Jugular for.</td>
</tr>
<tr>
<td></td>
<td>a. Cardiac nerves</td>
<td>Medulla</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Depressor n. of aorta</td>
<td>Medulla</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Confluence of l. and r. cardiac n.</td>
<td>Medulla</td>
<td></td>
</tr>
</tbody>
</table>
"Table 6 (Continued)".

<table>
<thead>
<tr>
<th>Nerve Name</th>
<th>Origin</th>
<th>Exit</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Recurrent laryngeal n.</td>
<td></td>
<td></td>
<td>Muscles of larynx</td>
</tr>
<tr>
<td>c. Pulmonary plexus</td>
<td></td>
<td></td>
<td>Lungs</td>
</tr>
<tr>
<td>d. Esophageal vagi</td>
<td></td>
<td></td>
<td>Esophagus</td>
</tr>
<tr>
<td>e. Ventral gastric plexus</td>
<td></td>
<td></td>
<td>Ventral surface of stomach</td>
</tr>
<tr>
<td>f. Dorsal gastric plexus</td>
<td></td>
<td></td>
<td>Dorsal surface of stomach</td>
</tr>
<tr>
<td>g. Auricular n.</td>
<td></td>
<td></td>
<td>External ear</td>
</tr>
<tr>
<td>h. Pharyngeal n.</td>
<td></td>
<td></td>
<td>Muscles of pharynx</td>
</tr>
<tr>
<td>i. Superior laryngeal n.</td>
<td></td>
<td></td>
<td>Laryngeal mucosa</td>
</tr>
<tr>
<td>XI Spinal accessory</td>
<td>Bulbar from medulla; spinal from spinal cord</td>
<td>Jugular for.</td>
<td>Cleidomastoid, sternomastoid and trapezi-al mm.</td>
</tr>
<tr>
<td>XII Hypoglossal</td>
<td>Medulla</td>
<td>Hypoglossal canal</td>
<td>Muscles of tongue</td>
</tr>
</tbody>
</table>
The eye and its appendages

The orbit The orbit occupies a large part of the total skull volume. The walls of the orbit are made up of the frontal, lacrimal, sphenoid, palatine, zygomatic and maxillary bones.

The orbital ligament which joins the frontal and zygomatic processes completes the lateral closure of the orbit. These processes seldom have a gap more than 6 or 7 mm. between their tips. The tips may become fused with age as seen in a 14 year old cat in Figure 9.

The periorbita is a very strong dense tissue, which separates the contents of the orbit from the surrounding tissue. Anteriorly it blends with the periosteum of the orbital opening and fuses with the orbital ligament. Posteriorly it attaches in the region of the optic foramen.

The optic foramen is located in the anterior-dorsal part of the sphenoid bone. It is the pathway for the optic nerve, internal ophthalmic artery and an internal ethmoidal artery. The orbital fissure is located posteriorly and ventral to the optic foramen. It is the largest of the 4 posterior foramina of the orbit, and is the pathway for the 3rd, 4th and 6th cranial nerves; ophthalmic division of the 5th nerve and three or four arteries from an internal rete. Lateral to the orbital fissure is the foramen rotundum through which passes the maxillary division of the 5th
nerve. Caudal and slightly lateral to this is the foramen ovale through which passes the mandibular nerve. Two foramina are found in the palatine bone. The larger is the sphenopalatine and transmits the nerve, artery and vein of the same name. Ventrally and forward is the caudopalatine foramen which transmits the major palatine nerve and artery.

In the anterior portion of the orbit are the ethmoidal, infraorbital and alveolar foramina. Almost at the rim of the orbit is the small nasolacrimal fossa and the nasolacrimal canal.

Extraocular muscles The basic extraocular muscle pattern (Figure 24) is similar to all other mammals; four recti, the retractor oculi (divided into 4 distinctly separate parts) and the two obliques.

Retractor oculi

1. Origin - medial wall of orbital fissure

2. Insertion - 2 on either side of superior rectus and 2 on either side of inferior rectus

3. Innervation - abducens n. (VI)

4. Function - retract globe

Dorsal oblique

1. Origin - dorsal to optic foramen

2. Insertion - by tendinous attachment between superior and lateral rectus. After passing through trochlea on medial wall near the orbital margin, the tendon
Figure 24. Extraocular muscles of the eye; medial, posterior and lateral views

Figure 25. Oblique section through the head showing the eye
makes an angle of 80° to 90° with the muscle body and then passes below the tendon of the dorsal rectus (Tenon's capsule) and inserts 2-3 mm. beyond this.

3. Innervation - trochlear nerve (IV)

4. Function - a rotatory muscle

Ventral oblique

1. Origin - between caudopalatine and alveolar foramina

2. Insertion - at ventral edge of lateral rectus insertion and perpendicular to it, after passing between the inferior rectus and Tenon's capsule

3. Innervation - oculomotor nerve (III)

4. Function - a rotatory muscle

Dorsal rectus (smallest of the four recti)

1. Origin - apex of orbit

2. Insertion - dorsal aspect of globe is approximately 7 mm. from limbus

3. Innervation - oculomotor nerve

4. Function - primarily elevation

Ventral rectus

1. Origin - apex of orbit

2. Insertion - ventral sclera

3. Innervation - oculomotor nerve

4. Function - primarily depression or movement of eye ventrally in a vertical plane
Lateral rectus
1. Origin - apex of orbit
2. Insertion - lateral sclera
3. Innervation - abducens
4. Function - pulls eye laterally

Medial rectus
1. Origin - apex of orbit
2. Insertion - medial sclera
3. Innervation - oculomotor nerve
4. Function - pulls eye medially

Levator palpebrae superioris (a muscle of the eyelid)
1. Origin - just dorsal to dorsal rectus
2. Insertion - upper eyelid
3. Innervation - oculomotor
4. Function - raise upper lid

Nictitans The nictitans or 3rd eyelid (Figure 25) is quite thick and active. It is capable of extending at least two-thirds of the distance across the cornea. Its free margin is usually pigmented and there is a sharp turn toward the cornea at the tip. The cat's third eyelid is operated by the action of the retractor oculi muscle as it retracts the globe back into the orbit and extrudes the fat and connective tissue around it.

Lymphatic nodules and lymphoid tissue are located on the inner surface of the nictitans beneath the stratified
squamous epithelium. The base of the nictitans cartilage is buried within the extensive nictitans gland which is located primarily on the palpebral side of the cartilaginous plate. The cat does not have a Harder gland. The acini of the nictitans gland are of the serous type.

Lacrimal gland The periorbita divides to enclose the rather small lacrimal gland (Figure 31). Histologically it is a serous gland and difficult to differentiate from a serous secreting salivary gland.

Infraorbital gland The infraorbital (zygomatic) gland (Figure 26 and 31) is an ovoid glandular mass situated on the ventral floor of the lateral part of the orbit. It is located under and outside of the ocular sheath. It is about one centimeter long and one-third as thick. Its ventral end rests against the mucosa of the mouth in the angle formed by the posterior border of the horizontal portion of the palatine bone and the lateral surface of the external pterygoid muscle. The duct of the gland leaves the ventral end and opens into the mouth at a point about three millimeters behind the upper molar tooth. The duct is short and very small in diameter.

The infraorbital gland is composed of mucous acini. Serous acini and serous demilunes could not be demonstrated. There is some interlobular connective tissue in the gland. Basket cells were found between the epithelium of an acinus
Figure 26. Zygomatic gland in orbit

Figure 27. Eye, showing contracted and dilated pupil
and its basement membrane. The basket cells were very nicely demonstrated with a special stain.

The stains for mucin were very successful. Each acinus appears to be filled with a homogenous mass of mucin. It very much resembles the gross appearance of saliva.

Grossly, the gland is small in comparison to the one found in the dog. Its appearance resembles that of the posterior part of the sublingual gland (Figure 31).

Eyelids The eyelids in the cat are rather short and thin. The meibomian ducts are situated in a shallow groove close to the lid margins. The puncta lacrimalia are two tiny openings on the lid margins where the eyelids meet at the medial commissure. They are the orifices of the lacrimal ducts which drain into the lacrimal sac. The nasolacrimal duct is a continuation of the lacrimal sac and empties into the ventral meatus.

Globe The globe (eyeball) is located in the anterior part of the orbit and to a great extent fills the orbit. It is approximately 20 mm. in all diameters and is only slightly variable in all breeds except the Siamese cat in which the globe can be larger and longer in its transverse axis.

The eyeball consists of 3 layers which enclose 3 refractive media (Figure 25). The first layer is fibrous and contains the sclera and the cornea. The second layer
is pigmented and contains the choroid, the ciliary body and the iris. The third layer is nervous and contains the retina. The refractive media are the aqueous humor, the vitreous humor and the lens.

The cornea comprises about 30% of the outer coat of the eyeball, this large area is typical of nocturnal animals and permits the entry of a maximum amount of light into the eye.

The anterior surface of the iris is generally a golden yellow, greenish yellow or blue color. The pupil is a vertical slit when constricted but when dilated the horizontal meridian expands to produce a circular pupil (Figure 27). This is unlike the big wild cats which have circular pupils both during dilation and contraction.

The retina is composed of 10 layers. One of these 10 layers is composed of rods and cones, the rods are extremely sensitive and used for vision in low illumination, while cones require bright light. The cat has almost an all rod retina. The cones are concentrated around the macula (area centralis), a spot of high visual acuity on the retina 3 mm. lateral to the optic disc.

Prince et al. (1960) reports that the cat has a high percentage of non-decussating fibers in its optic nerves, and about 30% of them remain on the ipsilateral side of the head. This suggests a slightly higher degree of binocular development than in the dog.
A transparent colorless mass, the vitreous, fills the posterior cavity of the globe. Once vitreous is lost it is not replaced by normal vitreous. However, the aqueous humor of the anterior chamber of the eye is replaced when lost.

Vascular system The cat has an unusual origin for its orbital and ocular arterial supply. The ophthalmic artery originates in the anterior region of the circle of Willis, passes through the optic foramen and joins the larger ciliary artery close to the optic nerve. The main blood supply to the eye is derived from the internal maxillary artery which is a continuation of the external carotid artery. It passes below the postglenoid process and below the foramen rotundum to form what is known as the external rete, a vascular network, which gives off most of the orbital arteries. The eight main arterial branches that arise from the rete and the internal maxillary artery to serve the eye and the orbit are the ciliary, an internal and external ethmoidal, the zygomatic, the lacrimal, the muscular, an anastomosing branch with the circle of Willis, and the anterior deep temporal arteries.

The venous return from the orbit is complicated and generous. The supraorbital and inferior orbital veins are the two main venous channels within the orbit. The two dorsal vortex veins join the supraorbital while the ventral
vortex veins drain into the inferior orbital vein. The supraorbital, after being joined by the ethmoidal vein, drains posteriorly into the external rete or anteriorly; it becomes the angular vein which finally drains into the facial vein. The infraorbital veins pass posteriorly into the rete and anteriorly into the facial vein.

The external rete is more venous than arterial. Posteriorly it is drained primarily by the ophthalmic vein. The ophthalmic vein is joined by the superficial temporal vein below the ear and drains into the external jugular vein.

The lacrimal veins join the external rete while the ciliary veins follow the optic nerve and leave the orbit through the optic foramen.

Surgical considerations The following is a list of procedures of particular significance in the eye and its appendages:

1. Operations on the lids:
 a. Repair of entropion
 b. Repair of ectropion
 c. Epilation (for trichiasis)
 d. Canthotomy
 e. Excision of 3rd eyelid
 f. Removal of lymphoid tissue of the 3rd eyelid
 g. Repair of deficient eyelids
2. Operations on the eye proper:
 a. Enucleation
 b. Cauterizing corneal ulcer
 c. Paracentesis
 d. Conjunctival keratoplasty
 e. Cataract removal (not common in cats)
 f. Ocular foreign bodies
 g. Dermoid ectomy
3. Removal of neoplasms
4. Subconjunctival injections
5. Irrigating the naso-lacrimal duct

Auditory apparatus

External ear The external ear (Figure 16) consists of the auricula or pinna and the external acoustic meatus. The funnel-like organ collects sound waves and the external acoustic meatus transmits these waves to the tympanic membrane which separates the canal from the middle ear.

The external acoustic meatus of the cat is in the shape of an inverted truncated cone. It is formed by two cartilages, auricular or conchal and annular. The latter overlaps the osseous external acoustic process with which it forms an articulation by means of ligamentous tissue. The epithelium which lines the ear canal is a continuation of the skin and is attached to the cartilages by a thin layer
of connective tissue. The proximal termination of the external ear canal is marked by many ridges and prominences in the conchal cartilage. The term "external acoustic meatus" refers to that portion of the ear distal to the tympanic membrane and proximal to the cartilaginous folds.

The ear receives its arterial blood from the great auricular artery and the anterior auricular artery. The great auricular artery is a branch of the external carotid artery and the anterior auricular artery is a branch of the superficial temporal artery. The three larger branches of the great auricular artery are termed the medial, intermediate and lateral auricular rami. These branches ramify on the convex face of the concha. They anastomose with each other and the anterior auricular artery.

Middle ear The middle ear is an ellipsoidal cavity within the tympanic bulla. When the medial wall is removed, a bony partition can be seen (Figure 16). This plate of bone extends in from the lateral wall of the bulla, forming a complete partition except at the caudal-dorsal part, where a foramen in the plate forms a free communication between the two chambers.

The eustachian tube is a cartilaginous tube about one and a half to two centimeters long, passing between the nasopharynx and the middle ear.

Sound vibrations are carried from the tympanic membrane across the cavity of the middle ear to the internal ear by
the auditory ossicles; malleus, incus and stapes. The handle of the malleus (Figure 9) runs across the dorsal third of the inner surface of the tympanic membrane. It is firmly attached to the membrane and by pulling on it forms a cone with the apex of the cone directed medially.

Internal ear The internal ear is contained within the petrosal part of the temporal bone between the middle ear and the cranium. It consists of a membranous labyrinth contained within an osseous labyrinth. The membranous labyrinth is made up of the semicircular canals, the sacculus and utriculus occupying the vestibule and the cochlea. The above are filled with endolymph. Perilymph occupies the space between the membranous labyrinth and the osseous labyrinth.

Surgical considerations The surgical considerations of the ear are:

1. Lacerations
2. Aural hematoma
3. Resection of the lateral wall of the external ear canal
4. Removal of polyps and tumors and foreign bodies from the ear canal
5. Bleeding from the ear vein
6. Neoplasms
7. Establishment of eustachian tube patency
Nose

External nose The external nose (Figure 26) is supported by a movable cartilaginous framework. Two thin cartilaginous wings form the dorsal and lateral walls of the nostril. The apical portion of the nose (planum nasale) is usually heavily pigmented, tough and moist.

Nasal cavity The nasal cavity is divided into right and left halves by the nasal septum and is separated from the mouth by the hard palate. Almost the entire space of the nasal cavity is filled by the nasoturbinate, maxillo-turbinate and ethmoturbinates (Figure 15). The cavity is further divided by the turbinates into dorsal, middle, ventral and common nasal meatuses. The ethmoturbinates or medial concha are well developed and folded whereas the maxilloturbinate or ventral concha is relatively small and simply constructed. The turbinate portion of the ethmoid is more extensive in the cat than in the dog.

Paranasal sinuses Besides a maxillary recess, cats reveal as paranasal sinuses, one frontal sinus (Figure 17) and one sphenoid sinus (Figure 14) on each side.

The paranasal sinuses are diverticulae of the nasal cavity and contain air. The frontal sinus is relatively smaller in the cat than in the dog. In the cat the frontal sinus of each side is a single compartment which has one entry on each side into the superior ethmoid meatus.
Surgical considerations A checklist of procedures and conditions would include:

1. Abcesses
2. Removal of tumors and nasal polyps
3. Trephining
4. Fractures
5. Sinusitis
6. Passing stomach tube by way of the nose
7. Foreign body removal
8. Chronic rhinitis

The mouth and associated structures

The mouth (os) or in a broader sense the oral cavity (cavum oris) is the beginning of the alimentary canal, but also communicates with the respiratory system. The oral fissure (rima oris) is located between the lips. The surfaces of the oral cavity, except the teeth, are covered by stratified squamous epithelium. The mucosa of the mouth reflects the general health of the cat during a physical examination. The tongue occupies the floor of the mouth and when the mouth is closed it nearly fills the oral cavity proper.

Palate The palate (Figure 28) is a bony and membranous partition dividing the nasal and oral cavities. The hard palate is nearly flat and several ridges and depressions cross it transversely on the oral side. The soft
palate forms the posterior part of the roof of the mouth. It is very long in the cat.

Tonsil The palatine tonsil (Figure 28), a small thin lymph node, is located posterior to the soft palate in the lateral wall of the pharynx. The tonsils are important clinically and are not easily seen unless they are inflamed and protruding from the tonsillar sinus.

Pharynx The mouth communicates with the pharynx through the isthmus faucium. The pharynx, the common passageway for food and air extends posteriorly to the esophagus and larynx. The relationship of the epiglottis, larynx and esophagus is important (Figure 29). The esophagus is located dorsal to the larynx. When passing the stomach tube in the cat, the tube must pass over the epiglottis and into the esophagus. When passing an endotracheal tube the epiglottis must be pulled forward and the tube passed ventrally through the laryngeal inlet.

Teeth At birth the cat has no teeth. When the kitten is two to three weeks old the teeth begin to erupt through the gums. Usually by six weeks of age the entire set of twenty-six deciduous teeth are in place. These teeth are later replaced by the permanent set when the cat has reached the age of four to five months. The formula for the permanent dentition of the cat is:

\[2(1^2)^3 \text{ C } 1 \text{ P M } 1^1 \text{ M } 3^2 \text{ M } 1^1 = 30 \]
Figure 28. Roof of mouth

Figure 29. Tongue and larynx, dorsal aspect
Incisors
Canine
Hard palate
Premolars I, II, and III
Molar I
Palatine ridges
Polatine tonsils
Soft palate
Hyoid bone
M. masseter
Nasopharynx

Filiform papillae
Fungiform papillae
Area of foliate papillae
Vallate papillae
Median sulcus
Soft palate (cut)
Epiglottis
Palatine tonsil
Esophageal orifice
Laryngeal orifice
Salivary glands

There are five pairs of salivary glands (Figures 30 and 31) the ducts of which open into the mouth. These are the parotid, mandibular, sublingual, molar and infraorbital glands.

The parotid gland, a flattened, slightly lobulated structure, lies ventral to the external acoustic meatus. Its anterior border overlaps the posterior border of the masseter muscle and its ventral border approximates the dorsal border of the mandibular gland. The parotid duct is formed by the union of several small ducts near the ventral end of the anterior border of the gland. It passes anteriorly in the fascia of the masseter muscle and opens on the inside of the cheek opposite the most prominent cusp of the last premolar tooth.

The mandibular gland lies ventral to the parotid, at the caudal edge of the masseter muscle. Its duct passes under the mylohyoid and digastric muscles parallel to the mandible to open on a papilla located posterior to the incisor teeth at the side of the anterior border of the frenulum of the tongue.

The sublingual gland is an elongated conical structure that appears to be a continuation of the mandibular gland. Its duct runs parallel to the duct of the mandibular gland and opens on the medial side of the same papilla.
Figure 30. Face and neck, lateral aspect

Figure 31. Salivary glands of the cat

(Included here is the lacrimal gland which is not a salivary gland, although it is a serous gland and difficult to differentiate histologically from a serous secreting salivary gland)
Superficial temporal artery and vein
M. temporalis
Auriculopalpebral nerve
Dorsal buccal nerve
M. masseter
Ventral buccal nerve
Facial vein
Buccal gland
External maxillary vein
M. mylohyoideus
Transverse vein
M. sternohyoideus
Parotid gland
Great auricular vein
Mandibular gland
Mandibular lymph nodes
External jugular vein
Porotid duct
Mandibular gland
Mandibular lymph nodes
External jugular vein
Porotid gland
Lacrimal
Intraorbital
Molar (Buccal)
Mandibular
Polystomatic part
Monostomatic part
Sublingual
The molar gland lies between the skin and the mucosa of the lower lip. It has several ducts which pass through the cheek and open on the mucosa of the mouth.

The infraorbital gland was discussed on page 102 under the eye.

Surgical considerations A check list of surgical procedure would include:

1. Exodontia
2. Cleaning teeth
3. Maxillary nerve block (Figure 19)
4. Mandibular alveolar nerve block (Figure 18)
5. Tonsillectomy
6. Salivary cyst
7. Passing the stomach tube
8. Intubation of trachea
9. Neoplasms

Neck

Cervical vertebrae There are seven cervical vertebrae. The atlas, or first cervical vertebra and the axis, or second cervical vertebra, are modified from the typical vertebrae. The body of the atlas (Figure 32) is reduced, it has no spinous process, and it has prominent wings. The axis (Figures 33 and 34) has a prominent spinous process. It is further characterized by a cranoventral projection, the dens or odontoid process.
Figure 32. Atlas, caudal dorsal aspect
1. Alar notch
2. Dorsal arch
3. Caudal articular surface
4. Intervertebral foramen
5. Wing of atlas
6. Transverse foramen

Figure 33. Axis, lateral aspect
1. Spinous process
2. Odontoid process (dens)
3. Cranial articular surface
4. Transverse foramen
5. Transverse process

Figure 34. Atlas and axis, dorsal aspect
1. Wing of atlas
2. Intervertebral foramen
3. Alar notch
4. Caudal end of spinous process
The other cervical vertebrae have a typical structure; a vertebral foramen, spinous process, ventral spine, anterior and posterior articular processes and transverse processes. The first cervical disc is located between the axis and the third cervical vertebrae. An intervertebral disc consists of an annulus fibrosus, an outer fibrous ring, which surrounds the nucleus pulposus, a central soft pulp. A herniated disc is one in which the nucleus pulposus has escaped from the annulus fibrosus. It may press dorsally on the spinal cord or laterally on a spinal nerve. It may rupture ventrally causing no symptoms. The intervertebral disc syndrome does not occur frequently in the cat. Dorsal protrusions occur most often in the cervical region and in the region between the 10th thoracic vertebra and the sacrum. Ventral protrusions were found between T10 and S1 and only occasionally in the cervical region. The presence of the conjugal ligament explains the rarity of dorsal protrusions from the first nine thoracic discs (King and Smith, 1960b).

Hyoid apparatus The hyoid apparatus (Figure 40) acts as a suspensory mechanism for the tongue and larynx. It attaches to the tongue and larynx ventrally and the skull dorsally. It consists of a single body the basihyoid, and the paired thyrohyoid, keratohyoid, epihyoid and stylohyoid bones, and the tympanohyoid cartilages.

Larynx The larynx (Figure 35-39) is formed by three unpaired cartilages, the thyroid, cricoid and epiglottic,
Figure 35. Epiglottis, laryngeal and oral surface

Figure 36. Thyroid cartilage lateral and ventral aspect

Figure 37. Cricoid cartilage, lateral and cranial aspect

Figure 38. Arytenoid cartilage, medial and lateral aspect
125

[Diagrams showing various anatomical structures labeled with terms such as Apex, Laryngeal surface, Oral surface, Linea obliqua, Rostral cornu, Corpus, Incluera thyroides caudalis, Caudal cornu, Processus muscularis, Lemina, Facies articularis arytenoidea, Arcus, Facies articularis thyroidae, Facies articularis cricoidea.]
Figure 39. Larynx, sagittal section

Figure 40. Hyoid apparatus
and two paired cartilages, the arytenoids. The thyroid cartilage (Figure 36) forms the middle portion of the laryngeal skeleton and is open dorsally. The cricoid cartilage is formed like a ring. It articulates with the first tracheal wing posteriorly and the arytenoids and thyroid cartilage anteriorly.

The feline larynx has a very sensitive mucous membrane. Stimulation of this membrane will produce coughing and even laryngospasm. Cats will often cough under light anesthesia even without stimulation.

The vocal folds (true vocal cords) extend from the dorsal surface of the thyroid cartilage to the vocal process of the arytenoid cartilage. The slit-like aperture between the two vocal folds is called the glottis.

The ventricular folds (false vocal cords) are two folds of mucous membrane extending ventrodorsally from the thyroid to the arytenoid cartilages. There is a shallow laryngeal ventricle between the true and false vocal cords as compared to the deep laryngeal saccule in the dog. The vocal folds are removed in cats with an annoying and exceptionally loud voice. The loud voice is most characteristic in the Siamese.

Trachea and associated structures The trachea (Figure 41) and esophagus are closely related all along the neck. Each tracheal cartilage is incomplete dorsally where it lies against the esophagus. As a result of this the diameter of
Figure 4.1. Ventral dissection of the neck
the trachea can be increased and diminished. The lateral surfaces of the trachea are covered by the thyroid gland. The carotid artery, vagus and sympathetic nerves and the internal jugular vein pass together in close relation to the trachea.

The thyroid glands are long, flat, ellipsoid lobes. They may or may not be joined by a very narrow glandular isthmus over the ventral aspect of the trachea. They lie on the lateral surfaces of the trachea below the esophagus and just behind the larynx. They measure about 0.3 cm. wide, 2.0 cm. long and 0.5 cm. deep.

The external jugular vein (Figure 41) is commonly used to collect blood from the donor cat. It is formed by the junction of the external maxillary (anterior facial) and the internal maxillary (posterior facial) veins.

Surgical indications The surgical indications are:

1. Thyroidectomy
2. Parathyroidectomy
3. Tracheotomy
4. Intravenous puncture of the external jugular vein
5. Esophagotomy
6. Carotid artery ligation or cannulation
7. Vagus neurectomy
8. Fractured cervical vertebrae
9. Cervical cord damage
10. Removal of vocal folds
Thorax

The thorax (Figures 42-47) contains important organs of respiration, circulation and digestion. Its ventral wall is formed by the sternum and the ventral portions of the ribs (Figure 48). The lateral walls are formed by the ribs and the posterior wall is made up of the thirteen thoracic vertebrae (Figures 49-51) and the ribs as far as their angles.

The thorax is closed anteriorly at the thoracic inlet, between the first pair of ribs and is separated from the abdominal cavity posteriorly by the diaphragm.

Ribs and sternabrae

The cat's thirteen ribs (Figure 48) are either attached to the sternum by costal cartilages (sternal ribs) or their costal cartilage contributes to form the costal arch (astral ribs). There are eight sternabrae. The eighth and ninth ribs are attached close together at the junction of the seventh and eighth sternebrae.

Trachea and bronchi

The thoracic portion of the trachea bifurcates to form the primary bronchi. The right bronchus divides into four and the left into three main intrapulmonary branches.

As the bronchi branch they become smaller and the cartilaginous rings become less complete. The bronchi
<table>
<thead>
<tr>
<th>Number</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Right auricle</td>
</tr>
<tr>
<td>2</td>
<td>Left auricle</td>
</tr>
<tr>
<td>3</td>
<td>Right ventricle</td>
</tr>
<tr>
<td>4</td>
<td>Left ventricle</td>
</tr>
<tr>
<td>5</td>
<td>Left coronary artery</td>
</tr>
<tr>
<td>6</td>
<td>Apex of heart</td>
</tr>
<tr>
<td>7</td>
<td>Pulmonary artery</td>
</tr>
<tr>
<td>8</td>
<td>Bronchi</td>
</tr>
<tr>
<td>9</td>
<td>Pulmonary vein</td>
</tr>
<tr>
<td>10</td>
<td>Diaphragm</td>
</tr>
<tr>
<td>11</td>
<td>Posterior vena cava</td>
</tr>
<tr>
<td>12</td>
<td>Anterior vena cava</td>
</tr>
<tr>
<td>13</td>
<td>Internal thoracic artery</td>
</tr>
<tr>
<td>14</td>
<td>Left common carotid artery</td>
</tr>
<tr>
<td>15</td>
<td>Right common carotid artery</td>
</tr>
<tr>
<td>16</td>
<td>Trachea</td>
</tr>
<tr>
<td>17</td>
<td>Phrenic nerve</td>
</tr>
<tr>
<td>18</td>
<td>Vagus nerve</td>
</tr>
<tr>
<td>19</td>
<td>Left subclavian artery</td>
</tr>
<tr>
<td>20</td>
<td>Sympathetic trunk</td>
</tr>
<tr>
<td>21</td>
<td>Intercostal vessels</td>
</tr>
<tr>
<td>22</td>
<td>Thoracic aorta</td>
</tr>
<tr>
<td>23</td>
<td>Esophageal artery</td>
</tr>
<tr>
<td>24</td>
<td>Esophagus</td>
</tr>
</tbody>
</table>
Figure 43. Thoracic cavity, right side

1. Anterior vena cava
2. Posterior vena cava
3. Auricle of right atrium
4. Right ventricle
5. Internal thoracic artery
6. Thymus
7. Axillary artery
8. Subclavian artery
9. Stellate ganglion
10. Sympathetic trunk
11. Trachea
12. Bronchial lymph nodes
13. Vena azygous
14. Esophagus
15. Vagus nerve, right dorsal branch
16. Intercostal vein
17. Intercostal artery
18. Aorta
19. Mediastinal or third lobe of right lung
20. Phrenic nerve
21. Third lobe of left lung
22. Diaphragm
23. Pulmonary veins
Figure 44: Normal radiographic anatomy of figure 45
Figure 45. Radiograph, ventrodorsal view of thorax of adult cat
Figure 46. Normal radiographic anatomy of figure 47
Figure 47. Radiograph, recumbent position, left lateral view of thorax of adult cat
Figure 48. Ribs and sternum, lateral aspect
Figure 49. Second thoracic vertebra, caudal aspect

1. Spinous process
2. Caudal articular surface
3. Transverse process
4. Body

Figure 50. Second thoracic vertebra, left lateral aspect

1. Mammillary process
2. Costal fovea of transverse process
3. Cranial costal fovea
4. Spinous process
5. Caudal costal fovea

Figure 51. Thoracic vertebra (10, 11 and 12) lateral aspect

1. Spinous process
2. 10T
3. Accessory process
4. 12T
5. 11T, antclinal vertebra
divide into bronchioles and the bronchioles terminate in alveolar ducts which lead to small air sacs or alveoli.

Mediastinum

The thoracic cavity is divided in the sagittal plane by the mediastinum which is composed of connective tissue and pleura. All of the thoracic viscera, except the lungs, are contained in the mediastinum. Parietal pleura covers the inner surface of the thoracic cavity. It reflects into the mediastinum and is continuous with the visceral pleura of the lung at the hilus.

Lungs

The right lung (Figures 52 and 53) is larger and is subdivided into four lobes. The left lung is subdivided into three main lobes. An extra sheet of mediastinum between the sternum and posterior vena cava partially surrounds the right third lobe which is known variously as the mediastinal, intermediate or azygos lobe. Both the right and left lung have an apical, cardiac and diaphragmatic lobe.

Pericardium

The pericardium is a fibroserous sac located in the mediastinum enclosing the heart. It is divided into an outer fibrous and an inner serous part. The fibrous pericardium is entirely parietal, but the serous has both visceral and parietal layers. The parietal portion is closely
Figure 52. Lung, costal face or lateral aspect

Figure 53. Lung, mediastinal face or medial aspect
adhered to the fibrous layer but the serous layer can be easily dissected free from the heart wall.

Heart

With the pericardium open the heart (Figures 54 and 55) presents the atria at its base and the ventricles at its apex. The apex faces ventrocaudally and to the left, while the base faces dorsocranially. Radiographs show that variations in position occur among individuals. The atria are the blood receiving chambers and the ventricles are the blood pumping chambers. The heart extends from the fourth or the fifth to the eighth rib and its apex touches the diaphragm. The prevalence of heart disease in cats is very low.

Blood vessels

The brachiocephalic (innominate) artery is a single artery (Figure 56). It gives off the right subclavian artery which then divides into the right and left common carotid. The left subclavian comes off of the aortic arch separately. The branches of thoracic aorta are:

1. Right and left coronary arteries
2. Brachiocephalic artery
3. Mediastinal artery
4. Left subclavian artery
5. Intercostal arteries (10)
Figure 54. Heart, left side, lateral aspect

Figure 55. Heart, right side, lateral aspect
Figure 56. Blood vessels of thorax
External jugular vein
Internal jugular vein
Common carotid artery
Right subclavian artery and vein
Left subclavian artery and vein
Brochialcaphalic artery
Anterior vena cava
Azygos vein
Pulmonary artery
Posterior vena cava
Aorta
Intercostal veins
Intercostal arteries
Diaphragm
6. Bronchial arteries (2)
7. Esophageal arteries (2-4)

The omocervical axis in the dog is termed the thyrocervical axis in the cat. A mediastinal artery is described in the cat and not in the dog. The bronchials may arise from the intercostals as well as from the aorta in both the dog and cat.

Thoracic duct

The thoracic duct is a very thin-walled structure, nearly unrecognizable unless filled with chyle. Chyle gives the duct a white appearance. The duct is located dorsal and parallel to the aorta and ventral to the azygous vein. The beginning of the thoracic duct is formed by the cisterna chyli, which is located just posterior to the diaphragm and adjacent to the aorta.

The duct follows the aorta coming to lie on its left side and finally unites with the lymphatics from the head and forelimb. It enters the external jugular vein near the point of entry of the subclavian vein.

Rupture of the thoracic duct has been diagnosed (Graber, 1965; Patterson and Munson, 1958) and repaired surgically by thoracotomy and complete ligation of the duct at its entrance into the thorax.
Diaphragm

This musculotendinous dome-shaped partition is located between the abdominal and thoracic cavities (Figure 57). Its anterior surface is convex while its posterior surface is concave to fit over the convexity of the liver. The dorsal end is farther caudal than the ventral.

Insertion The circumferential part of the diaphragm is muscular, and these muscle fibers curve inward and centrally from the periphery to join the edges of an aponeurotic sheath called the central tendon. This strong tendon acts as the site of insertion for the diaphragm. The tendon is thin and irregularly crescent-shaped, with the horns of the crescent prolonged as two tendinous bands which end in two triangular membranous portions of the diaphragm, covering the retractor costal muscles.

Origin The origin of the diaphragm is quite extensive and is best divided into three parts: sternal, costal and lumbar. The sternal origin consists of fibers from the caudal aspect of the xiphoid process. The fibers pass upward and forward to the ventral margin of the central tendon where they insert.

The costal origin arises from the medial surface of the last six ribs or their cartilages, interdigitating with the costal origin of the transversus abdominis muscle. The fibers insert into the lateral and ventral borders of the central tendon.
Figure 57. Diaphragm abdominal view
The lumbar origin or crura are long tapering bundles which are fleshy cranially and tendinous caudally. The crura are asymmetrical, the right crus is larger and a large part of it lies on the left side of the median plane. They arise caudally from a single dense tendon which is attached to the ventral surface of the bodies of the second, third and fourth lumbar vertebrae. The medial fibers of the two crura decussate ventral to the aortic hiatus; the fibers of the right crus encircle the esophageal hiatus. Both crura ascend cranially and join the dorsal border of the central tendon.

Nerves The diaphragm is innervated by the right and left phrenic nerves. They first pierce the muscle and then supply it on its abdominal surface.

Vessels The arteries that supply it are the phrenic, musculophrenic and the intercostals. The phrenic veins arise from the muscular portion and form tributaries which run along the horns of the central tendon and empty into the posterior vena cava anterior to the hepatic veins at the caval opening.

Foramina The diaphragm contains three large apertures. The aortic hiatus is most dorsal and located left to the median plane between the two crura. The aorta, thoracic duct and azygous vein pass through this orifice. The right crus covers the thoracic duct and azygous vein. The
esophageal hiatus is located in the right crus dorsal to the central tendon in the medial plane. This opening is located ventral to the tenth thoracic vertebra. In addition to the esophagus it transmits vagal nerve trunks and esophageal vessels. The caval foramen is about three-fourths of an inch to the right of the median line ventrolateral to the esophagus. It is located at the junction of the tendinous and muscular parts of the right side. The posterior vena cava passes through the opening along with some branches of the right phrenic nerve and a few lymph vessels from the liver.

Surgical considerations
Congenital diaphragmatic hernia in the cat generally occupies the position normally filled by the central tendon. Hernias, resulting from accidental injury, occur usually on the right side. Diaphragmatic repair may be accomplished through abdominal, thoracic, thoraco-abdominal or transthoracic incisions (Figure 58).

The abdominal approach is most commonly used. The incision extends caudad from the xiphoid process. The thoracic or lateral approach does not require rib resection. The incision may be placed in the 8th intercostal space and extend from the arch of the rib to the sternum. The opening in the diaphragm is closed by suturing the free or torn edge of the diaphragm to the lateral intercostal
Figure 58. Approaches to diaphragm
Lateral Thoracic Approach

Transthoracic Approach

Abdominal Approach

Thoraco-abdominal Approach
muscles. The thoraco-abdominal and the transthoracic incisions are made for more extensive exposure of the surgical field. The thoraco-abdominal approach is started with an abdominal incision which is continued craniad through the center of the sternum to the level of the 6th or 7th rib. The transthoracic approach utilizes a long ventral incision which extends through the sternum and into both the left and right 7th intercostal spaces.

Surgical considerations The surgical considerations, other than diaphragmatic hernia, are:

1. Thoracentesis
2. Cardiac paracentesis
3. Lobectomy
4. Correction of persistent right aortic arch
5. Esophageal dilatation
6. Fractured vertebrae
7. Fractured ribs
8. Fractured sternum
9. Thoracic cord injury
10. Repair of ruptured thoracic duct
Abdomen and Pelvis

The lumbar, sacral and coccygeal vertebrae furnish bony structural support to the abdomen (Figures 59-64). There are seven lumbar, three sacral and 18-26 coccygeal vertebrae.

The lumbar vertebrae (Figures 65-67) are characterized by transverse processes directed laterally and forward. In addition to the transverse processes they possess a spinous process, accessory processes, articular processes and mamillary processes. The lateral wall of the vertebrae is termed the lamina. When the surgeon performs a laminectomy he is exposing the spinal cord by cutting away this bony lamina.

The three sacral vertebrae fuse in the adult to form the sacrum (Figures 68-72). The average number of coccygeal vertebrae (Figure 73) is usually twenty-two. The cranial vertebrae conform most typically to a typical vertebra, however they rapidly loose their articular processes. The caudal segments are reduced to simple rods resulting in great flexibility of the tail.

The lumbosacral space is an important site for epidural anesthesia (Figure 76). The injection is extradural. In the cat the spinal cord terminates at the last sacral vertebra.
Figure 59. Abdomen, lateral view, left side

Figure 60a. Abdomen, lateral view, right side

Figure 60b. Abdomen, ventral view
Figure 61. Normal radiographic anatomy of figure 62.
Figure 62. Radiograph, ventrodorsal view of adult cat.
Figure 63. Normal radiographic anatomy of figure 64
Figure 64. Radiograph, recumbent position, left lateral view of abdomen of adult cat
Figure 65. First lumbar vertebra, cranial lateral aspect

1. Caudal articular process
2. Accessory process
3. Mammillary process
4. Spinous process
5. Cranial articular process
6. Body

Figure 66. Fifth lumbar vertebra, dorsal aspect

1. Transverse process
2. Spinous process
3. Cranial articular surface
4. Mammillary process
5. Caudal articular process
6. Accessory process

Figure 67. Seventh lumbar vertebra, caudal aspect

1. Spinous process
2. Vertebral foramen
3. Body
4. Cranial articular surface
5. Caudal articular surface
6. Transverse process
Figure 68. Sacrum, ventral aspect
1. Wing
2. Pelvic sacral foramina
3. Caudal articular surface

Figure 69. Sacrum, dorsal aspect
1. Cranial articular surface
2. Spinous process
3. Transverse process

Figure 70. Sacrum, lateral aspect
1. Caudal articular process
2. Spinous process
3. Cranial articular process
4. Area for articulation with ilium

Figure 71. Sacrum, cranial aspect
1. Spinous process
2. Vertebral foramen
3. Base

Figure 72. Sacrum, caudal aspect
1. Spinous process
2. Area for articulation with ilium
Caudal articular process
Cranial articular process
Cranial transverse process
Caudal transverse process

Figure 73. Normal radiographic anatomy of figure 74
Figure 74. Radiograph, left lateral view of tail of adult cat
Figure 75. Pelvis, dorsal aspect

1. Ischiatic tuberosity
2. Lesser ischiatic notch
3. Greater ischiatic notch
4. Wing of ilium
5. Ischiatic tuberosity
6. Dorsal foramina of sacrum
7. Sacro-iliac joint

Figure 76. A site for epidural injection in the cat

1. Lumbosacral space
2. Sacrum
3. Seventh lumbar vertebra
The abdominal muscles (external abdominal oblique, internal abdominal oblique, transverse abdominus and rectus abdominus) furnish major support to the abdominal viscera. An umbilicus, located on the ventral midline, is the site for an umbilical hernia. These hernias are quite common in kittens and are corrected surgically.

Linea alba

The linea alba is a median fibrous raphe extending from the xiphoid cartilage to the symphysis pelvis. It serves as the main insertion of the transverse abdominal and internal and external oblique muscles. It is an important landmark for midline abdominal incisions.

Peritoneum

The lining of the abdominal cavity and part of the pelvic cavity is peritoneum, a serous membrane. The parietal peritoneum covers the inner surface of the walls of the abdominal, pelvic and scrotal cavities. The visceral peritoneum, wholly or in part, covers the organs of the abdominal, pelvic and scrotal cavities. The peritoneum does not occupy all of the pelvic cavity.

The peritoneal folds, which consist of double sheets of peritoneum are termed mesenteries, omenta or ligaments. A mesentary passes from the abdominal wall to an intestine. Omentum passes from the stomach to other viscera or to the
body wall. Ligaments are narrow and pass between viscera or connect viscera to the body wall.

Inguinal canal

The inguinal canal is 1 to 1¼ cm. long and lies along the lateral border of the rectus muscle. The wall of the canal itself is composed of tunica vaginalis propria and communis. The canal is bounded medially by the rectus abdominis muscle; dorsally, by the adipose tissue within the lateral ligament of the bladder; laterally and ventrally, by the transversus muscle proximally and the internal oblique muscle near the distal end.

The internal inguinal ring is a round opening at the connection between the tunica vaginalis propria and the abdominal cavity. The external inguinal ring is an oval opening in the aponeurosis of the external oblique muscle. The canal takes an obliquely caudal course between the internal and external inguinal rings.

Liver and gallbladder

The liver (Figure 77) is located in the cranial part of the abdominal cavity adjacent to the caudal surface of the diaphragm. Several fissures divide the liver into five lobes. They are: a large, right medial lobe, whose caudal surface is marked by a deep cleft in which the gallbladder is located; a small, right lateral lobe, with cranial and
Figure 77. Liver, caudal aspect

Figure 78. Spleen, visceral surface
(note the long hilus)

Figure 79. Spleen, parietal surface
caudal divisions; a small, left medial lobe; a large, left lateral lobe, between the diaphragm and the ventral surface of the stomach; and a small, caudate or Spigelian lobe, which has a caudal and a papillary process.

The blood vessels associated with the liver (Figures 84 and 85) are the hepatic artery, portal vein and hepatic veins. The hepatic artery, a branch of the celiac artery, furnishes branches to the various lobes of the liver and a cystic artery to the gallbladder. The portal vein (Figure 85) carries blood from the stomach, intestines, gallbladder, spleen and pancreas to the liver. The hepatic veins carry blood from the substance of the liver into the posterior vena cava.

The gallbladder is lodged in the right medial lobe of the liver. Its cystic duct and the hepatic duct form the common bile duct which passes to the duodenum. The common bile duct and the main pancreatic duct join together and form a short dilated tube which enters the wall of the duodenum about three centimeters from the gastroduodenal junction.

Spleen

The spleen (Figures 78 and 79) is a large, curved, flattened, elongated structure. It lies parallel to the greater curvature of the stomach enclosed within the descending limb of the greater omentum.
Stomach

The stomach (Figure 80) is shaped somewhat like a pear. The broad end (cardiac end) lies to the left and is attached to the esophagus. The narrow end (pyloric end) lies to the right. A thick sphincter muscle, the pyloric valve, is located at the junction of the pyloric end and the duodenum. The convex border is the greater curvature to which the greater omentum is attached. The concave side of the stomach is the lesser curvature.

Small intestine

The small intestine begins at the pylorus and terminates at its junction with the large intestine. It is $2\frac{1}{2}$ to 3 times longer than the body of the cat. Its division into duodenum, jejunum and ileum is not clear cut when examined grossly.

The duodenum makes a sharp turn caudally and runs along the right side for about 8 to 10 centimeters. Here it makes a turn cranially and joins the jejunum at its next bend. The jejunum, which is about 25 centimeters long, joins the ileum. The ileum, the longest part of the small intestine, lies suspended by its mesentery in numerous folds in the caudal part of the abdominal cavity. At its junction with the large intestine is another valve-like sphincter, the ileocolic valve (Figure 81).
Figure 80. Stomach and proximal portion of duodenum, internal and external views

Figure 81. Ileum, cecum and colon, internal and external views
Pancreas

The pancreas is a long, irregular structure bent in the center to form two lobes. One lobe lies within the curve of the duodenum. The other is located in the descending portion of the greater omentum, parallel to the greater curvature of the stomach. The free end of this half contacts the spleen. The pancreas has two ducts. The larger pancreatic ducts collect pancreatic fluid from both halves of the gland and join the common bile duct before entering the duodenum. The accessory pancreatic duct opens 2 centimeters beyond the large duct. It is difficult to find and sometimes missing entirely.

Large intestine

The large intestine is divided into colon and rectum. Caudad to the ileocolic valve the colon forms a small blind pouch, the cecum. The colon may be distinguished according to its direction into ascending, transverse and descending portions. The rectum is the terminal part of the large intestine. It opens at the anus. On each side of the anus there is a large secreting sac. These sacs, anal sacs (Figure 86), are about one centimeter in diameter and open into the anus just inside its caudal boundary.

Kidneys

The kidneys are located in the region of the fourth lumbar vertebra along the dorsal part of the abdomen on
either side of the vertebral column. They are retroperitoneal, the peritoneum covers only the ventral surface. In some cats the kidneys hang quite low and may be mistaken for an abnormality upon palpation of the abdomen in the living animal. The gross structures of the kidney are illustrated in Figures 82 and 83.

The ureter, the slender duct of each kidney, begins at the pelvis and passes caudally to the level of the neck of the bladder where it turns to enter that organ near its neck.

Urinary bladder

The urinary bladder lies in the ventral caudal part of the abdominal cavity, cranial to the pubic symphysis and ventral to the rectum. The middle umbilical ligament connects the apex of the bladder with the umbilicus. The suspensory ligament, a peritoneal fold, joins the bladder to the linea alba. The bladder is also supported dorsally by a pair of lateral ligaments.

Blood vessels

The branches of the abdominal aorta (Figure 84) are:

1. Celiac artery
2. Adrenolumbar arteries
3. Lumbar arteries (1 or 2 are thoracic)
4. Left and right renal arteries
Figure 82. Right kidney, dorsal aspect, mid-frontal plane

Figure 83. Right kidney, dorsal aspect
Figure 84. Blood vessels of abdomen. Adrenolumbar artery (not labeled) is shown as the artery going to adrenal gland.

Figure 85. Hepatic portal vein (smaller view on left)
5. Left and right spermatic arteries or left and right ovarian arteries
6. Caudal mesenteric artery
7. Left and right iliolumbar arteries
8. Left and right external iliac arteries
9. Middle sacral artery

One or two pair of the lumbar arteries arise anterior to the diaphragm. Suprarenal arteries are not described in the cat as in the dog. The adrenals get their blood supply from the adrenolumbar artery in the cat. The phrenic artery is a branch of the phrenico-abdominal artery in the dog and it is a branch of the adreno-lumbar artery in the cat.

The ovarian artery in the cat gives a branch to the uterus as does the utero-ovarian artery in the dog.

Mammary glands

The mammary glands consist of two parallel rows of glands beneath the integument, one on each side of the ventral mid-line, in the thoracic and abdominal region. There are normally four pairs of teats, two thoracic and two abdominal. Occasionally there are one or two supernumeraries which may or may not be functional.

When the cat is in lactation the abdominal teats are the most highly developed. When she is not in lactation the teats are small, hairless, conical projections.
The thoracic glands receive their blood supply from the internal thoracic artery which is a branch of the subclavian artery. The abdominal glands receive blood from the epigastric arteries which arise from the femoral arteries in the region of the inguinal canals. The cranial and caudal arteries anastomose between the second and third gland.

Surgical considerations

The surgical considerations are:

1. Epidural anesthesia
2. Ventral hernia
3. Inguinal hernia
4. Nephrectomy
5. Fractured vertebrae
6. Spinal cord damage
7. Umbilical hernia
8. Laparotomy
9. Gastrotomy
10. Enterotomy
11. Intestinal anastomosis
12. Intussusception
13. Liver surgery (cyst or tumor removal)
14. Gallbladder surgery
15. Pancreas surgery
16. Spleenectomy
17. Cystotomy
18. Abdominal tumors
19. Rectal prolapse
20. Gastric foreign bodies
Male Genitalia

The male genital organs (Figure 86) include the scrotum, the two testes, the epididymides, the deferent ducts, the spermatic cord, the prostate and bulbourethral glands, the penis and the urethra.

The scrotum is a membranous pouch situated ventral to the anus. A median septum divides the scrotum into two cavities, each of which contains a testis, an epididymis and the distal part of the spermatic cord.

The penis lies ventral to the scrotum and projects caudally. The projecting glans penis is covered by integument, the prepuce. The urethra opens on the ventral side of the free end of the glans. A fold of integument, the frenulum, connects the ventral side of the glans to the prepuce. The surface of the glans penis is covered with sharp horny papilla. The horny papilla account for the loud cry of the queen when the male retracts the penis following copulation.

The prostate is a bilobed gland lying on the dorsal wall of the urethra at the level of the pubic tubercle. It is perforated by the vas deferens. It opens into the dorsal wall of the prostatic urethra by numerous small ducts visible to the naked eye.

The bulbourethral (Cowper's) glands are located one on either side of the bulbus of the urethra. The excretory
Figure 86. Male genitalia
duct of each gland leaves its medial surface and opens into the proximal portion of the penile urethra. The cat lacks seminal vesicles.

The os penis of the cat is inconstant. It is found in older cats. When well developed, it is about 5 mm. long and shaped like a tapering cone. It is located dorsal to the urethra and the apex extends almost to the end of the glans penis. The glans penis is considered to be the ossified prolongation of the septa between the corpora cavernosa.

Surgical considerations

The surgical considerations of the male genitalia are:

1. Perineal urethrostomy
2. Antepubic urethrostomy
3. Urethrotomy
4. Urethrocolostomy
5. Retained testicle
6. Vasectomy
7. Amputation of tip of penis
8. Castration
Female Genitalia

The female genital organs (Figures 87 and 88) include the ovaries, oviducts, uterus, vagina and vulva.

The ovaries lie in a longitudinal line caudal to the kidneys. The ligamentous attachments of the ovary are well developed, and include: the mesovarium, the cranial portion of the broad ligament; the suspensory ligament of the ovary, which forms the free border of the broad ligament anterior to the ovary; and the ovarian ligament, which passes from the ovary to the craniocaudal surface of the horn of the uterus.

The round ligament of the uterus is a well developed fibrous band which extends from the vaginal process to the horn of the uterus about 2 cm. from the cranial end. It is attached by an intervening fold to the mesometrial portion of the broad ligament.

The uterus of the cat consists of two long horns which are united caudally to form the body of the uterus. The body is about 4 cm. long and lies between the bladder and the rectum. The uterus joins the vagina near the anterior border of the pubic symphysis.

The vagina passes caudally to a point near the caudal end of the ischial symphysis, where it is joined on the ventral side by the urethra. The terminal canal common to the urethra and the vagina is the vestibule. At the ventral side
Figure 87. Female genitalia, showing peritoneal reflections (indicated by dotted lines)

Figure 88. Female genitalia, dorsal aspect, partially opened on midline. Smaller view shows mid-sagittal section through cervix (note the fornix located ventrally but not dorsally)
Mesosalpinx
Mesometrium
Uterine horn
Rectum
Cervix
Round ligament
Visceral peritoneum
Bladder
Parietal peritoneum
Suspensory ligament
Ovary
Uterine horn
Body of uterus
Ureter
Cervix
Vagina
Opening of urethra
Vestibular bulb
Clitoris
Labium
Pubic symphysis
Oviduct
Kidney
Visceral peritoneum
Cervix
Vaginal process
Pubic symphysis
of the vestibule is a small elevation, the clitoris. It is homologous with the penis of the male.

Surgical considerations

The surgical considerations of the female genitalia are:

1. Cesarean section
2. Ovariohysterectomy
3. Uterine prolapse
4. Pyometra

Thoracic Limb

The bones of the thoracic limb (Figures 89-91) or forelimb, are the clavicle, scapula, humerus, radius and ulna, carpals, metacarpals and phalanges.

The clavicle (Figure 93) is a slender, curved bone about one inch long. Radiographs of the shoulder (Figure 90) show a fish bone-shaped clavicle. This has been mistaken for a foreign body in the esophagus.

The scapula (Figures 95-97) is a flat bone located on the anterior and lateral aspect of the thorax. The spine divides the lateral surface of the scapula into the supraspinous fossa and an infraspinous fossa. An acromion occurs on the distal end of the spine. It is thicker than the spine and its base presents a flat, triangular projection, the metacromion. The apex is connected by fibrous tissue to the clavicle.
Figure 89. Normal radiographic anatomy of figure 90
Figure 90. Radiograph, mediolateral view of left front limb of adult cat
Figure 91. Forepaw (manus), includes carpus, metacarpus and sesamoid bones.

Figure 92. Hindpaw (pes), composed of tarsus, metatarsus, phalanges and sesamoid bones.
Figure 93. Clavicle

Figure 94. Right humerus, caudal aspect and left humerus, cranial aspect

1. Greater tubercle
2. Lesser tubercle
3. Head
4. Supracondyloid foramen
5. Supratrochlear foramen
6. Medial epicondyle
7. Crest of greater tubercle
8. Lateral epicondyle
9. Trochlea
Figure 95. Right scapula, lateral aspect

1. Caudal angle
2. Cranial angle
3. Supraspinous fossa
4. Infraspinous fossa
5. Spine
6. Acromion
7. Scapular tuberosity
8. Metacromion

Figure 96. Right scapula, cranial lateral aspect

1. Caudal angle
2. Spine
3. Metacromion
4. Acromion
5. Glenoid cavity
6. Coracoid process

Figure 97. Right scapula, medial aspect

1. Scapular tuberosity
2. Subscapular fossa
3. Nutrient foramina
The shoulder joint is formed by the glenoid cavity of the scapula and the head of the humerus. Dislocations are infrequent.

The structure of the humerus (Figure 94), radius and ulna (Figures 98 and 99), carpals, metacarpals and phalanges (Figures 91 and 102), has been illustrated.

There are eleven sesamoid bones in the thoracic limb. Ten are on the volar aspect of the metacarpo-phalangeal articulation and one is embedded in the extensor brevis pollicus muscle.

The ulna is larger than the radius. There are seven carpal bones and five metacarpal bones. The first digit has only two phalanges while the 2nd, 4th and 5th all have three phalanges. Occasionally, a cat is seen with supernumerary digits (Figures 106-108). Polydactylyism is discussed in the review of the literature.

Arterial supply

The artery which supplies the forelimb is a single artery from its origin to the elbow. Various parts of it are named according to the area through which it passes.

The left subclavian artery arises from the aortic arch separately. It passes cranially and then laterally in front of the first rib to become the axillary artery. The right subclavian artery arises from the brachio-cephalic (innominate) artery and extends cranially and to the right to pass
Figure 98. Right radius and ulna articulated, medial caudal aspect

1. Trochlear notch
2. Coronoid process
3. Radius
4. Ulna
5. Anconeal process
6. Olecranon
7. Styloid process
8. Styloid process

Figure 99. Right radius and ulna articulated, lateral cranial aspect

1. Olecranon
2. Trochlear notch
3. Head
4. Neck
5. Radius
6. Ulna
7. Styloid process
8. Styloid process
Figure 100. Normal radiographic anatomy of figure 101
Figure 101. Radiograph, posteroanterior view of tarsal joint and digits of adult cat

Figure 102. Normal radiographic anatomy of figure 103
Figure 103. Radiograph, anteroposterior view of carpal joint and digits of adult cat
Figure 104. Normal radiographic anatomy of figure 105

Figure 105. Radiograph, posteroanterior view of hind feet showing polydactylysm

Figure 106. Normal radiographic anatomy of figure 107

Figure 107. Radiograph, anteroposterior view of front feet showing polydactylysm
Figure 108. Polydactylyism. Note supernumerary digits on medial aspect of front feet.

Figure 109. Polydactylyism. Cat has two extra digits on medial aspect of left hind foot and one extra digit on medial aspect of right hind foot.
in front of the first rib on the right side. It continues as the right axillary artery.

The branches of the axillary artery are:

1. External (anterior) thoracic artery
2. Lateral (long) thoracic artery
3. Subscapular artery
4. Brachial artery

The brachial artery passes into the arm where it gives off many branches. It is the brachial artery that passes through the supracondyloid foramen (Figure 94) of the humerus.

Brachial plexus

The brachial plexus (Figure 110) gives origin to the nerves which supply the thoracic limb. It is interesting to note the similarities and differences of the brachial plexus in the dog and cat. The brachial plexus in the dog is formed by cervical nerves 5, 6, 7 and 8 and thoracic nerves 1 and 2. In the cat it is formed by cervical nerves 5, 6, 7 and 8; and 1st thoracic nerve. The 2nd thoracic does not enter into its formation in the cat. In the dog, T2 enters into its formation 20% of the time (Miller et al. 1964).

The nerves of the brachial plexus and their comparative formation in the dog and cat are:

1. Suprascapular n. - formation and distribution is the same in both animals
Figure 110. Brachial plexus
(IV, V, VI, VII and VIII are cervical nerves)

1. Trachea
2. Esophagus
3. Carotid artery
4. Axillary artery and vein
5. Phrenic nerve
6. Suprascapular nerve
7. Subscapular nerves (3)
8. Axillary nerve
9. Musculocutaneous nerve
10. Radial nerve
11. Median nerve
12. Ulnar nerve
13. Long thoracic nerve
14. Intercostal nerves
15. Thoracodorsal nerve
16. Anterior thoracic nerve
17. M. brachiocephalicus
18. M. latissimus dorsi
19. M. serratus ventralis
20. M. scalenus

Figure 111. Lumbosacral plexus
2. Subscapular n. - the formation and distribution is the same but the terminology is different. In the dog, it has generally one but sometimes 2 branches. In the cat, they are termed cranial, middle and caudal subscapular nn. The caudal subscapular n. being the thoracodorsal n. in the dog.

3. Axillary n. - Dog - primarily from C7 and 8; occasionally also 6. Cat - from C6 and C7; primarily from 7.

5. Radial n. - Dog - C7, 8, T1, 2. Cat - C7, 8, T1.

6. Median n. - Dog - primarily C8, T1, 2. Cat - C7, 8, T1.

7. Ulnar n. - Dog - C8, T1, 2. Cat - C8, T1.

8. Phrenic n. - Dog - C5, 6, 7. Cat - C5, 6.

9. Long thoracic n. - Arises from C7 in both the dog and cat, also called lateral thoracic in the dog and posterior thoracic in the cat.

Surgical considerations

The surgical considerations of the thoracic limb are:

1. Fractures of the scapula
2. Dislocation of the shoulder joint
3. Fractures of the humerus
4. Amputation of the thoracic limb
5. Paralysis of the nerves of the brachial plexus
6. Fractures of the radius and ulna
7. Fractures of the carpals, metacarpals and digits
8. Vena puncture of the cephalic vein
9. Declawing

Pelvic Limb

The bones of the pelvic limb (Figures 112-121) or hindlimb, consist of the hip bone, femur, tibia and fibula, tarsals, metatarsals, phalanges and sesamoids.

In front of the stifle joint is a small flat bone, the patella (Figure 118), developed in the tendon of the quadriceps. The patella is the largest sesamoid in the body.

The os coxae (Figures 116 and 117) or hip bone of the adult cat consists of the ilium, ischium, pubis and acetabular bone. The primary comparative feature of the os coxae is a flat ilium with a shallow gluteal surface. The ischiatic arch is a comparatively shallow arch.

The trochanter major of the femur (Figure 119) is even lower than in the dog. The femur is straighter and not bent dorso-convexly as in the dog. There are no articular facets showing for the medial and lateral fabellae. The third trochanter is absent. There are three sesamoids (fabellae) lying behind the stifle joint, two in the gastrocnemius and one in the popliteus muscle.

The tibia and fibula (Figures 120 and 121) are long bones of almost equal length. The tibia is the longer of
Figure 112. Normal radiographic anatomy of figure 113

Figure 113. Radiograph, mediolateral view of left hind limb of adult cat
Figure 114. Normal radiographic anatomy of figure 115.

Figure 115. Radiograph, ventrodorsal view of pelvis and anteroposterior view of stifle joint of adult cat.
Figure 116. Fused ossa coxae, ventral aspect

1. Iliac crest
2. Iliac fossa
3. Articular surface
4. Body of ilium
5. Symphysis pubes
6. Symphysis ischii
7. Ischiatic tuberosity
8. Ischiatic arch
9. Obturator foramen
10. Acetabular fossa

Figure 117. Left os coxae, lateral aspect

1. Iliac tuberosity
2. Body of ilium
3. Iliopectineal eminence
4. Pubis
5. Acetabular fossa
6. Obturator foramen
7. Ischium
8. Ischiatic tuberosity
9. Ischiatic spine
10. Greater ischiatic notch
<table>
<thead>
<tr>
<th>Figure 118. Right femur and patella, cranial aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Greater trochanter</td>
</tr>
<tr>
<td>2. Neck</td>
</tr>
<tr>
<td>3. Head</td>
</tr>
<tr>
<td>4. Body</td>
</tr>
<tr>
<td>5. Lateral epicondyle</td>
</tr>
<tr>
<td>6. Patellar surface</td>
</tr>
<tr>
<td>7. Medial epicondyle</td>
</tr>
<tr>
<td>8. Apex of patella</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure 119. Right femur and patella, caudal aspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fovea</td>
</tr>
<tr>
<td>2. Trochanteric fossa</td>
</tr>
<tr>
<td>3. Greater trochanter</td>
</tr>
<tr>
<td>4. Nutrient foramen</td>
</tr>
<tr>
<td>5. Body</td>
</tr>
<tr>
<td>6. Base of patella</td>
</tr>
<tr>
<td>7. Medial condyle</td>
</tr>
<tr>
<td>8. Intercondyloid fossa</td>
</tr>
<tr>
<td>9. Lateral condyle</td>
</tr>
<tr>
<td>10. Apex of patella</td>
</tr>
</tbody>
</table>
Figure 120. Left tibia and fibula articulated, cranial aspect

1. Medial condyle
2. Lateral condyle
3. Head of fibula
4. Tibial tuberosity
5. Tibial crest
6. Intercalated space
7. Tibia
8. Fibula
9. Medial malleolus
10. Lateral malleolus

Figure 121. Left tibia and fibula articulated, lateral aspect

1. Head of fibula
2. Fibula
3. Intercalated space
4. Intercalated border
5. Tibia
6. Lateral malleolus
the two bones and is the longest bone in the body. The fibula, a slender triangular bone, lies at the lateral side of the tibia.

There are seven tarsal bones (Figure 92) of which the calcaneus is the largest and forms the heel. The remainder of the hindpaw is composed of four metatarsals and four digits with three phalanges each.

Lumbosacral plexus

The lumbosacral plexus (Figure 111) gives origin to the main nerve supply of the pelvic limb. The plexus originates from lumbar nerves 4, 5, 6 and 7; and sacral nerves 1, 2 and 3. In the cat L3 does not unite with L4 as it does in the dog.

The nerves of the lumbosacral plexus and their comparative formation in the dog and cat are:

1. Ilioinguinal n. - Dog - Simply called 3rd lumbar n. in cat
2. Genitofemoral n. - Cat - L4
3. Genital n. - Dog - L3, 4 - Ramus genitalis of the n. genito-femoralis
4. Lateral cutaneous femoral n.
 - Dog - L4
 - Cat - L4 and 5 - In the cat it arises from the connecting strand between L4 and L5, most of the fibers coming from the 5th
5. Femoral n. - Cat - L5, 6 - Arises from the confluence of L5 and L6
- Dog - L4, 5, 6 - Primarily from 5 with a strong root from 4 and occasionally some fibers from 6

6. Obturator n. - Dog - L4, 5, 6
 Cat - Confluence between L6, L7

7. Sciatic n. - L7, S1, 2 - Cat
 L6, 7 (S1, 2) - Dog

8. Cranial gluteal n. - Dog - L6, 7, S1
 Cat - L6, 7, S1

9. Caudal gluteal n. - Dog - L7
 Cat - L7, S1

10. Caudal cutaneous femoral n. - Dog - S1, 2, (3)
 Cat - S2, 3 - It is termed posterior femoral cutaneous n. in the cat texts

11. Pudendal n. - Dog - S1, 2, 3
 Cat - S2, 3

Blood supply

The femoral artery is the direct continuation of the external iliac artery on the medial surface of the thigh. For a short distance it lies closely associated with the femoral vein and long saphenous nerve in the femoral triangle. The femoral artery becomes the popliteal artery after it enters the popliteal fossa just ventral to the stifle.

The venous drainage of the pelvic limb is accomplished by two sets of veins, superficial and deep. The veins of the deep set accompany the anterior tibial and popliteal arteries to empty into the femoral vein. The superficial
veins are larger and carry most of the blood. These are the vena saphena parva and vena saphena magna. The vena saphena magna (Figure 122) accompanies the saphenous artery on the medial side of the leg to join the femoral vein. The vena saphena magna is a very important vein clinically. It is larger than the cephalic vein and the vein of choice for venous punctures by many veterinary surgeons. The vein is readily visible on the medial surface of the leg between the sartorius and gracilis muscles. Entry into the vein is made about midway in the tibial region.

Integument

The skin is one of the most important organs of the body. It serves as a covering envelope over the body by separating the body from its environment. It prevents microbial invasion into the animal and prevents loss of body fluids to the environment. The skin protects against trauma and temperature change. It serves as the major receptor organ for the nervous system, being involved in perception of heat, cold, pain, touch and pressure.

The clinician is interested in the skin because it reflects the general health of the cat and because of the increasing importance of veterinary dermatology. The surgeon considers where to place the incision and the healing characteristics of the skin. For him, it is the most fre-
quentley encountered structure of the body.

The pigmentation of the skin prevents the penetration of injurious amounts of radiation from the sun and the radiation from the sun and the radiated skin is the location of vitamin D synthesis.

In general the skin of the cat decreases in thickness from dorsal to ventral on the body and from proximal to distal on both the thoracic and pelvic limbs. The thickest skin is found over the neck, back and sacral regions. The epidermis of the metacarpal pad, planum nasale and lip are very thick.

The epidermis of the hairy skin consists of four layers; stratum corneum, stratum granulossum, stratum spinosum and stratum cylindricum. A fifth layer, stratum lucidum, is usually absent in the hairy skin but present in the nonhairy skin. It is best developed in the metacarpal pad.

Grossly, a circumscribed area of large sebaceous glands is found on the proximal portion of the dorsal tail about three inches from the anus. Strickland and Calhoun (1963) report that they are present in histologic sections from almost the entire length of the tail.

Surgical considerations

The surgical conditions of the skin are:

1. Abrasion
2. Abcess
3. Contusion
4. Laceration
5. Surgical incision
6. Cyst
7. Neoplasm
8. Exuberant granulation
9. Foreign body
10. Sinus
11. Fistula
12. Ulcer

Anatomy of the Living Cat

The anatomy of the living cat (Figure 122) was drawn in part from the radiograph in Figure 123. The structures on the right side of the cat will stand out more clearly. The spleen for instance, which is located on the left side, is not illustrated. Structures such as vessels, nerves and lymph nodes were drawn from actual dissections.

Practical application requires the transfer of knowledge from the preserved and dissected specimen to the living animal. Observation, palpation and radiographic interpretation all lead toward a better understanding in anatomy.

Each illustration in this chapter is of the cat in its entirety. Figure 122 illustrates the clinically important features of the living animal. Figure 124, the skeleton; and Figure 125, the superficial muscles, were
Figure 122. Anatomy of the living cat. Drawn in part from radiograph (Figure 123)

Figure 123. Radiograph, recumbent position, right lateral view of a mature cat
Figure 124. Skeleton of male cat. Drawn from radiograph in figure 123

Head and Neck:
1. Zygomatic process
2. Orbit
3. Zygomatic arch
4. Maxilla
5. External acoustic meatus
6. Tympanic bulla
7. Temporomandibular joint
8. Angular process
9. Hyoid
10. Mandible
11. Mental foramen
12. Sagittal crest
13. Atlas
14. Axis
15. 3rd cervical vertebra

Trunk:
16. 5th lumbar vertebra
17. Manubrium
18. Sternum
19. Xiphoid process
20. Costal arch
21. Costal cartilage
22. Crest of ilium
23. Ilium
24. Sacrum
25. Pubis
27. Ischium
28. 10th coccygeal vertebra

Forelimb:
29. Scapula
30. Spine
31. Clavicle
32. Humerus
33. Supracondylar for.
34. Radius
35. Ulna
36. Carpus
37. Metacarpus
38. Phalanges
39. Digit III
40. Digit I

Hindlimb:
41. Head of femur
42. Trochanter major
43. Tibial tuberosity
44. Tibial crest
45. Tibia
46. Fibula
47. Tarsus
48. Metatarsus
49. Digit V
50. Femur
51. Patella
52. Plantar sesamoid
53. Digit II
Figure 125. Superficial muscles. M. cutaneous trunci and platysma have been removed

Neck:

Trunk:

Forelimb:

Hindlimb:
also drawn from the cat illustrated in Figure 122.

A complete understanding of the normal radiographic anatomy is necessary before interpretations of abnormalities in radiographs can be made. Several radiographs of the mature cat are illustrated in the previous chapters. Figures 126 and 127 show the normal epiphyses in an immature cat. Several centers of ossification have not fused and might be confused with a fracture. Congenital diaphragmatic hernia could be detected in the radiograph of an immature cat.
Figure 126. Radiograph, ventrodorsal view of an immature cat. Note epiphyses
Figure 127. Radiograph, recumbent position, left lateral view of immature cat. Note epiphyses.
SUMMARY

Anatomical nomenclature was reviewed in five basic references. The nomenclature was compared with the official list of Nomina Anatomica Veterinaria (N.A.V.).

The anatomical and surgical literature was reviewed for applications of anatomy to feline surgery. An extensive bibliography was compiled from the references reviewed. A review of the surgical conditions encountered at the Iowa State University Small Animal Clinic was made in order to find the areas that need emphasis in surgical anatomy of the cat.

The normal radiographic anatomy of the cat was reviewed and studied. Radiographs and explanatory line drawings of the radiographs, are included in the text.

Fifty domestic cats were used for dissections, maceration, illustrative material and photographs. The findings are presented in chapter form by regions; head and neck, thorax, abdomen and pelvis, male genitalia, female genitalia, thoracic limb, pelvic limb and integument. A check list of surgical considerations is listed with each chapter. Anatomical relationships in surgery are discussed within each chapter. Comparative anatomical relationships of interest between the dog and cat are included.

The anatomy of the living cat is presented in a separate chapter in an attempt to transfer the knowledge from
the preserved and dissected specimen to the living animal. Illustrations of the entire body of the cat were drawn from a radiograph and dissections. They include a large drawing of the cat, illustrating the clinically important features of the living animal, the skeleton and the superficial muscles.
BIBLIOGRAPHY

Ackart, R. J., Shaw, J. S., Jr. and Lawrence, J. S. 1940. The blood picture of normal cats. Anatomical Record 76: 357-363.

Creed, R. F. S. 1958. The histology of mammalian skin, with special reference to the dog and cat. Veterinary Record 70: 171-175.

Darrach, W. 1907. Variations in the post cava and its tributaries as observed in 605 examples of the domestic cat. Anatomical Record 1: 30-33.

Hemsley, L. 1956. Abortion in two cats, with the isolation of *Salmonella choleraesuis* from one case. Veterinary Record 68: 152.

Kennard, M. A. 1954. The course of ascending fibers in the spinal cord of the cat essential to the recognition of painful stimuli. Journal of Comparative Neurology 100: 511-524.

and __________. 1960b. Disc protrusions in the cat: Distribution of dorsal protrusions along the vertebral canal. Veterinary Record 72(18): 335-337.

Latimer, Homer B. 1944a. The prenatal growth of the cat: XIV. The weight of the skeleton in the fetal and in the adult cat. Growth 8: 149-158.

1938a. The prenatal growth of the cat. VII. The growth of the brain and of its parts, of the spinal cord and of the eyeballs. Journal of Comparative Neurology 68: 381-394.

1938b. The weights of the brain and of its parts; of the spinal cord and of the eyeballs in the cat. Journal of Comparative Neurology 68: 395-404.

1931. The prenatal growth of the cat. II. The growth of the dimensions of the head and trunk. Anatomical Record 50: 311-332.

Ottaviani, G. und Cavalli, M. 1933. Contributi all' Anatomica del sistema linfatico del gatto. La nuova veterinaria 11: 5-70; 169-191.

Startup, C. M. 1963. Trephining the frontal sinus in the cat. Veterinary Record 75: 752-754.

Turner, C. W. 1939. Comparative anatomy of the mammary glands. Columbus, Missouri, University Cooperative Store.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to his major professor, Dr. Robert Getty, for his guidance and advice.

The author wishes to thank the Departments of Veterinary Anatomy and Veterinary Clinical Sciences for facilities used; and the Veterinary Medical Research Institute for financial assistance.

He wishes to express his appreciation to Miss Rose Aspengren for her assistance in tissue sectioning and staining; to Mrs. Ruth Loomis and Mrs. Sylvia Johns for their technical assistance; to Mrs. Judith Guenther for illustrative work; to Dr. D. J. Hillmann for his illustrative and photographic work and to Mr. L. A. Facto for photographic work.

He also wishes to thank his wife, Janice, for her inspiration and helpful assistance in preparing this dissertation and in other tasks throughout the course of graduate studies.