NON-DESTRUCTIVE ACOUSTIC DETERMINATION OF RESIDUAL STRESSES IN HYDROSTATICALLY EXTRUDED ALUMINUM RODS

M. P. Scott and D. M. Barnett
Department of Materials Science and Engineering
Stanford University
Stanford, California 94305

ABSTRACT

Third order elasticity theory may be used to show that a longitudinal acoustic wave normally incident on a sample in a state of plane deformation experiences a relative velocity shift given by

\[\frac{V - V_0}{V_0} = B(\sigma_1 + \sigma_2) \]

where \(B \) is the acoustoelastic constant, \(\sigma_1 \) and \(\sigma_2 \) are the principal stresses normal to the direction of wave propagation, and \(V_0 \) is the wave velocity in undistorted material. Hence, wave transit time measurements may be used to ascertain the sum \(\sigma_1 + \sigma_2 \) in the deformed state. We use a double pulse-echo technique to provide an accurate measure of transit time through the thickness of aluminum discs produced by hydrostatic extrusion (25% area reduction). The residual stress state produced during extrusion is axi-symmetric and we are able to separately determine residual radial and hoop stresses by a single longitudinal wave measurement at points on the disc face. The technique is extremely rapid and accurate, and the acoustic results are cross-checked by both x-ray measurements and finite element simulation of the extrusion process.
SUMMARY DISCUSSION

William Pardee, Chairman (Rockwell Science Center): Bill Moyer.

Bill Moyer (Union Carbide): Would you address the problem of getting zero stress state in the welded position?

Martin Scott (Stanford University): This is a big problem. I think this will require that the theoreticians do more work here. Echo elasticity can be couched in a different way. That is, if we can use an already deformed state, perhaps, as referencing our equation, that would give us a big help. At present, I don't know a better way to do it than simply stress relief. Obviously, if you are talking about a 30-ton pressure vessel, you don't believe that. I don't know what to do about that; this is the best I know how to do it.

Bill Moyer: Is the technique applicable to a weld where the weld nugget is different material so you have a variation in properties as you go across?

Martin Scott: Yes. By calibrating the already deformed state, you can essentially handle those kind of things. However, that has not been done before.

William Pardee, Chairman: How thick were your wafers, and did you have to take any special precautions to avoid introducing additional stresses in moving them out of the rod?

Martin Scott: Yes, to both your questions. They were on the order of anything from 4 millimeters to 6 millimeters in thickness. I used a gassed discharging machine to be very careful, using a very careful polishing technique. Although this technique is not very sensitive, you really don't have to worry about that that much.

John Simmons (NBS): Did you find any differences, in fact?

Martin Scott: There are axial stresses in the rod, and the order of difference is on the order of differences you would expect by adding the elastic solution to the longitudinal stresses; we picked that up.

William Pardee, Chairman: Thank you, Martin.