Wave Speed Propagation Measurements on Highly Attenuative Wax at Elevated Temperatures

David G. Moore¹, Sarah L. Stair² and David A. Jack², ¹Sandia National Laboratories, Albuquerque, NM 87123; ²Baylor University, Department of Mechanical Engineering, Waco, TX 76798

Ultrasonic stress wave amplitude and time-of-flight values change drastically as a media is heated. The measurement of relatively small variations in velocity and material attenuation can detect and quantify significant variations within a material microstructure. This paper discusses experimental setups, ultrasonic wave speed tracking methods and signal analysis algorithms that document the changes within highly attenuative wax material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a pulse-echo and through-transmission configuration. The ultrasonic waveforms are recorded and analyzed during long duration thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) was also created which uses unstructured meshes to determine how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. Both experimental and analytical data is compared and presented. Finally, the paper describes a series of additional experiments that are currently under investigation which will aid code development to adjust for density variations.

Acknowledgement:

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1356113. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation.