1973

Bonding modes of species chemisorbed on tungsten single crystal faces

Leon William Anders
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Physical Chemistry Commons

Recommended Citation
https://lib.dr.iastate.edu/rtd/5065

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106
ANDERS, Leon William, 1940-
BONDING MODES OF SPECIES CHEMISORBED ON TUNGSTEN SINGLE CRYSTAL FACES.

Iowa State University, Ph.D., 1973
Chemistry, physical

University Microfilms, A XEROX Company, Ann Arbor, Michigan
Bonding modes of species chemisorbed on tungsten single crystal faces

by

Leon William Anders

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Department: Chemistry
Major: Physical Chemistry

Approved:
Signature was redacted for privacy.

In Charge of Major Work
Signature was redacted for privacy.

For the Major Department
Signature was redacted for privacy.

For the Graduate College

Iowa State University
Ames, Iowa

1973
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>MOLECULAR ORBITAL INVESTIGATION OF ATOMIC SPECIES CHEMISORBED ON A W(100) SURFACE</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Results and Discussion</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Summary and Conclusions</td>
<td>10</td>
</tr>
<tr>
<td>III</td>
<td>CO AND 18O$_2$ CO-ADSORPTION ON SINGLE CRYSTAL SURFACES OF TUNGSTEN</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Experimental Procedure</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Results and Discussion</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Mixed adsorption of CO and 18O$_2$ on a W(100) surface</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Mixed adsorption of CO and 18O$_2$ on a W(110) surface</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Mixed adsorption of CO and 18O$_2$ on a W(111) surface</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Summary and Conclusions</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>91</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>A MOLECULAR ORBITAL INVESTIGATION OF CHEMISORPTION. I. HYDROGEN ON TUNGSTEN (100) SURFACE</td>
<td>93</td>
</tr>
<tr>
<td>B</td>
<td>A MOLECULAR ORBITAL INVESTIGATION OF CHEMISORPTION. II. NITROGEN ON TUNGSTEN (100) SURFACE</td>
<td>132</td>
</tr>
<tr>
<td>C</td>
<td>A MOLECULAR ORBITAL INVESTIGATION OF CHEMISORPTION. III. OXYGEN ON TUNGSTEN (100) SURFACE</td>
<td>168</td>
</tr>
<tr>
<td>D</td>
<td>COMPUTER PROGRAM FOR EXTENDED HUCKEL MOLECULAR ORBITAL (EHMO) CALCULATIONS</td>
<td>201</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>A comparison of thermal desorption data of diatomic molecules from a W(100) surface.</td>
<td>4</td>
</tr>
<tr>
<td>II.</td>
<td>A comparison of activation energy of desorption for CO on various tungsten surfaces.</td>
<td>15</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1. Bonding structure of chemisorbed atoms on the W(100) surface (a - W(100) surface A - 5 CN site, B - 2 CN site, C - 1 CN site, b - hydrogen bonded at 1 CN sites in a (1 x 1) structure, c - nitrogen bonded at 5 CN sites in a C (2 x 2) structure and d - oxygen bonded at 2 CN sites in a (2 x 1) structure).

2. Proposed surface structure of oxygen atoms at 2 CN sites on a W(110) surface.

3. A schematic diagram of the experimental apparatus for flash desorption spectrometry.

4. Flash desorption spectra of CO adsorbed on a W(100) surface (A - 2.4 L, B - 4.5 L, C - 9.0 L and D - 18.2 L (1 Langmuir (L) = 10^-6 Torr-sec.)).

5. Flash desorption spectra of CO from a W(100) surface predosed with 2.4 L of C¹⁶O followed with increasing dosages of ¹⁸O₂ (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).

6. Flash desorption spectra of CO from a W(100) surface predosed with 4.5 L of C¹⁶O followed with increasing dosages of ¹⁸O₂ (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).

7. Flash desorption spectra of CO from a W(100) surface predosed with 9.0 L of C¹⁶O followed with increasing dosages of ¹⁸O₂ (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).

8. Flash desorption spectra of CO from a W(100) surface predosed with 18.2 L of CO followed with increasing dosage of ¹⁸O₂ (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).

9. Flash desorption spectra of CO from a W(100) surface predosed with increasing dosages of ¹⁸O₂ (A - 2.6 L, B - 5.3 L, C - 10.7 L and D - 21.3 L) followed by a constant dose of C¹⁶O (9.0 L).
10. Total amount of CO (C16O + C18O) desorbed from a W(100) surface where the surface was predosed with C16O (A - 2.4L, B - 4.5L, C - 9.0L and D - 18.2L) with increasing dosages of 18O\textsubscript{2} (1.2L, 2.6L, 5.3L, 10.7L and 21.3L) in each set of C16O doses.

11. The ratio of C18O/CO\textsubscript{total} desorbed from a W(100) surface predosed with C16O (A - 2.4L, B - 4.5L, C - 9.0L and D - 18.2L) with increasing dosages of 18O\textsubscript{2} (1.2L, 2.6L, 5.3L, 10.7L and 21.3L) in each set of C16O doses.

12. The limiting ratio of C18O/CO\textsubscript{total} desorbed from a W(100) surface predosed with C16O (2.4L, 4.5L, 9.0L and 18.2L) followed by a saturated dose of 18O\textsubscript{2}.

13. Possible sites occupied by chemisorbed species resulting from CO-adsorption of 16O\textsubscript{2} on a W(100) surface (A - 5 CN site, B - 2 CN site, C - 1 CN site, ● - C or O adatoms and ●● associatively adsorbed oxygen).

15. Flash desorption spectra of CO from a W(110) where CO was dosed (18.6L) simultaneously with 18O\textsubscript{2} (A - ~.05L, B - .15L, C - .60L and D - 1.80L) from the ambient.

16. Flash desorption spectra of CO from a W(110) surface predosed with 2.5L of C16O followed with increasing dosages of 16O\textsubscript{2} (A - 0.0L, B - 1.2L, C - 2.6L, D - 5.3L, E - 10.7L and F - 21.3L).

17. Flash desorption spectra of CO from a W(110) surface predosed with 4.4L of C16O followed with increasing dosages of 18O\textsubscript{2} (A - 0.0L, B - 1.2L, C - 2.6L, D - 5.3L, E - 10.7L and F - 21.3L).

18. Flash desorption spectra of CO from a W(110) surface predosed with 9.2L of C16O followed with increasing dosages of 18O\textsubscript{2} (A - 0.0L, B - 1.2L, C - 2.6L, D - 5.3L, E - 10.7L and F - 21.3L).
19. Flash desorption spectra of CO from a W(110) surface predosed with 18.6 L of 16O followed with increasing dosages of 18O$_2$ (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).

20. Flash desorption spectra of CO from a W(110) surface predosed with increasing dosages of (A - 0.1 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L) followed by a constant dose of 16O (9.2 L).

21. Total amount of CO (16O + 18O) desorbed from a W(110) surface where the surface was predosed with 16O (A - 2.5 L, B - 4.4 L, C - 9.2 L and D - 18.6 L) with increasing dosages of 18O$_2$ (1.2 L, 2.6 L, 5.3 L, 10.7 L and 21.3 L) in each set of 16O doses.

22. The ratio of 18O/CO$_{total}$ desorbed from a W(110) surface predosed with 16O (A - 2.5 L, B - 4.4 L, C - 9.2 L and D - 18.6 L) with increased dosages of 18O$_2$ (1.1 L, 2.4 L, 5.3 L, 10.6 L and 21.2 L) in each set of 16O doses.

23. The limiting ratio of 18O/CO$_{total}$ desorbed from a W(110) surface predosed with 16O (2.5 L, 4.4 L, 9.2 L and 18.6 L) followed by a saturated dose of 18O$_2$.

24. Possible sites occupied by chemisorbed species from co-adsorption of CO and 18O$_2$ on a W(110) surface (A - 2 CN site, B - 2 CN' site, C - 1 CN site, ● - C or O adatoms and ○○ associatively adsorbed oxygen).

25. Flash desorption spectra of CO adsorbed on a W(111) surface (A - 2.3 L, B - 4.8 L, C - 8.0 L and D - 19.9 L).

26. Flash desorption spectra of CO from a W(111) surface predosed with 2.3 L of 16O followed with increasing dosages of 18O$_2$ (A - 0.0 L, B - 1.4 L, C - 2.5 L, D - 5.7 L, E - 10.7 L and F - 22.0 L).

27. Flash desorption spectra of CO from a W(111) surface predosed with 4.8 L of 16O followed with increasing dosages of 18O$_2$ (A - 0.0 L, B - 1.4 L, C - 2.5 L, D - 5.7 L, E - 10.7 L and F - 22.0 L).
28. Flash desorption spectra of CO from a W(111) surface predosed with 8.0 L of C16O followed with increasing dosages of 18O\textsubscript{2} (A - 0.0 L, B - 2.5 L, C - 5.7 L, D - 10.7 L and E - 22.0 L).

29. Flash desorption spectra of CO from a W(111) surface predosed with 19.9 L of C16O followed with increasing dosages of 18O\textsubscript{2} (A - 0.0 L, B - 2.5 L, C - 5.7 L, D - 10.7 L and E - 22.0 L).

30. Flash desorption spectra of CO from a W(111) surface predosed with increasing dosages of 18O\textsubscript{2} (A - 2.5 L, B - 5.7 L, C - 10.7 L and D - 22.0 L) followed by a constant dose of C16O (8.0 L).

31. Total amount of CO (C16O + C18O) desorbed from a W(111) surface where the surface was predosed with C16O (A - 2.3 L, B - 4.8 L, C - 8.0 L and D - 19.9 L) with increasing dosages of 18O\textsubscript{2} (1.4 L, 2.5 L, 5.7 L, 10.7 L and 22.0 L) in each set of C16O doses.

32. The ratio of C18O/CO\textsubscript{total} desorbed from a W(111) surface predosed with C16O (A - 2.3 L, B - 4.8 L, C - 8.0 L and D - 19.9 L) with increased dosages of 18O\textsubscript{2} (1.4 L, 2.5 L, 5.7 L, 10.7 L and 22.0 L) in each set of C16O doses.

33. The limiting ratio of C16O/CO\textsubscript{total} desorbed from a W(111) surface predosed with C16O (2.3 L, 4.8 L, 8.0 L, 19.9 L) followed by a saturated dose of 18O\textsubscript{2}.

34. Possible sites occupied by chemisorbed species from co-adsorption of CO and 18O\textsubscript{2} on a W(111) surface (A - 4 CN site, B - 4 CN' site, C - 1 CN site, ● - O adatoms, ●● - C adatoms and ●●● - associatively adsorbed oxygen).
CHAPTER I. INTRODUCTION

In recent years it has become experimentally possible to study the chemisorption of gases on single crystal planes of metal surfaces. This permits observation of chemisorption on metal surfaces of known structure, in contrast to earlier polycrystalline techniques. In the absence of direct spectroscopic observation, many indirect methods have been utilized in an attempt to assign molecular structures to various adsorbed states. Low energy electron diffraction (LEED) studies have uncovered the symmetry relationship between the substrate and the adsorbate. Flash desorption spectroscopy (FDS) has been used to determine the number of bonding states and kinetics and the energy of desorption from these states. From these techniques it has been clearly demonstrated in the last few years that gases chemisorbed on surfaces exhibit marked variations in structure and kinetics with crystal structure, but the investigators have not been able to assign positively bonding structures to the chemisorbed species.

This work was stimulated by the investigation by Tamm and Schmidt (1, 2) of hydrogen chemisorption on various tungsten single crystal surfaces. In the case of hydrogen on a W(100) surface, other investigators (3, 4, 5) have also reported results. From these findings, various conflicting models have been proposed. Tamm and Schmidt (1) proposed a mixture of atomic and molecular species; Estrup and
Anderson (3) as well as Madey and Yates (4) proposed that hydrogen atoms were bonded at a single site. Later Yonehara and Schmidt (5) proposed that hydrogen atoms were bonded at different sites.

The early part of this work was concerned with developing a qualitative description of chemisorbed hydrogen on W(100), W(110), and W(111). This was extended, following a suggestion by Dr. L. S. Bartell, by an Extended Hückel Molecular Orbital (EHMO) investigation to elucidate the bonding and structure of chemisorbed species on an array of atoms representing a truncated surface. The W(100) crystal face was chosen as the adsorbing surface, with hydrogen nitrogen, and oxygen as adsorbates. The hydrogen (1-5), nitrogen (6-9), and oxygen (10-12) on W(100) systems all have received experimental investigation, and it is generally concluded that the adsorbates are dissociated in their most strongly adsorbed state not only on a polycrystalline surface, but also a single crystal surface of tungsten. Although they are dissociatively adsorbed, molecular hydrogen and nitrogen desorb in FDS experiments. Molecular oxygen will not desorb in FDS experiments, but the dissociatively adsorbed oxygen desorbs as oxides of tungsten and even as atomic oxygen (13).

In developing an overall understanding of the bonding between a chemisorbed species and a surface, the literature was searched for experimental evidence which would yield insight into the problem.
Besides the above diatomic gases which have been used in chemisorption studies to probe the properties of a surface, NO and CO also have been used extensively. On polycrystalline tungsten, Yates and Madey (14) reported that NO chemisorbs nondissociatively at room temperature, but dissociation occurred at elevated temperatures (\(\sim 500 - 600^\circ K \)). From the NO dissociation molecular nitrogen is desorbed and the majority of the oxygen is desorbed as oxides of tungsten. Weinberg and Merrill (15) report similar results on the W(100) surface and also found that when all of the nitrogen is desorbed, a typical (2x1) oxygen pattern remains (10).

In contrast to these common diatomic molecules, CO has been assumed to be associatively adsorbed on tungsten surfaces. Qavenna and Schmidt (16) recently reported CO was probably associatively adsorbed on a W(100) surface with the possible exception of the adsorbed state which desorbed at \(\sim 1425^\circ K \). More recent results (17-19) have been reported supporting a dissociatively adsorbed model for CO on polycrystalline tungsten. In Table I, a comparison is made between the desorption of associatively adsorbed states (molecular) and dissociatively adsorbed states (atomic) for the diatomic molecules of interest. The behavior of hydrogen, oxygen, nitrogen, and nitrous oxides has been well documented with regard to the separation of the two possible adsorbed states. As indicated by Goymour and King (17),
Table I. A comparison of thermal desorption data of diatomic molecules from a W(100) surface.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>D_e (Kcal/mole)</th>
<th>Molecular State</th>
<th>Atomic State</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Desorption</td>
<td>Desorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature</td>
<td>Temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(°K)</td>
<td>(°K)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Activation</td>
<td>Activation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy for</td>
<td>Energy for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desorption</td>
<td>Desorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Kcal/mole)</td>
<td>(Kcal/mole)</td>
</tr>
<tr>
<td>H₂ (1)</td>
<td>104</td>
<td>100°</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₂ (11-13)</td>
<td>118</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO (14, 15)</td>
<td>150</td>
<td>520°</td>
<td>—</td>
</tr>
<tr>
<td>N₂ (8)</td>
<td>225</td>
<td>180°</td>
<td>10</td>
</tr>
<tr>
<td>CO (16)</td>
<td>256</td>
<td>400°</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
it has been maintained in the literature that even the states of CO desorbing at a temperature from \(\sim 1000 - 1425^\circ K \) have resulted from associatively adsorbed CO. In Table I the desorption activation energies and temperatures for these high temperature states of CO are similar to those for nitrogen states known to be dissociatively adsorbed.

It therefore seemed desirable to re-examine the question of CO dissociation on tungsten, and a study of mixed adsorption of \(^{16}\text{O} \) and \(^{18}\text{O}_2\) on (100), (110) and (111) tungsten single crystal faces was undertaken for this purpose. Very recently and while the present study was in progress, Goymour and King (17-19) have presented evidence, based on polycrystalline FDS experiments, for dissociative adsorption of CO on tungsten and have presented a model for such adsorption.
CHAPTER II. MOLECULAR ORBITAL INVESTIGATION
OF ATOMIC SPECIES CHEMISORBED ON
A W(100) SURFACE

Introduction

Today there is no available experimental technique or any combination of techniques which can be used to assign unequivalently a bonding structure between an adsorbate species and the atoms of a surface. The advent of metal single crystal surfaces in chemisorption research has brought about increased speculation as to the preferred bonding structures for chemisorbed species. Unfortunately, no general overall understanding has emerged which can serve to predict sites and preferred structure for new systems based on previous knowledge. Certainly, there is no reason to suspect that chemisorbed atoms like hydrogen, nitrogen, oxygen, etc. would exhibit strange and unusual bonding properties when interacting with the atoms of a metal surface. The bonding properties of most atoms are generally known and their roles in a particular chemical compound are usually predictable. If a surface chemist were able to develop guidelines from which bonding between an adatom and surface atoms could be predicted, he would be able to understand and describe more concretely surface processes of current concern.

In this study, a molecular orbital approach was used in hopes that some guidelines could be established for predictions of
chemisorption bonding. A simple molecular orbital technique developed by Hoffmann (20), which was sensitive to bonding geometries, was utilized in this study. Hoffmann extended the Hückel Molecular Orbital technique which depended only on the interactions of adjacent atoms to include all interactions. Therefore, it is referred to as the Extended Hückel Molecular Orbital (EHMO) technique. A listing of the computer program used for the molecular orbital calculations can be found in Appendix D.

Results and Discussion

This study was restricted to the tungsten (100) surface with adatoms of hydrogen, nitrogen, and oxygen. The application of the EHMO technique to the surface "molecules" formed by

$$W_n(100) + X \rightarrow W_n(100)X$$

is described in Appendix A. The tungsten surface was represented by a finite array of tungsten atoms (W_n) to which the adatom could bond forming the surface "molecule" W_nX.

The results and a full description of the molecular orbital calculations for hydrogen, nitrogen, and oxygen atoms chemisorbed to the various sites on a W(100) surface are found in Appendices A, B, and C respectively.

The tungsten (100) surface has three symmetric bonding sites as illustrated in Fig. 1a. An adatom at site A will be coordinated to
Fig. 1. Bonding structure of chemisorbed atoms on the W(100) surface (a - W(100) surface A - 5 CN site, B - 2 CN site, C - 1 CN site, b - hydrogen bonded at 1 CN sites in a (1 x 1) structure, c - nitrogen bonded at 5 CN sites in a C(2 x 2) structure and d - oxygen bonded at 2 CN sites in a (2 x 1) structure).
five surface atoms (5 CN), at site B to two surface atoms (2 CN), and at site C to a single surface atom (1 CN). It was found that hydrogen (Appendix A) preferred the 1 CN site, the nitrogen (Appendix B) preferred the 5 CN site, and oxygen (Appendix C) preferred the 2 CN site. It appears that each adatom selected a site on the tungsten (100) surface determined by the bonding properties of the adsorbate atom.

The most direct tests of the above bonding models are the LEED patterns of stable structures of these adatoms. The adsorption of hydrogen on a W(100) surface leads to a (1x1) pattern (3, 5) or one hydrogen atom for every surface atom. Such a structure, as shown in Fig. 1b, is consistent with hydrogen bonded at every 1 CN site. After annealing a nitrogen adsorbed layer a C(2x2) structure (7, 8) is produced on a W(100) surface. From the knowledge (Appendix B) that nitrogen selected the 5 CN site because of the ability of the p_x and p_y orbitals to bond to the four atoms surrounding the 5 CN site, it is not unreasonable that nitrogen atoms would select a C(2x2) surface structure (Fig. 1c). In this structure, a nitrogen atom is surrounded by four empty adjacent 5 CN sites. The p_x and p_y orbitals of nitrogen can form strong bonds with the four atoms around this site. LEED has observed a stable (2x1) oxygen (10) surface structure on the W(100) surface. A (2x1) surface structure results if the oxygen atoms occupy the 2 CN sites on a W(100) surface as illustrated in Fig. 1d. Each
oxygen atom is bonded to two surface atoms, and each surface atom to
one oxygen atom.

Summary and Conclusions

The bonding properties of chemisorbed species on metal
surfaces appear to be very similar to those expected from their usual
bonding characteristics. Where there is no activation for dissociation
(usually the case for diatomic molecules) the atoms of an adsorbing
molecule will select sites where they can best satisfy their valency
requirements and maximize the bonding interactions with the surface
atoms. These guidelines should be able to help understand additional
chemisorbed systems. One example will be used to indicate the
transferability of derived results. In Fig. 2, a W(110) surface is
illustrated. There are three probable sites for a chemisorbed species
to be located. If an oxygen atom were bonded to this surface, either
site A or site B would satisfy its divalent property. At site B, the
tungsten atoms are touching and probably would not form a stable bond
with an oxygen atom. Site A appears attractive to an atom with a
higher valency, because of its high coordination number. Although the
four atoms are not equally spaced at this site, two atoms are separated
by 3.16Å and the other two by 4.46Å. To the oxygen atom, this site
is very similar to the 2 CN site on the W(100) surface. If the oxygen
atoms were to produce a surface structure as illustrated in Fig. 2,
Fig. 2. Proposed surface structure of oxygen atoms at 2CN sites on a W(110) surface.
the bonding between the oxygen atoms and the surface atoms would be identical to that on the W(100) surface. Each oxygen is bonded to two tungsten atoms and these tungsten atoms are not bonded to any other oxygen atom. This surface structure is a p(2x1) and a resulting LEED pattern should be observed. Tracy and Blakely (21) have reported such a structure for oxygen adsorption on a W(110) surface.

The usefulness of this basic understanding will be illustrated in the next chapter when selecting preferred sites for C and O adatoms and associatively adsorbed CO and O₂ on the single crystal surfaces of tungsten (100, 110, and 111) crystal faces.
CHAPTER III. CO AND 18O$_2$ CO-ADSORPTION ON SINGLE CRYSTAL SURFACES OF TUNGSTEN

Introduction

The interaction of CO with tungsten has been extensively studied and reviews of the literature have recently been published (22-24). On tungsten as on most metal surfaces, it has generally been accepted that CO is nondissociatively chemisorbed. All common diatomic gases including CO exhibit multiple peaks in the desorption spectra from Flash Desorption Spectrometry (FDS), but for CO, unlike the other diatomic gases, it has been assumed that even the high temperature desorption peaks result from undissociated adsorbed CO.

Very recently Goymour and King (17-19) have shown that a model based on dissociative chemisorption of CO can more satisfactorily explain their experimental results. They have presented the following facts in a brief history (17) of related experimental evidence which has been reported in favor of and against the hypothesis of dissociative adsorption:

(1) The argument of Ehrlich, Hickmott, and Hudda (25) that their failure to find traces of C or O residues on their surfaces following CO chemisorption implies associative chemisorption is not compelling. The major desorption product from a mixture of C and O adatoms appears always to be CO, and in this case it is scarcely
surprising if little C and O residues remain after heating a CO adlayer. Thus Becker et al. (26) and Singleton (27) found that carbon impurities are removed as CO from a tungsten surface when that surface is heated to 2000°K in an oxygen ambient.

(2) The energy balance for dissociative adsorption is (24)

\[q_{\text{CO}} = q_0 + q_c - D_{\text{CO}} \]

where \(q_x \) is the adsorption heat of species \(x \) and \(D_{\text{CO}} \) is the dissociation energy of gaseous CO (256 Kcal/mole). From Brennan and Graham (28) \(q_0 = 163 \) Kcal/mole, and from Redhead (29) \(q_c \approx 170 \) Kcal/mole; therefore \(q_{\text{CO}} \) is 77 Kcal/mole. If the activation energy for adsorption is zero, then \(q_{\text{CO}} \) can be compared with the activation energy for desorption of CO from the various surfaces of tungsten which are listed in Table II. These comparisons indicate that it is thermodynamically feasible for CO to be dissociated on tungsten surfaces.

(3) Madey et al. (30) observed isotopic mixing in the \(\beta \) states of CO from mixed adsorption of \(^{12}\text{C}^{18}\text{O} \) and \(^{13}\text{C}^{16}\text{O} \). Their explanation was based upon a four-centered complex formed by the interaction of two adsorbed CO molecules, although dissociative adsorption is also a very plausible explanation. Madey and Yates (31) later reported that isotopic exchange occurred on W at temperatures between 1300 and 2200°K where the steady state CO coverage is very
Table II. A comparison of activation energy of desorption for CO on various tungsten surfaces.

<table>
<thead>
<tr>
<th>Tungsten Surface</th>
<th>State</th>
<th>E_{d0} (Kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycrystalline</td>
<td>β_1</td>
<td>53</td>
</tr>
<tr>
<td>W (4)</td>
<td>β_2</td>
<td>100</td>
</tr>
<tr>
<td>$W(100)$ (12)</td>
<td>β_3 (<0.1)</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>β_3 (>0.1)</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>β_2</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>β_1</td>
<td>57</td>
</tr>
<tr>
<td>$W(110)$ (13)</td>
<td>β_1</td>
<td>40 - 55</td>
</tr>
<tr>
<td></td>
<td>β_2</td>
<td>67</td>
</tr>
</tbody>
</table>
small and it is difficult to see why desorption should take place preferentially through a four-centered complex. It was also shown by Madey et al. (30) that isotopic exchange does not occur in the \(\alpha \) states but only in the \(\beta \) states of CO.

(4) Propst and Piper (32), using the relatively low resolution energy-loss technique, observed a strong vibrational band attributed to the \(\beta \)-CO state on W(100) which they claimed could only be explained by the presence of atomically adsorbed C and O.

These facts along with the kinetic and surface stoichiometry data reported by Goymour and King (17) and also the mixed adsorption of CO and \(^{18}\)O\(_2\) very recently reported by Goymour and King (19) strongly suggest that \(\beta \)-CO is dissociatively adsorbed on tungsten. The object of the present work was to use \(^{18}\)O\(_2\) which will dissociatively adsorb on W surfaces as a chemical probe in mixed adsorption experiments on single crystal surfaces of tungsten (100, 110, 111) to test the hypothesis of dissociatively adsorbed CO. Isotopic mixing of oxygen in the desorbed CO molecules could serve as primary evidence for the hypothesis. It should also be possible to vary the ratio of C\(^{16}\)O:\(^{18}\)O adsorbed on the surface and if the CO is dissociatively adsorbed the ratio of C\(^{16}\)O and C\(^{18}\)O desorbed from the W surfaces should also vary. If more than one \(\beta \) (dissociated CO) state exist on a particular surface, then the ability of the adsorbed
$^{18}\text{O}_2$ to displace any or all of these states, or the ability of the co-adsorbed $^{18}\text{O}_2$ to alter the energy of CO desorption (e.g. lowering the temperature of the maximum desorption of an adsorbed state) are also of interest.

Experimental Procedure

The ultra-high vacuum Pyrex apparatus is schematically illustrated in Fig. 3. During bake-outs to $\sim 350^\circ\text{C}$, the system was pumped by a mercury diffusion pump trapped with liquid nitrogen. At the end of the bake-out, with the oven still hot, the pumping was shifted to an Ultek 20 L/sec differential ion pump. After cooling of the apparatus, background pressures of $\sim 10^{-10}$ Torr were routinely obtained. Pressures were measured with an Electron Technology Inc. ion gauge equipped with a thoriated iridium filament controlled with a Granville-Phillips ionization gauge controller. The reaction cell was also equipped with a quadrupole mass spectrometer (QMS) (Electronic Associates Inc.) enabling partial pressures of the various gaseous species to be monitored. The tungsten single crystals were cut from a 7 mm diameter rod of 99.998% purity. The rod was properly aligned by back reflectance x-ray patterns according to the procedure outlined by Wood (33). Sample wafers \sim20 mil thick were spark cut from the rod to expose selected single crystal surfaces. These wafers were mechanically polished to a mirror finish. Back reflectance x-ray
Fig. 3. A schematic diagram of the experimental apparatus for flash desorption spectrometry.
patterns indicated that the three crystal surfaces (100), (110), and (111) were oriented to within 1.5° of the nominal orientations. For each of the crystals the edge area was about 10% of the total area. Each single crystal surface sample was mounted to a 15 mil tungsten main support rod which was attached to a pyrex dewar via a 45 mil tungsten rod. A thermocouple (W vs. Re) was also attached to each sample. Generally, the crystals were heated in vacuo to 2200°K by electron bombardment until a background pressure of less than 10^{-8} Torr could be obtained (about 24 hours); this was interspersed with flashes to at least 2600°K for several minutes each. During the cleaning period, the crystals were also flashed to 2000°K for several minutes in an O_2 atmosphere of ~10^{-6} Torr. At the end of this procedure the crystal could be flashed to above 2000°K without a measurable pressure increase.

The heating of the crystal by electron bombardment was accomplished by maintaining the crystal +400 volts above filament potential and by preselecting an emission current with which to bombard the sample. With a controller which monitored the emission current and signalled a programmable filament power supply, a filament temperature could be maintained to give the proper emission current. The calibrated thermocouple was used to obtain time-temperature curves for various emission currents for each sample. Emission currents could then be selected which gave linear heating rates over
the temperature ranges of interest. The flash desorption curves were all recorded as ion current (y axis) vs. time (x axis); the latter could be converted to a temperature scale from the above heating curves.

In the following experiments, the desorption species of principal concern were ^{16}O and ^{18}O molecules. Therefore, the QMS was set to sweep mass (m/e$^-$) 28-30 at a rate of six sweeps per second. The ion current of each mass on each sweep was recorded by a high speed chart recorder enabling each species to be monitored simultaneously for each flash desorption spectrum.

The dosing gases were controlled by variable leak valves. The $^{18}\text{O}_2$ was obtained from YEDA R&D Co. LTD, a Division of Miles Laboratories, and was 99.29% $^{18}\text{O}_2$. The ^{16}O was C.P. Grade, 99.5% CO, obtained from Matheson Co. The CO was vacuum distilled prior to use as the dosing gas. The dosing pressure of each gas was monitored with the QMS which was calibrated with the ionization gauge.
Results and Discussion

Mixed adsorption of CO and \(^{18}\text{O}_2\) on a W(100) surface

A series of CO desorption spectra obtained from a W(100) surface after varying exposures to CO at room temperature are shown in Fig. 4. These are very similar to those found in the literature (16, 34) for the interaction for CO with this single crystal surface. Yates and King (34) reported three bonding states: \(\alpha\) which desorbed at \(\sim 400^\circ\text{K}\) and two higher temperature states \(\beta_1\) and \(\beta_2\). The desorption temperatures for these states were not reported. Clavenna and Schmidt (16) also reported an \(\alpha\) state desorbing at \(\sim 400^\circ\text{K}\); with an ultra-high vacuum system which apparently had a higher pumping speed, they were able to resolve the next state which compares to the \(\beta_1\) state of Fig. 4 into states which they labeled \(\beta_1\) desorbing at \(\sim 1040^\circ\text{K}\) and \(\beta_2\) desorbing at \(\sim 1130^\circ\text{K}\). These two states combined desorbed at a temperature centered at \(\sim 1100^\circ\text{K}\) and compares with the \(\beta_1\) state in Fig. 4 which desorbs at \(\sim 1060^\circ\text{K}\) and with the \(\beta_1\) states reported by Yates and King (34). The higher temperature state \(\beta_2\) in Fig. 4 desorbs at \(\sim 1450^\circ\text{K}\) which compares with a state desorbing at \(\sim 1480^\circ\text{K}\) and labeled \(\beta_3\) by Clavenna and Schmidt. The spectra reported by Clavenna and Schmidt better resolve the \(\beta_1 - \beta_2\) group and the higher temperature \(\beta_3\) state than the spectra of Fig. 4. The \(\beta_2\) state in Fig. 4 is only clearly observed in curves A and B and unfortunately because
Fig. 4. Flash desorption spectra of CO adsorbed on a W(100) surface (A - 2.4L, B - 4.5L, C - 9.0L, and D - 18.2L (1 Langmuir (L) = 10^-6 Torr-sec.)).
of poor resolution at larger CO coverages (curves C and D of Fig. 4),
the tail of the flash desorption spectra of the β_1 state covers up the β_2
state. The resolution of a flash desorption spectra can be improved
primarily by controlling two experimental parameters: the pumping
speed of the system and the heating rate. The design of the system and
size of the pump determine the pumping speed, therefore, this can not
be changed after construction of the system and in the experiments of
this study, the heating rate was optimized for the best resolution
possible. The only other observable difference between the spectra in
Fig. 4 and those previously reported (16, 34) is the amount of CO
desorbed in the α state. Yates (35) suggested that possibly the crystal
was not cool enough during the dosing period to accommodate a larger
amount of CO adsorbed in the α state. Yates and King (34) using ESD
were able to resolve the α state into two substates α_1 (340°K) and α_2
(380°K). Yates (35) indicated that the α_1 state was very labile and
could be desorbed by pumping on the system, whereas the α_2 state was
more stable. Although cool water flowed through the dewar reservoir,
Yates (35) thought that the temperature of the crystal might have been
high enough during dosing to preclude formation of the α_1 state, so
that only the α_2 state appeared in Fig. 4.

Using LEED and FDS, Anderson and Estrup (36) reported that
two β states resulted from room temperature adsorption of CO on the
W(100) surface. The initial adsorption produced a (1 x 1) LEED pattern, and upon heating the surface to desorb the β_1 state at $\sim 1150^\circ$K, the remaining CO, the β_2 state, produced a C(2 x 2) LEED pattern. This β_2 state desorbs at $\sim 1380^\circ$K. These β states compare remarkably well with those found in this study and elsewhere (16, 34). They were able to readsorb CO upon the β_2 (C(2 x 2) structure) state to produce a structure indistinguishable from that resulting from adsorption on a clean surface.

The results of first dosing the W(100) surface with CO followed by a dose of 18O$_2$ are shown in Figs. 5 - 8. In these figures, the flash desorption curves of both C16O and C18O are shown (recorded simultaneously as previously explained). In Fig. 5, the surface was dosed with a 2.4L dose of C16O followed by increasing dosages of 18O$_2$ as indicated for curves B-F. It is observed that most of the C18O is desorbed in the β_1 state. It is difficult to observe any peak of C18O desorbing from the β_2 state, in fact at larger 18O$_2$ doses (curves E and F) even the C16O which desorbed from the β_2 state has been displaced. The amount of C16O desorbing in the α state increases slightly as the coverage of 18O$_2$ increases and seems to reach a limiting value as observed from curves E and F. The isotopic mixing of oxygen in the CO molecules desorbed from the β_1 state suggests CO has been dissociatively adsorbed. A suggestion that associatively
Fig. 5. Flash desorption spectra of CO from a W(100) surface predosed with 2.4 L of C16O followed with increasing dosages of 18O\textsubscript{2} (A - 0.0L, B - 1.2L, C - 2.6L, D - 5.3L, E - 10.7L and F - 21.3L).
Fig. 6. Flash desorption spectra of CO from a W(100) surface predosed with 4.5 L of \(^{16}\text{O}\) followed with increasing dosages of \(^{18}\text{O}_2\) (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).
Fig. 7. Flash desorption spectra of CO from a W(100) surface predosed with 9.0 L of C16O followed with increasing dosages of 18O\textsubscript{2} (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).
Fig. 8. Flash desorption spectra of CO from a W(100) surface predosed with 18.2 L of CO followed with increasing dosage of 18O$_2$ (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).
adsorbed CO in an α state could be converted to dissociated CO in the β states as a result of heating during the flash desorption technique is not supported by the above facts. If CO were only associatively adsorbed at room temperature, then dosing with $^{18}\text{O}_2$ a surface with preadsorbed CO should block the sites needed for the conversion of α-CO to β-CO. This conflicts with results shown in Figs. 5-8; therefore, the CO must be adsorbing in the β states at room temperature. With larger $^{18}\text{O}_2$ doses (curves D-F), it also must be noted that some $^{16}\text{O}_2$ is desorbed from the α state. Therefore, at very high coverages of $^{18}\text{O}_2$, the associatively adsorbed α-CO must be able to interact with the adsorbed $^{18}\text{O}_2$. In Fig. 6, where the surface was predosed with 4.5 L dose of $^{16}\text{O}_2$ followed with increasing $^{18}\text{O}_2$ doses, the observations are the same as those stated above. Figures 6 and 7 with predose 9.0 L of $^{16}\text{O}_2$, and Fig. 8 with predose of 18.2 L of $^{16}\text{O}_2$ all show that as the $^{18}\text{O}_2$ coverage increases, there is a decrease in the temperature of the desorption peak maximum for the β_1 state.

The flash desorption spectra of a set of experiments where a W(100) surface was predosed with varying amounts of $^{18}\text{O}_2$ always followed by the same dose of $^{16}\text{O}_2$ are shown in Fig. 9. It is observed that the $^{18}\text{O}_2$ initially blocks sites for CO to adsorb in the β state, but creates sites for more CO to adsorb associatively in α states; as the
Fig. 9. Flash desorption spectra of CO from a W(100) surface predosed with increasing dosages of 18O$_2$ (A - 2.6L, B - 5.3L, C - 10.7L and D - 21.3L) followed by a constant dose of C16O (9.0L).
amount of preadsorbed $^{18}\text{O}_2$ increases, it eventually also blocks the CO from adsorbing in the α state. If the W(100) surface were saturated with $^{18}\text{O}_2$, it would prevent the surface from adsorbing any CO. From Fig. 9 it must also be observed that isotopic mixing of the oxygen in the desorbed CO molecules still occurs primarily in those desorbed in the β state.

It is possible to estimate the amount of CO desorbed from the surface by determining the area under each of the flash desorption curves. The total amounts of CO (^{16}O and ^{18}O) desorbed from all states in each of the four experiments (Figs. 5 - 8) are plotted in Fig. 10. It is evident that in a given experiment with a constant ^{16}O predose, the amount of CO desorbed is independent of the $^{18}\text{O}_2$ coverage. This shows that $^{18}\text{O}_2$ is unable to displace any of the preadsorbed ^{16}O. Figure 11 plots the ratio of $^{18}\text{O}:^{16}\text{O}$ as a function of $^{18}\text{O}_2$ dose on the surface for each of the experiments in which ^{16}O was preadsorbed. Each ^{16}O predosed surface appears to reach a limiting ratio ($^{18}\text{O}:^{16}\text{O}$) as the amount of $^{18}\text{O}_2$ dosed increases to a saturated level. The limiting ratios for each predosed surface are plotted in Fig. 12 as functions of the ^{16}O predose. The limiting $^{18}\text{O}:^{16}\text{O}$ ratio at low ^{16}O dose appears to be ~ 0.75 and at high ^{16}O dose appears to be ~ 0.24.
Fig. 10. Total amount of CO ($C^{16}O + C^{18}O$) desorbed from a W(100) surface where the surface was predosed with $C^{16}O$ (A - 2.4L, B - 4.5L, C - 9.0L and D - 18.2L) with increasing dosages of $^{18}O_2$ (1.2L, 2.6L, 5.3L, 10.7L and 21.3L) in each set of $C^{16}O$ doses.
Fig. 11. The ratio of $\text{C}^{18}\text{O}/\text{CO}_{\text{total}}$ desorbed from a W(100) surface predosed with C^{16}O (A - 2.4L, B - 4.5L, C - 9.0L and D - 18.2L) with increasing dosages of $^{18}\text{O}_2$ (1.2L, 2.6L, 5.3L, 10.7L and 21.3L) in each set of C^{16}O doses.
Fig. 12. The limiting ratio of $^{18}O/CO_{\text{total}}$ desorbed from a W(100) surface predosed with ^{16}O (2.4L, 4.5L, 9.0L, and 18.2L) followed by a saturated dose of $^{18}O_2$.
Before proposing a model which is consistent with the above results of mixed adsorption of 16O and 18O$_2$ on a W(100) surface, it would be appropriate to first summarize the experimental observations.

(1) The FDS spectra of CO desorbed from a W(100) surface exhibited three bonding states: α, β_1, and β_2. Because the amount of α desorbed was smaller than other reported results, it is assumed that only the more stable α_2 state was present on the W(100) surface.

(2) Preadsorbed CO was not displaced from the surface by dosing with 18O$_2$ (Fig. 10).

(3) The adsorption of 18O$_2$ on a CO covered surface eliminated the β_2 state of adsorbed CO. There was a small increase in CO desorbed in the α_2 state which appeared to reach a rather low limiting value. The fact the amount of CO desorbing in the α state does not continue to increase provides evidence that there is no conversion from an α state to β state. With increasing 18O$_2$ coverage, the temperature of maximum desorption for the β_1 state shifted to lower temperatures.

(4) From mixed adsorption of CO and 18O$_2$, isotopic exchange of oxygen occurred in the desorbed CO molecules primarily in the β_1 state and also to a very small extent in the α state at very high 18O$_2$ coverages.

(5) At very low preadsorbed coverages of CO followed by a
saturating dose of $^{18}\text{O}_2$, the ratio of $C^{18}\text{O}:\text{CO}_{\text{total}}$ desorbed appeared to reach a limiting value of ~ 0.75. At a saturated coverage of CO followed by a saturating dose of $^{18}\text{O}_2$, the ratio of $C^{18}\text{O}:\text{CO}_{\text{total}}$ appeared to reach a lower limiting value of ~ 0.24.

(6) With increasing coverages of preadsorbed $^{18}\text{O}_2$, it is possible to decrease the amount of CO which can be adsorbed on the surface. The β states are the first to be blocked by the preadsorbed $^{18}\text{O}_2$. As the sites for the β states are blocked, there is an increasing amount of CO desorbed in the α state, but at still higher $^{18}\text{O}_2$ coverages, the α state is also blocked for CO adsorption.

Goymour and King (17-19) have very recently published results for CO adsorption on polycrystalline tungsten from which they concluded CO was dissociatively adsorbed. They have proposed a model (17) based on the W(100) surface which was consistent with their kinetic and surface stoichiometric results from their polycrystalline work. The essence of the model proposed by Goymour and King is schematically illustrated in Fig. 13. They proposed that at room temperature a CO molecule would dissociate into C and O adatoms in the β state occupying the 5 CN sites marked A in Fig. 13. Nitrogen has been shown (Appendix B) to prefer the 5 CN site, and its 2p orbitals were influential in this preference; the carbon atom for the same reason should prefer this site. This is not, as shown in Appendix C, a
Fig. 13. Possible sites occupied by chemisorbed species resulting from co-adsorption of ^{16}O and $^{18}\text{O}_2$ on a W(100) surface (A - 5 CN site, B - 2 CN site, C - 1 CN site, \bullet - C or O adatoms and $\bullet\bullet$ associatively adsorbed oxygen).
preferred site for oxygen adsorbing alone, but presumably the carbon
is able to influence the oxygen to select a 5 CN site when co-adsorbed
(the LEED results indicate that C and O must select the same kind of
site in CO adsorption). It has been shown (18) that, if the CO adsorption
occurs by dissociation into these sites and requires the availability of
5 CN sites in adjacent pairs, then random adsorption will lead to a
maximum coverage of CO in the β state in which only 85% of the
available 5 CN sites are occupied. It was proposed (18) that the
remaining 5 CN sites could adsorb an associated CO molecule in an α
state or two associated CO molecules in an α state at the 2 CN sites
(B in Fig. 13) adjacent to an empty 5 CN site. ESD (34, 37) has resolved
two α states; the low temperature α\(_1\) state is labile (35) and yields a
CO\(^+\) ion by ESD and the high temperature α\(_2\) state yields an O\(^+\) ion by
ESD. These two α states might well correspond to the two α sites
suggested by Goymour and King (18). Suppose the α\(_1\) state is bonded
at site B and the α\(_2\) state at site A in Fig. 13. In the former case
the carbon atom is presumably bonded to two tungsten atoms, and lies
above their plane. Its desorption as CO\(^+\) on ESD seems likely. In the
latter case the carbon atom is coordinated to 5 tungsten atoms and is
nestled down into the plane of surface atoms. The bonding of carbon
to tungsten is presumed stronger, and to oxygen weaker, than at site B.
Loss of O\(^+\) from this configuration on ESD seems reasonable. If the C
and O atoms from the dissociated CO molecule in the \(\beta \) state are bonded at the 5 CN sites, it is very probable that the electrons would not be able to desorb any ionic species. Yates and King (34) have reported that they were unable to desorb any ions by the ESD technique when only the \(\beta \) states are present on a W(100) surface.

The observations which have been summarized above can readily be explained based upon the above model for dissociatively adsorbed CO. The initial interaction of a CO molecule with the W(100) surface is probably at either a 1 CN or 2 CN site (C or B of Fig. 13). If two adjacent 5 CN sites (A of Fig. 13) are available then the CO molecule will dissociate into C and O adatoms at these sites. If only one 5 CN site is empty, we will assume that the CO will bond associatively at this site. The bonding state of CO observed in the flash desorption spectra of Fig. 4 from a W(100) surface can be assigned bonding sites based on the above model for CO adsorption. The CO desorbed in the \(\beta_1 \) and \(\beta_2 \) states would be C and O adatoms bonded at the 5 CN sites. The CO desorbed in the \(\alpha \) state (\(\alpha_2 \)) would be associatively adsorbed CO molecules occupying the 15\% of 5 CN sites not occupied by C and O adatoms. The fact that CO desorbed as two states \(\beta_1 \) and \(\beta_2 \) from C and O adatoms in the same sites can be explained by lateral interactions as has been done in other systems (H on W(100) and N in W(100)).

When the CO desorbs from the surface, as the \(\beta_1 \) state, it will be
assumed to be occurring by the recombination of adjacent C and O adatoms. The remaining C and O adatoms are undergoing rearrangement to form a more stable surface structure, a β_2 state, which desorbs at a higher temperature. This explanation is also consistent with the LEED observations of Anderson and Estrup (36).

The results summarized above where oxygen was co-adsorbed on the surface to serve as a chemical probe add support to the model of dissociatively adsorbed CO; the isotopic mixing of the oxygen in the CO molecules desorbed in the β states is particularly significant.

Goymour and King (19) have shown by ESD that oxygen adsorbed onto a CO saturated surface seemed to be identical in population and ESD cross section to the β_1-O_2 state formed by oxygen adsorption on clean W with oxygen preadsorbed in the β_2 state. Although it does not desorb as a molecular oxygen, it has been described as an associated adsorbed O_2 species (38-40) on a clean polycrystalline tungsten surface. The primary ESD product of this species is an O^+ ion. When heating the surface, this species undergoes a change which occurs between 600 and 900$^\circ$K and the ESD product is no longer an O^+ ion.

From the above discussion, it can be assumed that the oxygen adsorbed on W(100) with preadsorbed CO is molecular oxygen. From ESD results on polycrystalline tungsten, this molecularly adsorbed state begins to dissociate at about 600-900$^\circ$K. Therefore, as the β_1
state of CO desorbs at \(~1060^\circ\)K, the carbon atoms have a random selection of the two isotopes of oxygen resulting in a mixture of \(C^{16}O\) and \(C^{18}O\) desorbed for the \(\beta\) states. The small amount of isotopic mixing in the \(\alpha_2\) state could result from the possibility that the associatively adsorbed CO in desorbing from a 5 CN site could interact with a molecularly adsorbed oxygen; the probability of such interaction should increase with increasing oxygen saturation and this is what is observed.

The \(\beta_2\) state of dissociated CO has been proposed as resulting from C and O atoms in a C(2x2) structure formed after the \(\beta_1\) state has desorbed and the C and O atoms have rearranged to seek a more stable bonding configuration. The presence of adsorbed oxygen could prevent this rearrangement and therefore all the CO would be desorbed at a temperature characteristic of the \(\beta_1\) state. The presence of the adsorbed oxygen with which the surface tungsten atoms must also bond will cause those bonds between the tungsten atoms and those of the C and O adatoms to be weakened. Therefore, as there is an increase of oxygen adsorbed on a W(100) surface, preadsorbed CO (C and O adatoms) bonds should be weakened, and the CO should desorb at lower temperatures as observed.

Goymour and King (19) found that oxygen would displace part of the \(\alpha\)-CO from their polycrystalline tungsten surface which was
saturated with CO. They found no displacement of the CO desorbed in the \(\beta \) state. In this study, oxygen did not displace any of the pre-adsorbed CO on a W(100) surface (Fig. 10). According to the model just presented, it would be difficult for the adsorbed oxygen which is assumed to be occupying sites above the surface atoms to displace any preadsorbed CO (which is assumed to be occupying 5 CN sites whether associatively (\(\alpha \)) or dissociatively (\(\beta \)) adsorbed). On the other hand, any CO preadsorbed in the more labile \(\alpha_1 \)-CO state might be displaced. Goymour and King (19) reported the \(\alpha \)-CO which was not displaced from their polycrystalline surfaces shifted to a higher desorption temperature. This supports the hypothesis of two bonding states of \(\alpha \)-CO with the \(\alpha_2 \)-CO being more stable and not displaced by the adsorbing oxygen.

In Fig. 9 it was observed that with an increasing preadsorbed oxygen dose the adsorption of CO in the \(\beta \) states was decreased while adsorption in the \(\alpha_2 \) state was mutually increased. According to our model, the \(\beta \) states are dissociated and a pair of vacant adjacent 5 CN sites is needed to adsorb \(\beta \)-CO. Oxygen preadsorption will reduce adjacent pairs of empty sites much more than single sites (which suffice for associative \(\alpha_2 \)-CO adsorption) and therefore as observed a decrease in CO desorbed as \(\beta \) and increased in \(\alpha \)-CO. With increased coverages of oxygen, even these sites were blocked for CO adsorption and at a saturated coverage of oxygen, the surface should be blocked to any CO
adsorption.

By an assessment of sites available for adsorbed α-CO, β-CO and $^{18}\text{O}_2$ it is possible to offer an explanation for the limiting ratio of $\text{C}^{18}\text{O}:\text{CO}_{\text{total}}$ which is desorbed from the surface. It has been assumed that the β states of adsorbed C and O atoms occupy 5 CN sites. With a low initial CO dose, the C atom will have one adjacent 5 CN site occupied by its initial oxygen partner and three empty adjacent sites. It can also be assumed that, as the $^{18}\text{O}_2$ adsorbs on this tungsten surface with low coverage of adsorbed CO, it dissociates and will be influenced by the C adatoms to occupy the surrounding three empty 5 CN sites. Then as the CO desorbed, the C atom will have a choice of one ^{16}O and three ^{18}O atoms with which to combine. This should lead, at very low CO coverages, to a ratio of 3:4 (.75) for the $\text{C}^{18}\text{O}:\text{CO}_{\text{total}}$ desorbed from the surface, and this is what Fig. 11 shows. At saturated coverages of CO, Goymour and King (18) determined that about 15% of the 5 CN sites capable of adsorbing C and O atoms from dissociated CO were not occupied. These sites have adjacent 5 CN sites which are occupied, resulting from random adsorption.

On a tungsten surface which is saturated with preadsorbed CO, the β-CO is in the form of C and O adatoms at 5 CN sites in a (1 x 1) surface structure. A saturated dose of $^{18}\text{O}_2$ upon this C and O adatom layer results in co-adsorption and as reported above, oxygen is
molecularly bonded to the surface. The most reasonable structure for such a chemisorbed species is one bridging from site \(C \) to site \(C \) (Fig. 13). Each oxygen will be bonded to a single tungsten atom, and a single bond will exist between the oxygen atoms. The co-adsorbed oxygen molecules could easily occupy every other set of surface atoms in every row. This (2 \(\times \) 1) structure of associatively adsorbed \(^{18} \text{O}_2 \) is formed on the surface (Fig. 13).

Therefore, from a surface with saturated preadsorbed CO followed with a dose of saturating \(^{18} \text{O}_2 \), 15\% of the CO desorbed is \(\alpha - \text{C}^{16} \text{O} \) from associatively adsorbed CO. The remaining 85\% of the 5 CN sites are occupied by C and O adatoms in a (1 \(\times \) 1) structure. This (1 \(\times \) 1) unit mesh defines a surface structure of one adatom per unit mesh and assuming LEED can not distinguish between C and O adatoms, then the (1 \(\times \) 1) structure contains either one carbon or one oxygen atom. It would require two unit meshes (2 \(\times \) 1) to contain a CO molecule. If the C adatom in this structure will recombine only with O adatoms, then the carbon has a choice of \(^{16} \text{O} \) and \(^{18} \text{O} \) if the associatively adsorbed \(^{18} \text{O}_2 \) has dissociated at the temperatures of \(\beta - \text{CO} \) desorption. If the co-adsorbed oxygen dissociates according to

\[
\text{O} - \text{O} \to 2 \text{O} \\
\ast \ \ast \ \ast
\]

then, as assumed, each (2 \(\times \) 1) unit mesh should contain three oxygen
atoms \((^{16}\text{O} + 2^{18}\text{O})\) and one carbon atom. It is very unlikely that the above dissociation is complete when \(\beta\)-CO desorbs. If one-half the oxygen molecules have dissociated, coupled with the probability that only one-half of these are dissociating next to a C adatom, then the carbon has a choice of oxygen isotopes in the ratio of \(^{16}\text{O} : ^{18}\text{O}\) which is 1:5. Therefore, from the 85% of the sites occupied by C and O adatoms, 57.5 molecules of CO will be desorbed from every 100 sites occupied. Based upon the above assumptions, one-third of these CO molecules would be \(^{18}\text{O}\). From the arguments above, the limiting ratio of \(^{18}\text{O} : \text{CO}_{\text{total}}\) desorbed should be \(~.24\) which compares well with the value of \(~.23\) determined from Fig. 12.

Mixed adsorption of CO and \(^{18}\text{O_2}\) on a W(110) surface

The flash desorption spectra of CO from a W(110) surface are shown in Fig. 14. At low coverages only a \(\beta\) state is present which desorbs at \(~1100\,^\circ\text{K}\). As the coverage increases, an \(\alpha\) state desorbing at a much lower temperature (\(~400\,^\circ\text{K}\)) appears and the \(\beta\) state increases and appears to split into 2 states, \(\beta_1\) and \(\beta_2\), desorbing at \(~920\,^\circ\text{K}\) and \(~1100\,^\circ\text{K}\) respectively. In the present study, \(^{16}\text{O_2}\) occasionally was found in the ambient when heating the crystal to higher temperatures for cleaning. It was also observed that the size of the \(\beta_1\) state depended upon the amount of \(^{16}\text{O_2}\) which appeared in the ambient.

This dependence is depicted in Fig. 15 which indicates that the splitting
Fig. 14. Flash desorption spectra of CO adsorbed on a W(110) surface (A - 2.5L, B - 4.4L, C - 9.2L and D - 18.6L).
Fig. 15. Flash desorption spectra of CO from a W(110) where CO was dosed (18.6L) simultaneously with 18O$_2$ (A - ~.05L, B - .15L, C - .60L and D - 1.80L) from the ambient.
of the β state into β_1 and β_2 results from interactions of co-adsorbed species on the surface.

May and Germer (41) reported two peaks in their flash desorption spectra of CO from a W(110) surface, a β state at $\sim 1100^\circ K$ and an α state at $\sim 450^\circ K$. Kohrt and Gomer (42) observed, in their step desorption spectra from CO adsorbed on a W(110) surface at 100$^\circ$K, a virgin state (v) desorbing at $\sim 390^\circ K$ and two β states, β_1 desorbing at $\sim 980^\circ K$ and β_2 desorbing at $\sim 1120^\circ K$. From their findings, they concluded that heating the surface to 400-600$^\circ$K after it was saturated with virgin CO caused some of the CO to desorb, but that some of the virgin CO was converted irreversibly to the β states. They reported that the surface was able to accommodate approximately one-half the number of CO molecules in beta configurations as in virgin configuration. After formation of the beta layer, they report that additional CO could be adsorbed on the surface at 100$^\circ$K. In their step desorption spectra this CO desorbed at $\sim 150^\circ K$ and at $\sim 300^\circ K$. They labeled these states α_1 and α_2 respectively.

In the mixed adsorption experiments of CO followed by 18O$_2$ (Figs. 16-19), it was observed that as the amount of 18O$_2$ dosed on the surface increased, the β_2 state was gradually displaced until all the CO desorbed as the β_1 state. The temperature of maximum desorption for the β_1 state even shifted to lower temperature as the amount of
Fig. 16. Flash desorption spectra of CO from a W(110) surface predosed with 2.5 L of C^{16}O followed with increasing dosages of 16O_2 (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).
Fig. 17. Flash desorption spectra of CO from a W(110) surface predosed with 4.4L of 16O followed with increasing dosages of 18O$_2$ (A - 0.0L, B - 1.2L, C - 2.6L, D - 5.3L, E - 10.7L and F - 21.3L).
Fig. 18. Flash desorption spectra of CO from a W(110) surface predosed with 9.2 L of C16O followed with increasing dosages of 18O$_2$ (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).
Fig. 19. Flash desorption spectra of CO from a W(110) surface predosed with 18.6 L of C^{16}O followed with increasing dosages of \(^{18}O_2 \) (A - 0.0 L, B - 1.2 L, C - 2.6 L, D - 5.3 L, E - 10.7 L and F - 21.3 L).
18O$_2$ on the surface increased. As the amount of 18O$_2$ on the surface increased following the predose of CO, there was no large increase in the amount of CO desorbed in the α state. Such an observation would have been expected if α-CO was being converted to β-CO by heating the surface during the flash desorption.

Figures 16-19 also show that isotopic mixing of the oxygen in the CO molecules desorbed from the β states is extensive, but that it is negligible in those desorbed from the α state. In a given experiment the CO molecules (C16O and C18O) desorb simultaneously as evidenced by their substantially identical FDS temperatures of peak maxima.

If the surface is predosed with 18O$_2$, the oxygen is able to block the adsorption of CO. In Fig. 20, a small dose of 18O$_2$ (curve A) displaces the β_2 state first and causes a slight increase in the amount of CO desorbed in the α state. With larger doses of 18O$_2$, the amount of CO desorbed from the surface decreases and the temperature of maximum desorption of the β_1 state is again shifted to lower temperatures until finally it is almost impossible to adsorb any CO on the oxygen covered surface. Figure 20 also illustrates the desorption of C18O in these experiments. It is observed that as the 18O$_2$ dosed increases the amount of C18O desorbed first increases (curves A-C of Fig. 20), then decreases (curves C-D) because the amount of CO on the surface decreases. There is almost no C18O desorbed from the
Fig. 20. Flash desorption spectra of CO from a W(110) surface predosed with increasing dosages of $^{18}\text{O}_2$ (A - 1.2L, B - 2.6L, C - 5.3L, D - 10.7L, and E - 21.3L) followed by a constant dose of ^{16}O (9.2L).
The total amounts of CO desorbed from the W(110) surface in each of the experiments as determined from the area under flash desorption curves are plotted in Fig. 21. A constant amount of CO is desorbed from the surface after being predosed with a constant amount of CO followed by increasing coverages of 18O$_2$; this proves that the oxygen is not able to displace any of the CO adsorbed on the surface at room temperature.

The ratios of C^{18}O:CO$_{\text{total}}$ desorbed from the surface in each of the experiments (Figs. 16 - 19) are plotted in Fig. 22. In each experiment, there appears to be a limiting ratio of C^{18}O:CO$_{\text{total}}$ desorbed. The limiting ratios for each of the four sets of experiments are plotted in Fig. 23. At low coverages of preadsorbed CO followed by a saturated dose of 18O$_2$, the limiting ratio is ~0.5 and for a surface saturated with preadsorbed CO followed by a saturated dose of 18O$_2$, the limiting ratio is ~0.25.

The above results will be summarized before proposing a consistent model.

(1) CO adsorbed on a W(110) surface at room temperature desorbs as an α-state at ~400°K and as two β states, β_1 at ~920°K and β_2 at ~1100°K. The separation into two states appears to result from interactions of co-adsorbed species on the surface.
Fig. 21. Total amount of CO (16O + 18O) desorbed from a W(110) surface where the surface was predosed with 16O (A - 2.5L, B - 4.4L, C - 9.2L and D - 18.6L) with increasing dosages of 18O$_2$ (1.2L, 2.6L, 5.3L, 10.7L and 21.3L) in each set of 16O doses.
Fig. 22. The ratio of $\text{C}^{18}\text{O}/\text{CO}_{\text{total}}$ desorbed from a W(110) surface predosed with C^{16}O (A - 2.5L, B - 4.4L, C - 9.2L and D - 18.6L) with increased dosages of $^{18}\text{O}_2$ (1.1L, 2.4L, 5.3L, 10.6L and 21.2L) in each set of C^{16}O doses.
Fig. 23. The limiting ratio of $\text{C}^{18}\text{O}/\text{CO}_{\text{total}}$ desorbed from a W(110) surface predosed with C^{16}O (2.5L, 4.4L, 9.2L and 18.6L) followed by a saturated dose of O_2.
(2) Preadsorbed CO was not displaced from the surface by dosing with $^{18}O_2$ nor was there any extensive increase in the amount of CO desorbed in the α state. The lack of such an observation suggests no conversion is occurring between adsorbed states.

(3) Mixed adsorption of CO and $^{18}O_2$ results in isotopic mixing of the oxygen in the CO molecules desorbed from the β states and very little mixing in the CO molecules desorbed in the α state.

(4) From a low coverage of CO followed with a saturated coverage of $^{18}O_2$, the limiting ratio of ^{18}O:CO$_{total}$ desorbed from the surface is ~ 0.5 and from a saturated coverage of CO and $^{18}O_2$, the limiting ratio is ~ 0.25.

(5) A surface saturated with preadsorbed $^{18}O_2$ first preferentially blocks CO adsorption in the β state and slightly increases the amount of CO desorbed as α-CO (Fig. 20). As the amount of preadsorbed $^{18}O_2$ was increased, the amount of CO adsorbed in all states decreased.

The above results suggest a model for adsorption of CO on the W(110) surface similar to that for the W(100) surface. The CO which desorbs in the β states, where there is extensive isotopic mixing of the oxygen when it is co-adsorbed with $^{18}O_2$, will be assumed to be in the form of C and O adatoms. The CO desorbed as the α state is proposed to be associatively adsorbed CO. In the flash desorption of
the adsorbed CO, a point of concern is the conversion of α-CO to the β-CO by the heating process. If the CO were preadsorbed associatively on the surface, the co-adsorbed $^{18}\text{O}_2$ should be able to block the sites for the conversion of α-CO to β-CO. Since increasing doses of $^{18}\text{O}_2$ on a surface with preadsorbed CO leads to no increase in the amount of CO desorbing in the α state, it appears that there is no conversion from an associatively adsorbed CO in an α state to a β state.

The above model should also be consistent with other reported results for the adsorption of CO on the W(110) surface. Kohrt and Gomer (42) reported the formation of a virgin state, when dosing a W(110) surface at a temperature of 100°K or lower with CO. In a step desorption experiment, virgin CO desorbed at 200-450°K, followed by the desorption of two beta states, β_1 at ~970°K and β_2 at ~1120°K. Because of the complex kinetics observed from the desorption of the virgin state, they suggested there was competition between desorption and conversion to β state, with the latter predominating at low θ. If after forming the virgin state by dosing a surface at 100°K or less, they heated the surface to only 450-600°K where all the virgin state had desorbed, they were then able to readsoorb CO forming a new state. This state was different from the original low temperature virgin state and was labeled α. It desorbed as α_1 at ~150°K and α_2 at ~300°K. This also supports the hypothesis that the CO adsorbed in
the virgin state is converted irreversibly to the \(\beta \) states.

In view of the model proposed for dissociative adsorption of CO, it must be reasoned that the W(110) surface at \(\sim 100^\circ K \) is not able to dissociatively adsorb CO. Therefore, it adsorbs the CO associatively as virgin CO, but when the surface is heated to 450–600°K where half of the virgin CO desorbs, the remaining CO dissociates to C and O adatoms. Tungsten with this chemisorbed layer is able to adsorb additional CO associatively as the \(\alpha \) states observed by Kohrt and Gomer (42). In this study, the CO was dosed on a W(110) surface at room temperature, and as observed the \(\beta \) states formed immediately and were not formed by the conversion of associative adsorbed CO molecules. With larger doses of CO, as the \(\beta \) states were saturated, a small amount of CO adsorbed associatively (no isotopic mixing) as an \(\alpha \)-CO. This compares with the \(\alpha_2 \)-CO state desorbed at \(\sim 300^\circ K \) observed by Kohrt and Gomer.

On the W(110) surface there are three symmetric sites available for the chemisorbed species. These sites are indicated in Fig. 24. At site A, a chemisorbed species could possibly be coordinated to four surface atoms. Although two of the surface atoms are farther away, the two nearer surface atoms are separated by the same distance as those forming a 2 CN site on the W(100) surface. Although the two tungsten atoms are touching at site B, a chemisorbed
Fig. 24. Possible sites occupied by chemisorbed species from co-adsorption of CO and 18O$_2$ on a W(110) surface (A - 2 CN site, B - 2 CN' site, C - 1 CN site, • - C or O adatoms and •• - associatively adsorbed oxygen).
species could be coordinated to these surface atoms. At site C, a
chemisorbed atom would be coordinated to a single surface atom.

May and Germer (41) reported a C(9x5) pattern from a W(110)
surface with CO adsorbed in the β state. Such patterns are of very
little help in assigning possible sites and stoichiometry for the
adsorbed species. In a LEED study of oxygen on the W(110) surface,
Tracy and Blakely (21) reported that atomically chemisorbed oxygen
produced a p(2x1) pattern. This structure corresponds to one-half a
monolayer of oxygen atoms. The p(2x1) structure can be produced by
the O adatoms occupying every other row of sites A as marked in
Fig. 24. With the O adatoms in this surface structure, the bonding
shows great similarity to the bonding of O adatoms at 2 CN sites on the
W(100) surface where it produced a (2x1) LEED pattern. In the (2x1)
structure on W(100), each O adatom was bonded to two surface
tungsten atoms, and these tungsten atoms were not bonded to any
other O adatoms. If the O adatoms on a W(110) surface occupied the
proposed sites indicated in Fig. 24, then each oxygen atom would also
be bonded to two of the surface tungsten atoms, and these two tungsten
atoms would not be directly involved in the bonding of O adatoms at
adjacent sites. At full oxygen coverage, each tungsten atom would be
bonded to a single oxygen atom which is consistent with the bonding
model also proposed for the W(100) surface. The carbon atom should
seek a site of the highest coordination number possible to satisfy its multi-valency. On the W(110), this would be site A (Fig. 24). Therefore, it is very likely that the C adatoms would occupy the same sites as the O adatoms.

In dissociative adsorption of CO on the W(110) surface, the C and O adatoms should occupy every other row of sites A (Fig. 24). In order to observe C\(^{16}\)O and C\(^{18}\)O as desorbed CO molecules, it must be possible to adsorb \(^{18}\)O\(_2\) upon a W(110) surface with preadsorbed C\(^{16}\)O. And as indicated by the plots in Fig. 21, the adsorbed C\(^{16}\)O is not displaced by the adsorption of \(^{18}\)O\(_2\). Therefore, the \(^{18}\)O\(_2\) must be co-adsorbed with the preadsorbed CO. As was concluded for the W(100) surface, it will be assumed that the \(^{18}\)O\(_2\) will be associatively adsorbed. The adsorbed \(^{18}\)O\(_2\) could be bridged across site A bonding to the two distant tungsten atoms. The adsorbed oxygen could be occupying every other site A between the rows of C and O adatoms. The sum of the amount of CO desorbed in the \(\beta_1\) and \(\beta_2\) states is a constant in a set of experiments where the same predose of C\(^{16}\)O is followed by increased \(^{18}\)O\(_2\) coverages. The shift in the desorption of the \(\beta\)-CO all to \(\beta_1\)-CO (lower temperature state) is not likely to result from site changes of C and O adatoms, but rather from weakened bonds between surface atoms of tungsten and the C and O adatoms due to the co-adsorbed \(^{18}\)O\(_2\). At the temperatures where
the β_1-CO desorbs, the associatively co-adsorbed $^{18}\text{O}_2$ will be
dissociating and the O adatoms will want to occupy sites A between the
rows of C and O adatoms. Therefore, every tungsten atom would be
coordinated to two adatoms, a structure certainly not as stable as the
previous structure where every tungsten atom was coordinated to only
one adatom.

In Fig. 15 the presences of two β states in flash desorption
spectra were attributed to co-adsorbed $^{16}\text{O}_2$ which was noticed to be
varying in the ambient. In fact it is very likely that the β_1 state exists
only as a result of some co-adsorbed species (not necessarily always
oxygen). The β_1 state could desorb from the surface where the C and
O adatoms are co-adsorbed with $^{18}\text{O}_2$ according to the above bonding
scheme where co-adsorbed species are trying to occupy all of the A
sites available (Fig. 24). The β_2 state could be assumed to result
from the surface were only C and O adatoms are bonded in the p(2x1)
structure. The co-adsorption could also account for the C(9x5) LEED
pattern reported by May and Germer (41), because May, Germer and
Chang (43) later reported a C(11x5) LEED pattern resulting from
experiments of known co-adsorption of oxygen and carbon monoxide on
the W(110) surface.

When the surface was predosed with increasing amounts of
$^{18}\text{O}_2$, followed with constant doses of $^{16}\text{O}_2$, the amount of ^{16}O
adsorbed on the surface decreases. In Fig. 20, it is observed that a surface with preadsorbed oxygen has a larger amount of CO desorbing in the \(\alpha \) state than in any experiment (Figs. 15-18) where the surface was predosed with \({^{16}}O \). It should also be noted, even in the \({^{18}}O_2 \) predosed surfaces followed with a dose of \({^{16}}O \), that there is no \({^{18}}O \) desorbed in the \(\alpha \) state. The CO desorbed in the \(\beta \) states is desorbed primarily as \(\beta_1 \) with isotopic exchange of the oxygen occurring. The increase in the amount of \(\alpha \)-CO desorbed from the surface where the CO was dosed on a surface with preadsorbed \({^{18}}O_2 \) occurred as a result of the O adatoms blocking sites for dissociation by the depletion of adjacent empty A sites, but allowed single A sites to exist for associatively adsorbed CO.

At very small coverages of preadsorbed \({^{16}}O \), it should be possible to complete the p(2x1) structure with \({^{18}}O \) adatoms. In the limiting case of small coverages, the C and \({^{16}}O \) adatoms from the dissociated CO molecule should occupy adjacent sites in the p(2x1) structure, and remaining sites in this structure should be occupied by \({^{18}}O \) adatoms. As the carbon atoms desorb, it then has a choice of two O adatoms, one \({^{18}}O \) and the other \({^{16}}O \). Therefore, the limiting ratio of \(C^{18}O:CO_{\text{total}} \) desorbed from a surface in the case of a low coverage of CO and saturated with \({^{18}}O_2 \) should be .5, which compares remarkably well with the value determined from the plot in Fig. 23.
When CO adsorbs on the surface and dissociates into C and O adatoms, it is necessary to have two adjacent sites vacant. On the W(110) surface, the C and O adatoms were assumed to occupy every other row of A sites (Fig. 24). Random dissociative adsorption of CO according to the above hypothesis results in ~25% of the A sites on the W(110) surface not having empty adjacent sites (44). The α-CO (associatively adsorbed CO) will be assumed to be bonded at these sites. A p(2x1) surface structure was assumed to result from C and O adatoms from dissociatively adsorbed CO. One-half a molecule would be adsorbed per unit cell or one molecule in a p(2x2) structure. If $^{18}\text{O}_2$ were dosed on a surface of saturated preadsorbed CO, the co-adsorbed $^{18}\text{O}_2$ could occupy every other site in the rows between the C and O adatoms (Fig. 24); these oxygen molecules would also produce a p(2x2) structure or one molecule per unit cell of this structure. Upon heating the surface in a flash desorption experiment, the dissociation of adsorbed molecular $^{18}\text{O}_2$ occurs according to

$$O - O \rightarrow 2 \text{O}$$

It will be assumed a C adatom can recombine only with an O adatom for CO desorption. According to the above bonding scheme, there is a C and 18O adatom per p(2x2) unit mesh and the associatively co-adsorbed $^{18}\text{O}_2$ also formed a p(2x2) unit mesh. Therefore, each
p(2×2) unit mesh has C and ^{16}O adatoms and a molecule of $^{18}\text{O}_2$. The probability of an adsorbed $^{18}\text{O}_2$ is near the C adatom is .5 and coupled with the assumption only one-half of the $^{18}\text{O}_2$ molecules have dissociated at the temperature where CO desorbs results in the C adatom having a choice of oxygen isotopes in the ratio $^{16}\text{O}:^{18}\text{O}$ of 1:5. The resulting ratio of $^{16}\text{C}^{16}\text{O}:^{18}\text{C}^{18}\text{O}$ desorbed from the β state should be 2:1. Therefore, from a surface with a saturated predose of $^{16}\text{C}^{16}\text{O}$ followed by a saturating $^{18}\text{O}_2$ dose, 25% of the CO will desorb as associatively adsorbed $^{16}\text{C}^{16}\text{O}$. From 100 sites, the remaining 75 sites should desorb 37.5 molecules of CO as the β state. From the above ratio one-third should be $^{18}\text{C}^{18}\text{O}$ or the limiting ratio of $^{18}\text{C}^{18}\text{O}:\text{CO}_{\text{total}}$ would be .20. This ratio estimated from Fig. 22 is ~.24.

The above discussion can be summarized very briefly. The isotopic mixing of the oxygen in the desorbing CO molecules can best be interpreted in terms of a model for dissociative adsorption of CO. If the adsorbed CO is in the form of C and O adatoms, it is very understandable why adsorption of oxygen does not displace any preadsorbed CO. The bonding of the C and O adatoms at sites A in Fig. 24 to produce a p(2×1) structure explains the limiting ratio of $^{18}\text{C}^{18}\text{O}:\text{CO}_{\text{total}}$ desorbed at low CO coverages and is consistent with bonding models for chemisorbed species presented in Chapter II.
Mixed adsorption of CO and 18O$_2$ on a W(111) surface

The flash desorption spectra of CO adsorbed on a W(111) surface are plotted in Fig. 25. The CO desorbs in two states, a β state at \sim1050°K and an α state at \sim450°K. These two states desorb as very sharp symmetric peaks, an indication of the absence of any other states present on the surface. The desorption of CO is unlike the hydrogen desorption from a W(111) surface in which Tamm and Schmidt (2) observed multiple desorption peaks. In the case of CO adsorption, it is not even possible to form any new desorption peaks by the co-adsorption of oxygen on a surface with preadsorbed CO. The results of the mixed adsorption of C16O and 18O$_2$ on the W(111) surface are plotted in Figs. 26-29. In Fig. 26, it is observed, for the small predose of C16O followed by increasing coverages of 18O$_2$, that the amount of C18O desorbed increases proportionally. At high coverages of 18O$_2$, the amount of C18O desorbed is very large compared to C16O desorbed in the high temperature state, but the amount of C18O desorbed in this state decreases as the amount of CO predosed on the surface increases (Figs. 26-29). It is also interesting to note in this series of experiments that the temperature of maximum desorption of this high temperature state decreases as the coverage of oxygen increases. The isotopic mixing of the oxygen in the desorbing CO molecules from a surface with co-adsorbed C16O and 18O$_2$ occurs
Fig. 25. Flash desorption spectra of CO adsorbed on a W(111) surface (A - 2.3L, B - 4.8L, C - 8.0L and D - 19.9L).
Fig. 26. Flash desorption spectra of CO from a W(111) surface predosed with 2.3L of C16O followed with increasing dosages of 18O\textsubscript{2} (A - 0.0L, B - 1.4L, C - 2.5L, D - 5.7L, E - 10.7L and F - 22.0L).
Fig. 27. Flash desorption spectra of CO from a W(111) surface predosed with 4.8 L of 16O followed with increasing dosages of 18O$_2$ (A - 0.0 L, B - 1.4 L, C - 2.5 L, D - 5.7 L, E - 10.7 L and F - 22.0 L).
Fig. 28. Flash desorption spectra of CO from a W(111) surface predosed with 8.0 L of C\(^{16}\)O followed with increasing dosages of 18O\(_2\) (A - 0.0 L, B - 2.5 L, C - 5.7 L, D - 10.7 L and E - 22.0 L).
Fig. 29. Flash desorption spectra of CO from a W(111) surface predosed with 19.9 L of C16O followed with increasing dosages of 18O\textsubscript{2} (A - 0.0 L, B - 2.5 L, C - 5.7 L, D - 10.7 L and E - 22.0 L).
almost exclusively in the CO desorbed in the β state. When oxygen is dosed on a surface with preadsorbed CO, there is no significant increase in the amount of α-CO desorbing. Such an observation suggests no conversion process of α-CO and β-CO is occurring on the surface. If β-CO was formed by conversion of the associatively adsorbed α-CO, the oxygen adsorption should prevent this conversion. Therefore, an increase in the amount of α-CO desorbed would result. No such observations were made (Figs. 26-29) providing no evidence for a conversion process.

In Fig. 30, it is observed that at low coverages of preadsorbed oxygen there is a decrease in the overall amount of CO adsorbed on the surface compared to a clean surface. The preadsorbed oxygen appears to initially block sites for CO adsorption in the β state and create more sites for CO to adsorb as α-CO (Fig. 30). But as the amount of preadsorbed oxygen increases, there is a decrease in the amount of CO desorbed in both states.

As observed on the other tungsten surfaces in this study, oxygen when dosed on a surface with preadsorbed CO is not able to displace any of the CO. Figure 31 shows, that with increasing doses of oxygen on surfaces with constant coverages of preadsorbed CO, the total amount of CO (C^{16}O + C^{18}O) desorbed is constant but the ratio of C^{18}O:CO$_{total}$ which is desorbed from the surface (Fig. 32) changes.
Fig. 30. Flash desorption spectra of CO from a W(111) surface predosed with increasing dosages of 18O$_2$ (A - 2.5L, B - 5.7L, C - 10.7L and D - 22.0L) followed by a constant dose of 16O (8.0L).
Fig. 31. Total amount of CO (16O + 18O) desorbed from a W(111) surface where the surface was predosed with 16O (A - 2.3L, B - 4.8L, C - 8.0L and D - 19.9L) with increasing dosages of 18O$_2$ (1.4L, 2.5L, 5.7L, 10.7L and 22.0L) in each set of 16O doses.
Fig. 32. The ratio of C18O/CO\textsubscript{total} desorbed from a W(111) surface predosed with C16O (A - 2.3L, B - 4.8L, C - 8.0L and D - 19.9L) with increased dosages of 18O\textsubscript{2} (1.4L, 2.5L, 5.7L, 10.7L and 22.0L) in each set of C16O doses.
This ratio appears to reach limiting values for a selected predose of CO followed by a saturating $^{18}\text{O}_2$ dose. These limiting ratios of $\text{C}^{^{18}\text{O}}:\text{CO}_{\text{total}}$ which desorb from a surface with preadsorbed CO are (Fig. 33) 0.65 at low coverages of CO and a surface saturated with $^{18}\text{O}_2$, and 0.24 for a saturated coverage of CO followed by a saturating $^{18}\text{O}_2$ dose.

Following is a summary of the above results which must be consistent with any proposed model for CO adsorption and interaction with co-adsorbed $^{18}\text{O}_2$.

1. CO adsorbed on a W(111) surface at room temperature desorbs as an α state at $\sim 450^\circ\text{K}$ and a β state at $\sim 1050^\circ\text{K}$.

2. Co-adsorption of CO and $^{18}\text{O}_2$ result in isotopic mixing of the oxygen in the CO molecules desorbed from the β state.

3. Preadsorbed CO is not displaced from the surface by dosing with oxygen nor is the oxygen able to create new desorption states. The adsorbed oxygen on a surface with preadsorbed CO does not increase the amount of CO desorbing in the α state providing evidence to dispute the existence of a conversion process to the β state by heating the surface.

4. A surface with preadsorbed $^{18}\text{O}_2$ initially blocks sites for adsorption in the β state and creates more sites for adsorption of α-CO. A surface with a saturated adlayer of oxygen appears to be
Fig. 33. The limiting ratio of $\frac{C^{16}O}{C^{16}O_{\text{total}}}$ desorbed from a W(111) surface predosed with $C^{16}O$ (2.3L, 4.8L, 8.0L, 19.9L) followed by a saturated dose of $^{18}O_2$.
able to block subsequent adsorption of CO in any state.

(5) There are limiting ratios of \(\frac{C^{18}O}{CO_{total}} \) desorbed from a surface with preadsorbed CO followed by a saturating \(^{18}O_2 \) dose. At low coverage of preadsorbed CO, this ratio appears to be \(\sim 0.65 \) and from a surface with a saturated coverage of preadsorbed CO, this ratio appears to be \(\sim 0.24 \).

The above results are very similar to those found on the other tungsten surfaces studied and therefore, also imply a model for the dissociative adsorption of CO. The CO in the \(\beta \) state on the W(111) is assumed to be dissociatively adsorbed based on the isotopic mixing of the oxygen in the desorbed CO molecules from a surface of co-adsorbed \(C^{16}O \) and \(^{18}O_2 \). The CO molecules in the \(\alpha \) state must be associatively adsorbed because of the lack of any significant isotopic mixing. The decrease in the temperature of maximum desorption of the CO in the \(\beta \) state as the coverage of adsorbed oxygen increases can either result from weakened bonds with the surface due to the co-adsorbed oxygen or from the increased O adatom concentration enabling easier recombination of the C adatom with oxygen.

On the W(111) surface, three symmetric sites seem attractive for bonding chemisorbed species to the surface. In Fig. 34, these sites are illustrated as site A which has three-fold symmetry and is above
Fig. 34. Possible sites occupied by chemisorbed species from co-adsorption of CO and 18O$_2$ on a W(111) surface (A - 4 CN site, B - 4 CN' site, C - 1 CN site, • - O adatoms, ☓ - C adatoms and ◦ - associatively adsorbed oxygen).
an atom exposed to the surface and also surrounded by other surface atoms. Site B also has three-fold symmetry and is above a surface atom which is more exposed as a surface atom. The C sites are above the most exposed surface atoms on this surface. Based on the results and prediction in Chapter II, a carbon adatom would probably select site A to satisfy its multi-valent property. The proximity and the easy occupation of site B during dissociative adsorption of CO probably would result in O adatoms selecting these sites. If dissociative adsorption requires an empty site A and an empty adjacent site B, it is very probable, as was found and predicted on the other tungsten surfaces (18, 44), that in random dissociative adsorption ~ 20% of the A sites would not have available empty adjacent B sites at saturation coverage. These sites could then be occupied by associatively adsorbed CO which would be stable on the surface at room temperature. This is very similar to the model proposed on the other tungsten surfaces.

We therefore assume that adsorption of CO at room temperature results in C and O adatoms bonded at adjacent A and B sites (Fig. 34), which desorb as CO molecules in the β state, and CO adsorbed associatively at A sites where adjacent B sites are unavailable, which desorb as CO molecules in the α state. On a surface with preadsorbed CO, it is easy to understand why the co-adsorption of oxygen was not able to displace any of the preadsorbed CO from these bonding sites.
It was observed that preadsorbed oxygen initially blocked sites for \(\beta \) adsorption while creating more sites for associatively adsorbed CO (Fig. 30). If the preadsorbed oxygen is dissociatively adsorbed at the B sites, this increases the probability of A sites not having an empty adjacent B site for CO to dissociatively adsorb. Therefore, there is an increase in A sites for the associatively adsorbed CO (observed in Fig. 30).

At very low coverages of CO followed by a saturated dose of \(^{18}O_2\), the C adatom bonded at A sites would find one \(^{16}O\) adatom in an adjacent B site and two \(^{18}O\) species adsorbed at the other adjacent B sites. Therefore, the limiting ratio of \(C^{18}O:CO_{total} \) desorbed should be \(\sim 0.67 \) which compares favorably with the value of \(\sim 0.65 \) determined from the plot in Fig. 33. On a W(111) surface saturated with preadsorbed \(C^{16}O \) and followed with a saturating \(^{18}O_2\) dose, the only place for the co-adsorbed \(^{18}O_2\) molecules to bond are at the remaining unoccupied C sites. It is very likely that the oxygen molecule would be bridged between two adjacent C sites. In this configuration, there is one-half an adsorbed \(^{18}O_2\) molecule per C adatom. Again, it will be assumed that upon heating the surface during flash desorption, the oxygen dissociates according to

\[
\begin{align*}
\frac{1}{2}O & \quad - \quad O \approx \quad O \\
* & \quad \backslash \quad \backslash \quad /
\end{align*}
\]
Based upon previous evidence, ~20% of the CO desorbed will be \(\alpha-C^{16}O \) from associatively adsorbed CO at A sites. If the C adatom will recombine only with oxygen atoms, it has a choice of one \(^{16}O \) adatom from the dissociated CO molecule and assuming the \(^{18}O_2 \) dissociation is only one-half complete, and that only one-half the C adatoms are adjacent to the adsorbed \(^{18}O_2 \), then the C adatom has a choice of one-fourth \(^{18}O \) adatom for every \(^{16}O \) adatom. Therefore, the 80% of the CO desorbed from the \(\beta \) state will be one-fifth \(C^{18}O \). The limiting ratio of \(C^{18}O:CO_{total} \) desorbed from the above surface saturated with preadsorbed CO followed by a saturating dose of \(^{18}O_2 \) is \(\sim 0.18 \) and compares with the value estimated in Fig. 33 of \(\sim 0.24 \).

Summary and Conclusions

A model for dissociative adsorption of CO is consistent with all the observations in this study where CO chemisorption was examined on three single crystal surfaces (100, 110, 111) of tungsten. The observations indicated the CO which desorbed at the high temperatures was dissociated on the surface at room temperature. On all the surfaces, a stable associatively adsorbed species was found to desorb at lower temperatures. All these chemisorbed species were not displaced by co-adsorbed oxygen. The CO desorbing at the higher temperature was a mixture of \(C^{16}O \) and \(C^{18}O \) which resulted from the isotopic mixing of the oxygen from the dissociative adsorbed CO and the co-adsorbed
$^{18}\text{O}_2$ which was at least partially dissociated before the CO desorbed. On all three tungsten surfaces, it was assumed the associatively adsorbed CO was bonded at sites where vacant sites needed for the dissociation of the CO molecule were not present. On the W(100) and W(111) surfaces, it was proposed that adsorbed oxygen from an oxygen dose on a clean surface would not occupy the sites preferred for C adatoms from CO dissociation. Therefore, on the W(100) surface preadsorbed oxygen at 2 CN sites (Fig. 13) should decrease the availability of vacant adjacent 5 CN sites needed for CO to adsorb and dissociate. As observed (Fig. 9), this results in an increase of α-CO desorbed from the W(100) surface where CO was dosed on a surface with preadsorbed oxygen. On the W(111) surface, it was assumed the preadsorbed oxygen occupied sites B in Fig. 34. When the CO adsorbs at sites A, vacant adjacent sites B are needed for the CO to dissociate. If these sites are occupied by preadsorbed O adatoms, then they are not available for CO dissociation. Therefore, as observed in Fig. 30, there is an increase in the amount of α-CO desorbed from the W(111) surface where CO was dosed on a surface with preadsorbed oxygen. On the W(110) surface, the oxygen adatoms from adsorbed oxygen and the adatoms from dissociated CO were assumed to occupy the same sites. Therefore, the random adsorption of either CO or O_2 on a W(110) surface should result in approximately the same number of sites present on the surface with unavailable vacant adjacent sites.
sites were assumed to be occupied by associatively adsorbed CO.

Therefore, in contrast to the other surfaces (100, 111), the amount of
α-CO desorbed from a W(110) surface where CO was dosed on a surface
with preadsorbed oxygen (Fig. 20) is about the same as the amount of
α-CO desorbed from a surface where only CO was adsorbed (Fig. 14).
REFERENCES

44. T. Orent and R. S. Hansen, Iowa State University, unpublished work.
ACKNOWLEDGEMENTS

The author wishes to thank Dr. Robert S. Hansen for his guidance during the course of this research, as well as the encouragement during the author's graduate studies. The author is also extremely grateful for the many other opportunities which Dr. Hansen has provided for him and for the many discussions, all of which certainly have added to the author's growth in scientific knowledge.

In addition, the author would like to express his gratitude to Dr. L. S. Bartell. Discussions with Dr. Bartell, and his guidance were extremely valuable during the initial stages of this research. The comments of Dr. Klaus Ruedenberg and his suggestions relating to part of this research were also greatly appreciated.

The preparation of the single crystal surfaces were accomplished only with the help of Dale McMaster for X-ray alignments, Don Bailey for spark cutting the tungsten rod and Harlan Baker for polishing the surfaces. The author is indebted to these men for their help and would like to thank them as well as the men of the electronics shop under the direction of Wayne Rhinehart who designed and built the electronic circuit for heating the single crystal surfaces. The author also wishes to thank the glass shop under the direction of Harold Hall for the service provided in building the desorption cell.

The bonding models developed from this research were
certainly aided by the many hours of discussions provided by the members of the P & I Research Group III (Dr. Jerome McAllister, Dr. Ralph Sheets, Dr. Paul Masterson and Doug Summers) to whom the author is grateful and wishes to express his thanks.

The author wishes to thank his wife, Eileen, for her patience and encouragement during his graduate work and also to our sons, Craig and Todd, for their understanding and the enjoyment they have provided. The author is forever indebted to his father and mother for their continual encouragement and concern during the many years the author spent obtaining his education.
APPENDIX A.

A MOLECULAR ORBITAL INVESTIGATION OF CHEMISORPTION. I. HYDROGEN ON TUNGSTEN (100) SURFACE
A Molecular Orbital Investigation of Chemisorption. I. Hydrogen on Tungsten (100) Surface

LEON W. ANDERS AND ROBERT S. HANSEN

Ames Laboratory-USAEC and Department of Chemistry
Iowa State University, Ames, Iowa 50010

AND

L. S. BARTELL

Department of Chemistry, University of Michigan
Ann Arbor, Michigan 48104

Abstract

The relative bonding energies of hydrogen chemisorbed at three symmetric sites on a W(100) surface were obtained by means of the Extended Hückel Molecular Orbital Theory (EHMO). The preferred site for hydrogen chemisorption was found to be the single coordination number (1 CN) site or the site above a surface tungsten atom. The W(100) surface was represented by finite arrays of tungsten atoms which were shown to be adequate for obtaining semi-quantitative results. The basis set for the calculations contained the valence orbitals of tungsten and, initially, the 5p orbitals which were non-bonding but provided the necessary repulsion at small internuclear
The repulsive energy provided by these orbitals was replaced by an analytical exponential repulsive energy term. This allowed the 5p orbitals to be omitted from the basis set to simplify computation. Functionally, the energy change for the reaction \(W_n + H \rightarrow W_nH \) was calculated for various assumed configurations of the \(W_nH \) "molecule". The bonding between tungsten atoms was found to be changed as a result of \(W_nH \) formation, and the change varied with hydrogen position. Energy barriers to surface diffusion were also calculated, and found to agree reasonably with experimental values.

I. INTRODUCTION

In recent years, it has become experimentally possible to study the chemisorption of atoms and molecules on single crystal surfaces. To account for the experimental observations from these well defined surfaces, various bonding models have been proposed, but the detailed description of the adsorbed species remains in the realm of speculation. Unfortunately, no available experimental techniques give conclusive information about the molecular structures or site distributions of the adsorbed species. In view of current experimental limitations and the importance of the implications in the field of catalysis, a theoretical attack seems justified. The prohibitive expense of
ab initio quantum mechanical calculations for such systems make it attractive to explore nonrigorous, semiempirical methods which have been found in the past to account quite well for structural features of molecular systems.

In this paper, we apply the extended Hückel molecular orbital theory, a semiempirical molecular orbital technique, to investigate the preferred structure of the "surface molecule". EHMO has been used previously to study the chemisorption of hydrogen on graphite, carbon monoxide and hydrogen on nickel. In the case of carbon monoxide on nickel, the dependence of binding energy on distance at the possible chemisorption sites was not analyzed. The preferred site was selected by comparison of binding energies at a fixed carbon-nickel distance. These investigations used only the valence orbitals in the basis set, and as a result only the hydrogen-graphite interaction produced a minimum in the binding energy curve. The interaction of hydrogen as well as carbon, nitrogen, oxygen and fluorine on graphite was also investigated using CNDO technique in order to alleviate the problem of unreasonable charge transfer which can occur in the EHMO calculations.

Although it is known that this technique has many limitations, it nevertheless has been successful in determining preferred molecular configurations. Therefore, it is a promising tool for
investigating the structure of the elusive surface molecules and for obtaining a better understanding of the bonding between chemisorbed atoms and the surface atoms. We have chosen to investigate the chemisorption of hydrogen on a tungsten (100) surface because of the experimental data which are available for comparison. 6-11

II. PROCEDURE

Hoffmann12 developed a semiempirical molecular orbital theory, including all overlap integrals, referred to as the "extended Hückel" Molecular Orbital theory (EHMO). It was originally utilized to solve
organic conformational problems, but subsequently has been used to yield insight on other molecular geometric problems, including the structural chemistry of crystals. Hoffmann stressed that the method's most reliable characteristic is its ability to predict molecular geometries and to assess the relative importance of sigma and pi orbitals. On the other hand, it is quite crude in predicting charge distributions and excitation energies in electronic transitions.

The molecular orbitals are formed from a linear combination of atomic orbitals (LCAO),

\[\Psi_j = \sum_q C_{jq} \chi_q , \]

where the atomic orbitals \(\chi_q \) are the single parameter, Slater-type atomic orbitals (STO). According to the standard variation principle, the LCAO function with \(q \) atomic orbitals leads to a set of \(q \) simultaneous linear homogeneous equations, each of which contains \(q \) coefficients \(C_{jq} \),

\[\sum_q (H_{pq} - \epsilon_j S_{pq}) C_{jq} = 0 . \]

For these equations to have nontrivial solutions, the determinant of the coefficients must vanish,

\[||H_{pq} - \epsilon_j S_{pq}|| = 0 . \]

The eigenvalues \(\epsilon_j \) given by the solution of this determinant are the energies of the molecular orbitals. These energies \(\epsilon_j \) are substituted back into the set of simultaneous linear homogeneous equations which are
then solved to give the coefficients C_{jq}. These coefficients C_{jq} form the wave function of the molecular orbital at each energy ϵ_j. In the Hoffmann formalism, the diagonal elements H_{pp} are set equal to the valence orbital ionization potential (VOIP) of χ_p; the non-diagonal elements H_{pq} were approximated by the Mulliken Wolfsberg-Helmholtz approximation:

$$H_{pq} = 0.5K(H_{pp} + H_{qq})s_{pq}$$

with a Helmholtz Factor K equal to 1.80.

The EHMO method does not explicitly account for either electron-electron or core-core interactions between atoms, but relies on extensive cancellations which hold approximately for nonpolar molecules. These cancellations will also hold for other molecules near the equilibrium internuclear separations where the chemical bond is formed. Excessive charge transfers, a common problem in the EHMO method, were partially alleviated by adjusting the VOIP as functions of atomic charge q and iterating to self-consistency. The atomic charge was computed by the Mulliken method and the VOIP of the atomic orbitals were determined as functions of charge q according to the following:

$$VOIP(q) = Aq^2 + Bq + C$$

These adjusted VOIP gave more realistic charge transfers than fixed VOIP. Bonding energies for different structures in the neighborhood of their energy minima were similarly shifted by shifts in VOIP so
that conclusions as to preferred sites were unaffected by variations in VOIP.

Table I lists the orbital exponents for the STO and the values for the constants, A, B and C, which are needed to determine the VOIP as a function of atomic charge. The values for the hydrogen 1s orbital were obtained from Basch, Viste and Gray.\(^ {16} \) A value of 1.20 was used for the orbital exponent of the hydrogen 1s orbital. For the tungsten 5p orbital, the value of C was obtained from the tables of Herman and Skillman;\(^ {17} \) the orbital exponent for the STO was obtained by the rules of Burns\(^ {18} \) and assumed to be charge independent. The values of C and the orbital exponents for the STO of the tungsten 5d and 6s orbital were obtained from Lohr and Lipscomb;\(^ {19} \) the values of C for these orbitals agreed with neutral atom ionization measurements of Lotz.\(^ {20} \) A linear charge dependence\(^ {21} \) for the VOIP of the tungsten 5d and 6s orbitals was used with the value of B equal to 3.5 \(\text{ev/e}^{-}\).

The EHMO method was first applied to the diatomic molecules, W-W and W-H. These calculations showed that it was necessary to include the inner orbitals of the tungsten atoms as well as the valence orbitals in the basis set to obtain a characteristic potential energy curve; when only valence orbitals were used too few non-bonding orbitals were populated to provide the requisite repulsion at small internuclear separations. It was found that the addition of the inner
orbitals overcame this deficiency, although they made little contribution to the formation of the chemical bond. Therefore, if the repulsive energy could be calculated by an empirical relationship, these orbitals could be omitted, thus reducing the size of the basis set and saving a substantial computation effort. The repulsive energy between atoms in a molecule can be represented approximately by a series of exponential terms of the form

\[E_{\text{Rep}} = \sum_{ij} A_{ij} e^{-\frac{r_{ij}}{\alpha_{ij}}} \]

where the parameters, \(A_{ij} \) and \(\alpha_{ij} \), are unique for a pair of atoms. These parameters for pairwise interactions were derived from the repulsive energy, \(E_{\text{Rep}} \), of the diatomic molecules. The repulsive energy was determined as the difference in bonding energies obtained by a calculation with only valence orbitals and by a calculation which also included the inner orbitals. Comparison of \(E_{\text{Rep}} \) for WH and \(W_2H \) indicated that repulsive energies in the tungsten hydrogen system could be assumed pairwise additive.

In modeling the tungsten (100) surface for the EHMO calculations, it was necessary to truncate the infinite surface to a limited number of metal atoms. These selected surface arrays must represent the possible sites for bonding of a chemisorbed atom. The tungsten (100) appears to offer three distinct symmetric sites which might be considered attractive adsorption sites. These are shown in Figure 1, which also
shows the metal atom arrays used in calculations. The three sites can be distinguished by the numbers of surface tungsten atoms to which the hydrogen atom is coordinated (CN). Thus the 1 CN site is on top of a tungsten atom, the 2CN site bridges two tungsten atoms, and the 5 CN site is in the four-fold hole. The size of the surface array representing the 1 CN and 5 CN sites was increased to 21 tungsten atoms with an insignificant change in bonding energies. The presence of edges on these truncated surface arrays caused abnormal charge distribution, but these effects were reduced by adjusting the VOIP of the edge atoms. After this initial adjustment, there was no further adjustment of the tungsten orbitals' VOIP.

III. RESULTS

A. Diatomic Molecules

Energy-distance calculations were made for diatomic molecules to determine the parameters needed for the exponential repulsive energy term. These calculations also provided a basis for comparison with the chemisorbed system, in which the hydrogen was bonded to larger arrays of tungsten atoms. In Fig. 2, the bonding energy is plotted as a function of inter-nuclear separation r along the molecular axis z for the W-W and W-H molecules. The bonding energy was calculated by subtracting from the total energy the energy of the ions
of the W-H molecule or the energy of the atoms of the W-W molecule at infinite separation. These arbitrary conventions compensate in part for the total neglect of coulomb interactions in the EHMO method and have no influence on any conclusions drawn later.

Figures 2a and 2b display the clear need to include some of the inner orbitals of tungsten in the basis set in order to obtain a characteristic potential energy curve. The differences between curves a and b in Figs. 2a and 2b are the repulsive energies. In Fig. 3, $\ln \Delta \epsilon$ is plotted as a function of internuclear separation r for W-W and W-H molecules. From these plots, the values for the parameters A and α needed to calculate the repulsive energy by the analytical exponential term were derived. Best values were found to be: $A_{WW} = 4096.\text{ev}$, $\alpha_{WW} = 0.289\AA^{-1}$, $A_{WH} = 139.\text{ev}$, $\alpha_{WH} = 0.279\AA^{-1}$.

As previously stated, the VOIP of the valence orbitals were adjusted as a function of atomic charge and iterated to self-consistency. For the diatomic molecule W_2 the atomic charge on each tungsten atom was of course zero, for WH the charge on hydrogen was -0.10 and on tungsten +0.10. Corresponding VOIP are implied by Table I. The molecular orbitals (LCAO coefficients) for the diatomic molecules at equilibrium separation are tabulated in Table II. Those for W-H will prove useful in comparing the bonding of hydrogen to tungsten in the diatomic molecule with that in "surface molecules" such as W_9H.
used to model chemisorption.

Although the diatomic molecules in Table II are not known to exist, their EHMO bond lengths can be compared with the sum of the covalent radii of the atoms in the molecule. The Pauling single bond covalent radii of hydrogen and tungsten are 0.32 and 1.30 angstroms, respectively. The sum of the Pauling covalent radii for the diatomic tungsten molecule gives a bond length of 2.60 Å for a single bond. The calculated bond length of 2.14 Å implies a multiple bond whose order can be estimated from Pauling's empirical rule

\[D(n) = D(1) - 0.71 \log n. \]

Here \(D(1) \) is the single bond length (2.60 Å), \(D(n) \) the observed bond length (2.14 Å), and \(n \) the bond order. Pauling's rule leads to a value of 4.4 for the bond order in reasonable agreement with the implications of Table II (5 occupied bonding orbitals, 1 occupied antibonding orbital). Hence the calculated bond lengths appear to be reasonable and self consistent.

A molecule of a hydrogen atom and two tungsten atoms was used to determine whether the repulsive energies as calculated in the analytical exponential term were pairwise additive. In this molecule, the tungsten atoms were separated by 3.16 Å, a characteristic distance on a tungsten (100) surface, and the hydrogen was equidistant
from these two tungsten atoms. The repulsive energies plotted as curve a in Fig. 4 are determined by the differences between the energies calculated by the EHMO technique where the basis set of atomic orbitals included the 5p as well as the valence (6s, 5d) orbitals of the tungsten atoms and those calculated where the 5p orbitals were omitted from the basis set. The repulsive energies, as calculated by the analytical exponential repulsive term for two tungsten-hydrogen interactions, are plotted as curve b in Fig. 4. From the comparison of curves a and b, it is confirmed that the repulsive energy is reasonably well represented by the sum of all pairwise interactions.

B. Hydrogen Chemisorbed on a W(100) Surface

Before calculations were performed with the hydrogen at the proposed chemisorbed sites, it was necessary to make adjustments on the VOIP of the edge tungsten atoms. Because the edge atoms of the surface arrays were missing nearest and next nearest neighbors, their VOIP were adjusted to prevent abnormal charge distribution. The VOIP of the 5d and 6s orbitals of the four corner atoms of the arrays in Figs. 1a and 1b were adjusted to -8.52 ev and -7.52 ev, respectively; these same orbitals on the other four edge atoms were adjusted to -8.76 ev and -7.76 ev, respectively. The orbitals of the eight edge atoms of the array in Fig. 1c were adjusted to -8.68 ev
for the 5d orbitals and -7.68 ev for the 6s orbital. The VOIP of the remaining atoms in these arrays were not adjusted.

Mattheiss' band theory calculation on tungsten provides two check points for our EHMO calculations on the W9 molecule. First, he finds a d-band width of 10.47 eV. We take as the EHMO analog the difference in energies between highest and lowest molecular orbitals having d character on atom 1 in the surface array of Fig. 1a. The lowest energy of such an orbital is \(\Psi_2 \) (shown in Fig. 6a), the highest (not shown because it is unoccupied) is 9.45 eV higher.

Second, Mattheiss finds that the bottom of the d band lies 1.36 eV above the bottom of the conduction band. Our analog is the difference between \(\Psi_1 \) in Fig. 6a and the first occupied orbital of d character (not totally symmetric and therefore not shown in Fig. 6a); this difference is 1.34 eV, remarkably close to Mattheiss' result.

Calculations were then carried out with hydrogen bonded at the three possible symmetric sites. The minimum charge transfer to the hydrogen occurred with hydrogen bonded at the 5 CN site and the maximum with the hydrogen bonded at the 1 CN site. In the initial calculations, the VOIP of the hydrogen 1s orbital was adjusted as a function of atomic charge \(q \) and iterated to self consistency holding the tungsten orbital VOIP constant at values previously given. The final iteration VOIP were -11.34 ev at the 5 CN site, -9.54 ev at the 2 CN site, and -8.84 ev at the 1 CN site. These differences raised
the possibility that energy differences between various absorption
configurations might reflect too strongly the different parametrizations
of the hydrogen 1s VOIP. Since these energy differences were of
principle concern, the calculations were repeated using a VOIP of
-10.30 for all sites. Comparing the two sets of calculations, it was
found that differences in bond energy and equilibrium distances between
configurations were almost unaffected, and most importantly that the
order of bonding energies among the three configurations remained
unchanged. Hence use of a fixed hydrogen VOIP of -10. ev was
adopted for all subsequent calculations for computational simplicity.
The dependence of bonding energy E on internuclear separation r is plotted in Fig. 5 for hydrogen bonded at each of the three symmetric sites. The internuclear separation was the distance of hydrogen to the nearest tungsten atom(s) in the surface atom arrays. In the case of the 5 CN site, it was the distance to the tungsten atom in the hole, for the 2 CN site, it was the distance to the two surface atoms, and for the 1 CN site, it was the distance to the single tungsten atom. The bond energy E was calculated according to the following relationship:

$$E = \sum_{W_nH} n_i \epsilon_i - \sum_{W_n} n_i \epsilon_i - \epsilon_H + \sum_{W_nH} A e^{-r/\alpha}$$

where the first term is the summation over the occupied molecular orbitals of energy ϵ_i of the surface "molecule" W_nH, the next term is the summation over the occupied molecular orbitals of energies ϵ_i of the W_n part of the "molecule" separated from the hydrogen and the next term is the energy of the singly occupied atomic orbital of a separated hydrogen atom. The last term, the repulsive energy term, represents the repulsion of the occupied inner non-bonding orbitals (omitted from initial calculations), and the summation extends over all hydrogen-tungsten pairs in the surface array. This term is not necessary to determine the bond energy if the inner orbitals are included in the basis set for the MO calculations. Table III presents
bonding energies, equilibrium distances, and charges corresponding to the energy minima in Fig. 5.

A somewhat simpler description and a better understanding of the bonding between hydrogen and the surface arrays can be obtained by using group theory. First, the surface "molecules" must be assigned to a symmetry group. The 1 CN and 5 CN sites on the W(100) surface have fourfold symmetry and the surface arrays in Fig. 1 representing the surface for each of these symmetric sites belong to the C_{4v} symmetry group. The 2 CN site has twofold symmetry and the surface array representing this site belongs to the C_{2v} symmetry group. Because the hydrogen 1s orbital is totally symmetric and belongs to the a_1 irreducible representation in these symmetry groups, it will interact only with the molecular orbitals of the tungsten arrays belonging to this same totally symmetric irreducible representation a_1. For the C_{4v} surface arrays with nine tungsten atoms (Figs. 1a and 1b), there are twelve totally symmetric molecular orbitals formed by the valence orbitals of which only five are occupied. The C_{2v} surface array (Fig. 1c) with twelve tungsten atoms has twenty totally symmetric molecular orbitals of which eleven are occupied. An additional totally symmetric molecular orbital is formed as the hydrogen 1s orbital interacts with molecular orbitals of the W_n arrays.
Molecular orbital energy diagrams are shown in Fig. 6 for the hydrogen interacting with each of the surface arrays at equilibrium separation. The totally symmetric molecular orbitals of the tungsten arrays are indicated on the left side of the panels in Fig. 6 with the hydrogen 1s orbital on the right side and in the middle are the molecular orbitals formed by the W_nH surface "molecule". The lines joining the molecular orbitals of the separated W_n and H atomic orbital with those of the combined W_nH show the change in energy of the W_n molecular orbitals as they interact with the hydrogen in qualitative form; corresponding quantitative information can be obtained by comparing Tables IV and V (which tabulate the occupied totally symmetric molecular orbitals of the W_9 and W_{12} surface arrays) with Tables VI, VII and VIII (which tabulate the totally symmetric orbitals of the W_nH surface "molecules"). From these tables, it is observed that hydrogen makes only a small contribution to some of the molecular orbitals of the surface "molecule". These are indicated in Fig. 6 as orbitals not joined by a line to the hydrogen 1s orbital.

It is interesting to note that, for the 1 CN and 2 CN sites, interaction of the hydrogen atom with the k occupied molecular orbitals in the totally symmetric a_1 representation leads to $k+1$ molecular orbitals all of which are below the highest occupied molecular orbital.
(HOMO), and which are correspondingly occupied and contribute to bonding in the \(W_n^H \) molecule. In the 5 CN site one of the molecular orbitals in the \(W_n^H \) molecule is above the HOMO (\(\Psi_6 \) in Fig. 6c) and so does not contribute to bonding.

IV. DISCUSSION

The observed\(^6,9\) LEED patterns from a \(C(2 \times 2) \) surface structure of hydrogen on the \(W(100) \) surface indicate that hydrogen must be chemisorbed at a site with 4-fold symmetry, either the 5 CN or 1 CN site. Evidence for this comes from the diffraction spots of the \(C(2 \times 2) \) surface structure, where the spots at the half order position \(([\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{3}{2}), \text{etc.}]\) are diffuse, resulting from \(C(2 \times 2) \) domains on the surface which are not in phase. The facts that the spots at the integral order positions \([(1, 0), (1, 1), \text{etc.}]\) are sharp and only those at the half order positions are diffuse indicate that hydrogen must be chemisorbed at sites with 4-fold symmetry in the \(C(2 \times 2) \) surface structure.\(^23\) From the results of our calculations as shown in Table III, the 1 CN site can be chosen as the preferred site with 4-fold symmetry for the chemisorbed hydrogen atom.

Early experimental evidence led to conflicting models for hydrogen chemisorbed on a \(W(100) \) surface including: atoms bonded at a single site,\(^6,8\) atoms bonded at different sites,\(^9\) and a mixture of atomic and molecular species bonded to the surface.\(^7\) Recent evidence\(^10,11\)
indicates that atomic species are bonded at one kind of surface site; the two peaks, β_1 and β_2, in the flash desorption spectrum are a result of a density dependent interaction on the surface. The high temperature state, β_2, has been associated with a C(2x2) surface structure and as the remaining sites are populated, a (1x1) surface structure results. From the results of our calculating, these sites must be the 1 CN sites on the W(100) surface.

In the WH molecule, the hydrogen 1s orbital appears only in the single molecular orbital Ψ_1 (see Table III). In this case the tungsten-hydrogen bond can be interpreted as a simple single bond involving a hydrogen 1s orbital and a tungsten sd hybrid orbital. It is tempting to interpret the 1 CN preference for hydrogen adsorption as reflecting a preference for simple single bonding to the tungsten atom below it. The present treatment is not well designed to provide a justification for such an interpretation. Table VI shows that the molecular orbitals $\Psi_1^{'}, \Psi_2^{'}, \Psi_4^{'},$ and $\Psi_6^{'},$ all have substantial hydrogen 1s contributions; while the principal tungsten orbital contributions to $\Psi_1^{'},$ and $\Psi_2^{'},$ arise from the tungsten atom underlying the hydrogen atom this atom contributes almost negligibly to $\Psi_4^{'},$ and $\Psi_6^{'},$ whose tungsten contributions come largely from the d orbitals of the four tungsten atoms surrounding the adsorption site. Such molecular orbitals are
not well suited for interpretation in terms of localized bonding; for this purpose optimally localized orbitals are more appropriate as shown by Ruedenberg and Edmiston. The tungsten atoms which are involved with the bonding of the hydrogen atom retain their bonds with the neighboring tungsten atoms, but their strengths change as a result of the chemisorbed hydrogen. The reduced overlap population calculated by the Mulliken method can assess the relative change in strengths of these tungsten-tungsten bonds. With hydrogen bonded at the 1 CN site, the reduced overlap population of the central tungsten atom with each of its four nearest neighboring tungsten atoms is reduced 15%.

The small difference in the bonding energy between a 1 CN site and a 2 CN site can account for the observed mobility of hydrogen on tungsten surfaces. Gomer, et. al. observed the diffusion of hydrogen on a tungsten surface at a temperature of 180°K and reported the activation energy for diffusion \(E_d \) was generally 10 to 20% of the bonding energy \(E_a \), that both \(E_a \) and \(E_d/E_a \) were lowest on most closely-packed faces, and that the lowest value of \(E_d \) observed was 5.9 kcal (0.26 ev). If the diffusion of hydrogen on the W(100) surface occurs from one 1 CN site to another 1 CN site via a 2 CN site, and the only energy barrier to diffusion is the difference between bonding energies at these two sites, then the activation energy for diffusion would be 0.25 ev.
ACKNOWLEDGEMENT

We are indebted to Professor K. Ruedenberg for helpful criticism and discussion.
REFERENCES

Table I. Atomic orbital parameters for Extended Hückel Molecular Orbital calculations. Orbital exponents are for Slater type orbitals. Valence orbital ionization potential (VOIP) parameters reflect dependence of VOIP on charge \(q \) according to \(\text{VOIP} = Aq^2 + Bq + C \).

| Atom | Orbital | Orbital Exponent | \(A \) (ev/\(|e|^2 \)) | \(B \) (ev/\(|e| \)) | \(C \) (ev) |
|-------|---------|-----------------|-----------------|-----------------|---------|
| Hydrogen | 1s | 1.20 | 13.60 | 27.20 | 13.60 |
| Tungsten | 5p | 4.91 | 0.00 | 0.00 | 46.07 |
| | 5d | 2.20 | 0.00 | 3.50 | 9.00 |
| | 6s | 1.40 | 0.00 | 3.50 | 8.00 |
Table II. Occupied molecular orbitals for the diatomic molecules, W-W and W-H.

<table>
<thead>
<tr>
<th>W-W</th>
<th>Ψ_1</th>
<th>Ψ_2</th>
<th>Ψ_3</th>
<th>Ψ_4</th>
<th>Ψ_5</th>
<th>Ψ_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>(-10.63)</td>
<td>(-10.57)</td>
<td>(-10.57)</td>
<td>(-9.57)</td>
<td>(-9.57)</td>
<td>(-9.23)</td>
</tr>
<tr>
<td>W(1, 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{z^2}$</td>
<td>-.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{xz}$</td>
<td></td>
<td>±.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{x^2-y^2}$</td>
<td></td>
<td></td>
<td>.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{yz}$</td>
<td></td>
<td>±.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{xy}$</td>
<td></td>
<td></td>
<td></td>
<td>.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$6s$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.52</td>
<td>-.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W-H</th>
<th>Ψ_1</th>
<th>Ψ_2</th>
<th>Ψ_3</th>
<th>Ψ_4</th>
<th>Ψ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>(-12.23)</td>
<td>(-9.42)</td>
<td>(-9.42)</td>
<td>(-9.42)</td>
<td>(-9.42)</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1s$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.62</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{z^2}$</td>
<td>-.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{xz}$</td>
<td></td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{x^2-y^2}$</td>
<td></td>
<td></td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{yz}$</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>$5d_{xy}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>$6s$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.26</td>
</tr>
</tbody>
</table>
Table III. Energies, equilibrium distances, and charges for hydrogen bonded to different W(100) surface sites.

<table>
<thead>
<tr>
<th>Site</th>
<th>Bond Energy (eV)</th>
<th>(r_e) ((\text{Å}))</th>
<th>Charge</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CN</td>
<td>3.00</td>
<td>1.65</td>
<td>-.36</td>
<td></td>
</tr>
<tr>
<td>2 CN</td>
<td>2.74</td>
<td>1.96</td>
<td>-.26</td>
<td></td>
</tr>
<tr>
<td>5 CN</td>
<td>1.72</td>
<td>1.61</td>
<td>+.04</td>
<td></td>
</tr>
</tbody>
</table>

Table IV. Totally symmetric molecular orbitals for the surface arrays representing the 1 CN and 5 CN sites.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>Ψ_1</th>
<th>Ψ_2</th>
<th>Ψ_3</th>
<th>Ψ_4</th>
<th>Ψ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>(-12.43)</td>
<td>(-10.69)</td>
<td>(-10.38)</td>
<td>(-9.77)</td>
<td>(-8.47)</td>
</tr>
</tbody>
</table>

W(1)
- $5d_{z^2}$ | -.54 | -.10 | -.19 |
- $6s$ | -.24 |

W(2, 3, 4, 5)
- $5d_{z^2}$ | .22 | .17 | .16 |
- $5d_{zz}$ (2, 5) | ±.15 | ±.31 | ±.07 |
- $5d_{x^2-y^2}$ | ±.12 | ±.30 | ±.19 | ±.05 |
- $5d_{yz}$ (3, 4) | ±.15 | ±.31 | ±.07 |
- $6s$ | -.18 |

W(6, 7, 8, 9)
- $5d_{z^2}$ | -.10 | -.19 | .26 |
- $5d_{xz}$ | ±.11 | ±.28 |
- $5d_{yz}$ | ±.11 | ±.28 |
- $5d_{xy}$ | ±.12 | ±.22 | ±.10 |
- $6s$ | -.12 |
Table V. Totally symmetric molecular orbitals for the surface array representing the 2 CN site.

<table>
<thead>
<tr>
<th></th>
<th>ψ_1</th>
<th>ψ_2</th>
<th>ψ_3</th>
<th>ψ_4</th>
<th>ψ_5</th>
<th>ψ_6</th>
<th>ψ_7</th>
<th>ψ_8</th>
<th>ψ_9</th>
<th>ψ_{10}</th>
<th>ψ_{11}</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5d$_{z2}$</th>
<th>5d$_{x2-y2}$</th>
<th>5d$_{yz}$</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(1,2)</td>
<td>- .36</td>
<td>-.09</td>
<td>-.08</td>
<td>.09</td>
</tr>
<tr>
<td></td>
<td>±.12</td>
<td>±.08</td>
<td>±.32</td>
<td>±.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5d$_{z2}$</th>
<th>5d$_{xz}$</th>
<th>5d$_{x2-y2}$</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(3,4)</td>
<td>.36</td>
<td>-.09</td>
<td>-.08</td>
<td>-.09</td>
</tr>
<tr>
<td></td>
<td>±.12</td>
<td>±.08</td>
<td>±.32</td>
<td>±.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5d$_{z2}$</th>
<th>5d$_{xz}$</th>
<th>5d$_{xy}$</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(5,6,7,8)</td>
<td>.12</td>
<td>.05</td>
<td>-.17</td>
<td>.07</td>
</tr>
<tr>
<td></td>
<td>±.05</td>
<td>±.07</td>
<td>±.14</td>
<td>±.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5d$_{z2}$</th>
<th>5d$_{xy}$</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(9,10,11,12)</td>
<td>.12</td>
<td>±.05</td>
<td>.17</td>
</tr>
<tr>
<td></td>
<td>±.07</td>
<td>±.13</td>
<td>±.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5d$_{yz}$</th>
<th>5d$_{xy}$</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>±.07</td>
<td>±.13</td>
<td>±.19</td>
</tr>
</tbody>
</table>

| | ±.12 | ±.08 | ±.24 | ±.18 | ±.09 | ±.18 | ±.08 |

| | ±.13 | ±.05 | ±.11 | ±.10 | ±.16 | .05 | -.20 | -.05 | -.14 |
| | ±.05 | ±.07 | ±.14 | ±.23 | ±.09 | ±.20 | .05 | -.14 | .26 |

| | ±.12 | ±.08 | ±.24 | ±.18 | ±.09 | ±.18 | ±.08 | ±.12 | ±.11 |
Table VI. Totally symmetric molecular orbitals for the W_9H surface "molecule" where hydrogen is bonded at a 1 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>Ψ_1</th>
<th>Ψ_2</th>
<th>Ψ_3</th>
<th>Ψ_4</th>
<th>Ψ_5</th>
<th>Ψ_6</th>
<th>Ψ_7</th>
<th>Ψ_8</th>
<th>Ψ_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>(-12.74)</td>
<td>(-11.52)</td>
<td>(-10.39)</td>
<td>(-10.01)</td>
<td>(-9.66)</td>
<td>(-8.46)</td>
<td>(-7.36)</td>
<td>(-6.26)</td>
<td>(-5.16)</td>
</tr>
</tbody>
</table>

H

1s

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>.36</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>-.49</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>-.06</td>
</tr>
<tr>
<td>(-10.01)</td>
<td>.36</td>
</tr>
<tr>
<td>(-9.66)</td>
<td>.26</td>
</tr>
<tr>
<td>(-8.46)</td>
<td>-.05</td>
</tr>
</tbody>
</table>

W(1)

5dz^2

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>5dz^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>.16</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>-.52</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>-.06</td>
</tr>
<tr>
<td>(-10.01)</td>
<td>.12</td>
</tr>
<tr>
<td>(-9.66)</td>
<td>.06</td>
</tr>
</tbody>
</table>

6s

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>.24</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>.06</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>.05</td>
</tr>
</tbody>
</table>

W(2, 3, 4, 5)

5dz^2

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>5dz^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>.07</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>-.22</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>.11</td>
</tr>
<tr>
<td>(-10.01)</td>
<td>.26</td>
</tr>
<tr>
<td>(-9.66)</td>
<td>.11</td>
</tr>
<tr>
<td>(-8.46)</td>
<td>.26</td>
</tr>
</tbody>
</table>

5d$_{xz}$ (2, 5)

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>5d$_{xz}$ (2, 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>±.05</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>±.30</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>±.19</td>
</tr>
<tr>
<td>(-10.01)</td>
<td>±.06</td>
</tr>
<tr>
<td>(-9.66)</td>
<td>±.11</td>
</tr>
<tr>
<td>(-8.46)</td>
<td>±.28</td>
</tr>
</tbody>
</table>

5d$_{x^2-y^2}$

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>5d$_{x^2-y^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>±.06</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>±.27</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>±.10</td>
</tr>
<tr>
<td>(-10.01)</td>
<td>±.27</td>
</tr>
<tr>
<td>(-9.66)</td>
<td>±.06</td>
</tr>
<tr>
<td>(-8.46)</td>
<td>±.08</td>
</tr>
</tbody>
</table>

5d$_{yz}$ (3, 4)

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>5d$_{yz}$ (3, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>±.05</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>±.30</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>±.19</td>
</tr>
<tr>
<td>(-10.01)</td>
<td>±.06</td>
</tr>
<tr>
<td>(-9.66)</td>
<td>±.11</td>
</tr>
<tr>
<td>(-8.46)</td>
<td>±.28</td>
</tr>
</tbody>
</table>

6s

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>.13</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>.11</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>-.08</td>
</tr>
<tr>
<td>(-10.01)</td>
<td>-.05</td>
</tr>
<tr>
<td>(-9.66)</td>
<td>.10</td>
</tr>
<tr>
<td>(-8.46)</td>
<td>.07</td>
</tr>
</tbody>
</table>

W(6, 7, 8, 9)

5dz^2

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>5dz^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>.21</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>-.07</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>-.26</td>
</tr>
<tr>
<td>(-10.01)</td>
<td>±.11</td>
</tr>
<tr>
<td>(-9.66)</td>
<td>±.28</td>
</tr>
<tr>
<td>(-8.46)</td>
<td>±.11</td>
</tr>
</tbody>
</table>

5d$_{xz}$

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>5d$_{xz}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>±.11</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>±.28</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>±.11</td>
</tr>
</tbody>
</table>

5d$_{yz}$

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>5d$_{yz}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>±.04</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>±.22</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>±.12</td>
</tr>
</tbody>
</table>

5d$_{xy}$

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>5d$_{xy}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>±.04</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>±.22</td>
</tr>
<tr>
<td>(-10.39)</td>
<td>±.12</td>
</tr>
</tbody>
</table>

6s

<table>
<thead>
<tr>
<th>Energy (ev)</th>
<th>6s</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-12.74)</td>
<td>.10</td>
</tr>
<tr>
<td>(-11.52)</td>
<td>.07</td>
</tr>
</tbody>
</table>
Tab. 11. Totally symmetric molecular orbitals for the W$_{12}$H surface "molecule" where hydrogen is bonded at a 2 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>Ψ_1</th>
<th>Ψ_2</th>
<th>Ψ_3'</th>
<th>Ψ_4'</th>
<th>Ψ_5'</th>
<th>Ψ_6</th>
<th>Ψ_7</th>
<th>Ψ_8</th>
<th>Ψ_9</th>
<th>Ψ_{10}</th>
<th>Ψ_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>(-13.15)</td>
<td>(-11.82)</td>
<td>(-11.25)</td>
<td>(-10.85)</td>
<td>(-10.03)</td>
<td>(-9.84)</td>
<td>(-9.65)</td>
<td>(-9.38)</td>
<td>(-8.73)</td>
<td>(-8.62)</td>
<td>(-8.32)</td>
</tr>
<tr>
<td>H</td>
<td>1s</td>
<td>.35</td>
<td>-.44</td>
<td>.13</td>
<td>-.02</td>
<td>-.16</td>
<td>-.02</td>
<td>.18</td>
<td>-.04</td>
<td>-.22</td>
<td>.06</td>
</tr>
<tr>
<td>W(1,2)</td>
<td>5d$_{x2}$</td>
<td>.05</td>
<td>-.36</td>
<td>-.09</td>
<td>.08</td>
<td>.16</td>
<td>-.09</td>
<td>.15</td>
<td>.07</td>
<td>.14</td>
<td>.13</td>
</tr>
<tr>
<td></td>
<td>5d$_{x2}$-y^2</td>
<td>-.07</td>
<td>.26</td>
<td>.24</td>
<td>.09</td>
<td>.10</td>
<td>-.10</td>
<td>-.05</td>
<td>-.19</td>
<td>.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d$_{yz}$</td>
<td>±.09</td>
<td>±.24</td>
<td>±.27</td>
<td>±.13</td>
<td>±.07</td>
<td>±.14</td>
<td>±.13</td>
<td>±.05</td>
<td>±.04</td>
<td>±.07</td>
</tr>
<tr>
<td></td>
<td>6s</td>
<td>.18</td>
<td>.15</td>
<td>.10</td>
<td>.15</td>
<td>.09</td>
<td>.18</td>
<td>.12</td>
<td>.07</td>
<td>.13</td>
<td>.24</td>
</tr>
<tr>
<td>W(3,4)</td>
<td>5d$_{x2}$</td>
<td>-.09</td>
<td>.11</td>
<td>.25</td>
<td>.22</td>
<td>.09</td>
<td>-.16</td>
<td>.06</td>
<td>-.07</td>
<td>-.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d$_{xz}$</td>
<td>±.14</td>
<td>±.23</td>
<td>±.31</td>
<td>.09</td>
<td>±.25</td>
<td>±.04</td>
<td>±.07</td>
<td>±.16</td>
<td>±.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d$_{x2}$-y^2</td>
<td>-.08</td>
<td>-.32</td>
<td>.15</td>
<td>-.07</td>
<td>.11</td>
<td>.13</td>
<td>.24</td>
<td>.26</td>
<td>.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6s</td>
<td>.15</td>
<td>.10</td>
<td>.15</td>
<td>.09</td>
<td>.06</td>
<td>.08</td>
<td>.30</td>
<td>.05</td>
<td>.06</td>
<td>.08</td>
</tr>
<tr>
<td>W(5, 6, 7, 8)</td>
<td>5d$_{x2}$</td>
<td>±.05</td>
<td>.13</td>
<td>.09</td>
<td>-.09</td>
<td>.18</td>
<td>-.12</td>
<td>-.05</td>
<td>.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d$_{x2}$-y^2</td>
<td>-.08</td>
<td>-.08</td>
<td>.08</td>
<td>.18</td>
<td>-.11</td>
<td>.06</td>
<td>.26</td>
<td>.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d$_{yz}$</td>
<td>±.06</td>
<td>±.05</td>
<td>±.07</td>
<td>±.14</td>
<td>±.21</td>
<td>±.25</td>
<td>±.10</td>
<td>±.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d$_{xy}$</td>
<td>±.06</td>
<td>±.09</td>
<td>±.06</td>
<td>±.08</td>
<td>±.05</td>
<td>±.30</td>
<td>.05</td>
<td>.06</td>
<td>.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6s</td>
<td>.06</td>
<td>.09</td>
<td>.14</td>
<td>.13</td>
<td>.13</td>
<td>.15</td>
<td>.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(9, 10, 11, 12)</td>
<td>5d$_{x2}$</td>
<td>±.05</td>
<td>-.08</td>
<td>-.17</td>
<td>-.05</td>
<td>-.11</td>
<td>-.09</td>
<td>.07</td>
<td>-.08</td>
<td>-.15</td>
<td>-.08</td>
</tr>
<tr>
<td></td>
<td>5d$_{xz}$</td>
<td>±.06</td>
<td>±.05</td>
<td>±.24</td>
<td>±.05</td>
<td>±.18</td>
<td>±.19</td>
<td>±.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d$_{x2}$-y^2</td>
<td>.04</td>
<td>.09</td>
<td>-.13</td>
<td>-.15</td>
<td>.06</td>
<td>.10</td>
<td>.12</td>
<td>-.20</td>
<td>±.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d$_{yz}$</td>
<td>±.07</td>
<td>±.10</td>
<td>±.25</td>
<td>±.09</td>
<td>±.06</td>
<td>±.13</td>
<td>±.21</td>
<td>±.07</td>
<td>±.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5d$_{xy}$</td>
<td>±.11</td>
<td>±.06</td>
<td>±.26</td>
<td>±.08</td>
<td>±.13</td>
<td>±.21</td>
<td>±.07</td>
<td>±.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6s</td>
<td>.08</td>
<td>.06</td>
<td>.14</td>
<td>.13</td>
<td>.13</td>
<td>.15</td>
<td>.08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table VIII. Totally symmetric molecular orbitals for the W9H surface "molecule" where hydrogen is bonded at a 5 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>ψ_1</th>
<th>ψ_2</th>
<th>ψ_3</th>
<th>ψ_4</th>
<th>ψ_5</th>
<th>ψ_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>(-13.22)</td>
<td>(-11.75)</td>
<td>(-10.42)</td>
<td>(-9.96)</td>
<td>(8.62)</td>
<td>(7.36)</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1s</td>
<td>.44</td>
<td>.29</td>
<td>-.04</td>
<td>-.11</td>
<td>-.13</td>
<td>.17</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{z2}$</td>
<td>.19</td>
<td>.38</td>
<td>.15</td>
<td>.10</td>
<td>-.11</td>
<td>.54</td>
</tr>
<tr>
<td>6s</td>
<td>.16</td>
<td>-.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(2, 3, 4, 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{z2}$</td>
<td>-.05</td>
<td>-.11</td>
<td>-.23</td>
<td>.09</td>
<td>-.08</td>
<td>.38</td>
</tr>
<tr>
<td>5d$_{xz}$ (2, 5)</td>
<td>±.35</td>
<td>±.35</td>
<td>±.35</td>
<td>±.35</td>
<td>±.35</td>
<td>±.35</td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>±.08</td>
<td>±.15</td>
<td>±.25</td>
<td>±.05</td>
<td>±.16</td>
<td>±.35</td>
</tr>
<tr>
<td>5d$_{yz}$ (3, 4)</td>
<td>±.12</td>
<td>-.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(6, 7, 8, 9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{z2}$</td>
<td>.21</td>
<td>.25</td>
<td>.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xz}$</td>
<td>±.10</td>
<td>±.28</td>
<td>±.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{yz}$</td>
<td>±.10</td>
<td>±.28</td>
<td>±.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xy}$</td>
<td>-.25</td>
<td>.08</td>
<td>±.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>.06</td>
<td>-.11</td>
<td></td>
<td></td>
<td></td>
<td>-.05</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. Surface arrays used to model adsorption on different W(100) surface sites.

Figure 2. Dependence of bond energy on bond distance for W₂ (left figure) and WH (right figure) molecules with and without inclusion of W 5p orbitals.

Figure 3. Dependence of non-bonding (5p orbital) repulsive energy on distance for W₂ and WH molecules.

Figure 4. Additivity of non-bonded orbital repulsive energy.
 (a) Difference in E(r) for W₂H between calculations including and omitting W 5p orbitals.
 (b) E(r) calculated by pairwise addition of analytic repulsive energy functions.

Figure 5. Bond energies as functions of distances for hydrogen adsorbed on different W(100) surface sites.

Figure 6. Molecular orbital-energy diagrams for the totally symmetric occupied orbitals for hydrogen adsorbed on different W(100) surface sites.
Figure 1. Surface arrays used to model adsorption on different W(100) surface sites.
Figure 2. Dependence of bond energy on bond distance for W_2 (left figure) and WH (right figure) molecules with and without inclusion of W 5p orbitals.
Figure 3. Dependence of non-bonding (5p orbital) repulsive energy on distance for W_2 and WH molecules.
Figure 4. Additivity of non-bonded orbital repulsive energy.

(a) Difference in $E(r)$ for W_2H between calculations including and omitting W 5p orbitals.

(b) $E(r)$ calculated by pairwise addition of analytic repulsive energy functions.
Figure 5. Bond energies as functions of distances for hydrogen adsorbed on different W(100) surface sites.
Figure 6. Molecular orbital-energy diagrams for the totally symmetric occupied orbitals for hydrogen adsorbed on different W(100) surface sites.
APPENDIX B.

A MOLECULAR ORBITAL INVESTIGATION OF CHEMISORPTION. II. NITROGEN ON TUNGSTEN (100) SURFACE
A Molecular Orbital Investigation of Chemisorption. II. Nitrogen on Tungsten (100) Surface

LEON W. ANDERS AND ROBERT S. HANSEN

Ames Laboratory-USAEC and Department of Chemistry
Iowa State University, Ames, Iowa 50010

AND

L. S. BARTELL

Department of Chemistry, University of Michigan
Ann Arbor, Michigan 48104

Abstract

The relative bonding energies of nitrogen chemisorbed at three symmetric sites on a W(100) surface, represented by finite arrays of tungsten atoms, were obtained by means of the Extended Hückel Molecular Orbital Theory (EHMO). The preferred site for nitrogen chemisorption was found to be the five coordination number (5 CN) site or the fourfold site with a tungsten atom below four tungsten atoms surrounding the nitrogen atom. The 5p orbital repulsive energy, in the case of hydrogen chemisorption, could be adequately approximated by the sum over pairs of empirical exponential repulsive terms; in the case of nitrogen chemisorption this same method was approximately
10% in error at the equilibrium bond distance, and repulsive energies were therefore obtained from calculations including tungsten 5p orbitals but with smaller arrays.

I. INTRODUCTION

In a previous paper, the Extended Hückel Molecular Orbital (EHMO) technique was applied to the bonding of hydrogen to a finite cluster of tungsten atoms representing a truncated tungsten (100) surface. The relative stabilities of hydrogen bonded at the three symmetric sites of a tungsten (100) surface were compared. In addition, the contributions made by the various orbitals of the surface atoms were investigated. According to the calculations, hydrogen will preferentially chemisorb on top of a surface tungsten atom forming a bond closely resembling that of a WH diatomic molecule.

In this paper this same molecular orbital (EHMO) technique has been used to investigate the bonding of nitrogen on a tungsten (100) surface. The nitrogen atom differs from the hydrogen atom particularly in its ability to form multiple bonds with the surface. The present calculations should be able to assess the influence of the additional nitrogen orbitals on a preferred chemisorption site.
II. PROCEDURE

The EHMO theory as formulated by Hoffmann\(^2\) and described in our previous paper\(^1\) has been used to investigate the preferred structure of the \(W_nN\) surface "molecule" consisting of nitrogen chemisorbed on a truncated \(W(100)\) surface. The surface arrays which represent the three symmetric sites for chemisorption on this surface are shown in Fig. 1. These are the same sites previously described.\(^1\)

Table I lists the orbital exponents for the Slater type orbitals (STO) of the nitrogen 2s and 2p orbitals derived from Slater's rules.\(^3\) It also includes values, taken from the work of Bacch, Viste and Gray,\(^4\) for the parameters A, B, and C which are needed to calculate the valence orbital ionization potential (VOIP) as a function of charge,\(^1\) i.e.,

\[
\text{VOIP} = Aq^2 + Bq + C .
\] (1)

The EHMO technique was first applied to the WN diatomic molecule. A comparison of curves a and b in Fig. 2 shows that it is necessary to include the 5p orbitals of the tungsten atom as well as the valence orbitals in the basis set to obtain a characteristic potential energy curve. The population of these non-bonding orbitals provides the repulsion needed at small internuclear separations. This repulsive energy can be approximated by

\[
E_R = A_e^{-r/\alpha} .
\] (2)
As the nitrogen atom forms a surface molecule, hopefully the repulsive energy for nitrogen interacting with a larger group of tungsten atoms can be approximated by the pairwise summation of exponential terms according to Eq. (2).

III. RESULTS

A. Diatomic Molecule

In Fig. 2, the bonding energy is plotted as a function of internuclear separation r along the molecular axis z for the WN molecule. The bonding energy was calculated by subtracting from the total energy (energy of the occupied molecular orbitals), the energy of the ions of the W-N molecule at infinite separation. The difference between curves a and b in Fig. 2 is the repulsive energy resulting from the presence of the 5p orbitals of tungsten in the basis set. In Fig. 3 $\ln E_{\text{Rep}}$ is plotted as a function of internuclear separation r. Values for the parameters A and α needed to calculate the repulsive energy according to Eq. (2) were found from this plot to be $A_{\text{WN}} = 2324.8$ ev and $\alpha_{\text{WN}} = .234\AA^{-1}$. For the final iteration, the charge on the nitrogen atom in the WN molecule at equilibrium separation was $-.38$ and that on the tungsten atom $+.38$.

Single bond covalent radii ($0.70\AA$ for N and $1.30\AA$ for W) predict a length of $2.00\AA$ for a W-N single bond. Pauling's empirical relationship5 between bond length and bond order (see previous paper1),
coupled with the 1.65 Å equilibrium bond length indicated by Fig. 2, gives a value of 3.1 for the bond order of the WN molecule. Table II, which lists the LCAO for the occupied molecular orbitals of the WN molecule, shows that there are three molecular orbitals (Ψ_2, Ψ_3, and Ψ_4) which make major contributions to the bonding; this suggests that the bond order of 3.1 is a plausible value.

Figure 4 compares the W_2N molecule repulsive energies determined (curve a) as the difference between the energies calculated by the EHMO technique with the inclusion and omission of the tungsten 5p orbitals and (curve b) by summing analytical exponential terms over pairwise interactions. There is about a 10% difference in the repulsive energies in the neighborhood where the chemical bond is formed. Because of this difference, larger molecules (W_4N and W_5N) which still lent themselves to easy computation were investigated; these molecules are reductions of the surface arrays in Fig. 1. The tungsten atoms omitted from the surface arrays in Fig. 1 for the above calculations are at a sufficient distance from the nitrogen atom at each of the symmetric sites that their 5p orbitals should not contribute to the repulsive energy when the larger surface arrays are used. In Fig. 5 the repulsive energies between the nitrogen atom at each of the bonding sites and the tungsten atoms in the above molecules are plotted.

Curves a in Fig. 5 are based on repulsive energies calculated
from the W₅N or W₄N arrays as explained above, curves b by pairwise summation of analytical exponential terms. Repulsive energies at bonding distances obtained from curves a are 10% higher for 1 CN site, about the same for the 2 CN site, and about 10% lower for the 5 CN site than those obtained from curves b. Approximation of repulsive energy by pairwise summation of exponential terms (Eq. 2) was therefore judged insufficiently reliable, and it was approximated instead from direct calculations on the abbreviated arrays W₄N and W₅N.

B. Nitrogen Chemisorbed on a W(100) Surface

The adjustments of the VOIP of the edge atoms of the surface arrays in Fig. 1 to reduce charge transfer were the same as those previously adopted. The VOIP of the orbitals of the nitrogen atom were iterated at equilibrium separation to self consistency for charge q at each of the three symmetric sites. On the final iteration, the VOIP for the 2s and 2p orbitals of nitrogen were: -18.93 ev and -10.01 ev at the 5 CN site, -17.17 ev and -8.93 ev at the 2 CN site and -17.31 ev and -9.02 ev at the 1 CN site. To avoid possible oversensitivity of results to VOIP parametrization, the calculations were repeated using -17.77 ev and -9.29 ev for the 2s and 2p orbitals of nitrogen respectively at all the sites. As in the case of hydrogen chemisorption the same ordering in site preference was obtained by both methods.
and constant nitrogen 2s and 2p VOIP's were used in further calculations. The bonding energies as a function of internuclear separation are plotted in Fig. 6. The internuclear separation was the distance of nitrogen to the nearest tungsten atom(s) in the surface atom arrays. In the case of the 5 CN site, it was the distance of the tungsten atom in the hole, for the 2 CN site, it was the distance to the two surface atoms, and for the 1 CN site, it was the distance to the single tungsten atom. The bonding energy E was calculated according to the following relationship:

$$E = \sum_{W_nN} n_i \epsilon_i - \sum_{W_n} n_i \epsilon_i - \sum_{N} n_i \epsilon_i + E_{\text{Rep}} \quad (3)$$

where the first term is the summation over occupied molecular orbitals of energy ϵ_i of the W_nN surface molecule, the next term is the summation over the occupied molecular orbitals of energies ϵ_i of the W_n part of the molecule at infinite separation from the nitrogen atom and the next term is the summation over the occupied atomic orbitals of energy ϵ_i of the nitrogen atom also at infinite separation. The last term is the repulsive energy E_{Rep} determined from the W_5N and W_4N molecules and plotted as curves a in Fig. 5. Table III summarizes the results of calculations plotted in Fig. 6.

The surface arrays in Fig. 1a and 1b belong to the C_{4v} symmetry groups and the surface array in Fig. 1c to the C_{2v} symmetry group. In these groups, the 2s and 2p$_z$ orbitals of nitrogen belong to the totally symmetric a_1 irreducible representation. Therefore, these orbitals
of nitrogen can interact only with the totally symmetric molecular orbitals of the W_n surface arrays. In the C_{4v} symmetry group, the 2p_x and 2p_y orbitals of nitrogen belong to the e irreducible representation and will interact with molecular orbitals of the W_9 arrays which also belong to this representation. These same orbitals of nitrogen belong to the b_1 (2p_x) and b_2 (2p_y) irreducible representations in the C_{2v} symmetry group and interact with the molecular orbitals of the W_{12} array belonging to these same irreducible representations.

Molecular orbital energy diagrams for the molecular orbitals belonging to the totally symmetric a_1 irreducible representation are shown in Fig. 7. On the left side of each panel in these figures are the molecular orbitals from the W_n arrays, on the right side are the atomic orbitals of nitrogen and in the middle are the molecular orbitals for the W_nH surface "molecules". The occupied totally symmetric (a_1) molecular orbitals in Fig. 7 are tabulated in Tables IV and V for the W_9 and W_{12} arrays respectively. These can be compared with the totally symmetric molecular orbitals of the W_nN surface "molecules" (Table VI - 1 CN, Table VII - 2 CN and Table VIII - 5 CN). Because of the totally symmetric orbitals (2s and 2p_z) of nitrogen, there must be two additional totally symmetric molecular orbitals in the W_nN surface "molecule" than in the W_n "molecule". In Fig. 7a and 7c, these molecular orbitals are Ψ_6 and Ψ_7. For nitrogen bonded at the 1 CN
site (Fig. 7a) these molecular orbitals are lower in energy than the
highest occupied molecular orbital (HOMO) and therefore are occupied,
whereas at the 5 CN site (Fig. 7c) \(\Psi_7 \) is above the HOMO. At the 2 CN
site (Fig. 7b) the additional molecular orbitals (\(\Psi_{12} \) and \(\Psi_{13} \)) of the
W\(_{12}N\) formed by the nitrogen 2s and 2p\(_z\) orbital interacting with the
W\(_{12}\) surface array are below the HOMO but one of the totally
symmetric orbitals (\(\Psi_{11} \)) has become unoccupied in the reordering of
all the molecular orbitals in the W\(_{12}N\) surface "molecule".

In Fig. 8, molecular orbital energy diagrams are shown which
involve the 2p\(_x\) and 2p\(_y\) orbitals of nitrogen. In the case of the W\(_9\)
arrays for the 1 CN and 5 CN sites (Fig. 8a and c) these molecular
orbitals belong to the e irreducible representations and for the 2 CN
site (Fig. 8b) they belong to the b\(_1\) and b\(_2\) irreducible representations.
The molecular orbitals represented in Fig. 8 for the W\(_9\) and W\(_{12}\) are	abulated in Tables IX and X respectively. These can be compared
with the molecular orbitals of the W\(_n\)N surface "molecule" (Table XI -
1 CN, Table XII - 2 CN, Table XIII - 5 CN).

The additional molecular orbitals formed by the 2p\(_x\) and 2p\(_y\)
atomic orbitals of nitrogen as they interact with the W\(_n\) surface arrays
are \(\Psi_{15} \) and \(\Psi_{16} \) in the case of the W\(_9\)N and \(\Psi_{19} \) and \(\Psi_{20} \) in the
W\(_{12}N\) surface "molecules". The molecular orbitals \(\Psi_{19} \) and \(\Psi_{20} \)
of the W\(_{12}N\) "molecule" are below the highest occupied molecular
(HOMO) and are therefore occupied. But in the case of the W9N "molecules", \(\Psi_{15} \) and \(\Psi_{16} \) (having the same energy) are the HOMO; these molecular orbitals of the W9N "molecule" with nitrogen at the 1 CN site (Fig. 8a) are occupied with a single electron, whereas at the 5 CN site (Fig. 8c), they are occupied with three electrons.

IV. DISCUSSION

Low-energy electron-diffraction (LEED)\(^6\) has indicated that nitrogen adsorbed on a W(100) surface produces a C(2 x 2) structure and flash desorption spectrometry (FDS)\(^7\) indicates it desorbs as a single \(\beta \) state. It has been proposed that this adsorbed structure has only half the surface sites occupied with atomic species. Estrup and Anderson\(^6\) originally proposed that the preferred chemisorption sites are alternate 5 CN sites. It has also been shown that a molecular bound state can be converted to another \(\beta \) state, presumably also atomically adsorbed nitrogen, \(^7,8\) and proposed that these atoms could be filling 5 CN sites unoccupied in the original C(2 x 2) structure.

Our calculations indicate that nitrogen prefers the 5 CN site. At this site, the \(\sigma \) bond formed by the 2s and 2p\(_x\) atomic orbitals of nitrogen with the atoms of the surface array is not as favorable as at the other sites (Fig. 7); hydrogen also formed a weaker \(\sigma \)-bond at this site.\(^1\) But in the case of nitrogen the 2p\(_x\) and 2p\(_y\) atomic orbitals
interact more favorably with the tungsten atoms surrounding the 5 CN site (Fig. 8) than at the other sites, and this factor dominates the selection of the 5 CN site for chemisorption. As Table XIII shows, these atomic orbitals are able to form the lowest energy molecular orbitals of ε symmetry at the 5 CN site because of their overlap with the appropriate d orbitals of the four surrounding tungsten atoms.
REFERENCES

Table I. Orbital exponents for STO of the nitrogen atom and parameters needed to calculate VOIP as a function of atomic charge.

<table>
<thead>
<tr>
<th>Orbital</th>
<th>Orbital Exponent</th>
<th>A $[\text{ev}/(\text{e})^2]$</th>
<th>B $[\text{ev}/\text{e}]$</th>
<th>C $[\text{ev}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2s</td>
<td>1.950</td>
<td>3.48</td>
<td>20.25</td>
<td>28.02</td>
</tr>
<tr>
<td>2p</td>
<td>1.950</td>
<td>3.72</td>
<td>14.14</td>
<td>16.05</td>
</tr>
</tbody>
</table>
Table II. Occupied molecular orbitals for the diatomic molecule WN.

<table>
<thead>
<tr>
<th>W-N</th>
<th>Ψ_1</th>
<th>Ψ_2</th>
<th>Ψ_3</th>
<th>Ψ_4</th>
<th>Ψ_5</th>
<th>Ψ_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>-21.61</td>
<td>-12.74</td>
<td>-12.74</td>
<td>-11.51</td>
<td>-10.29</td>
<td>-10.29</td>
</tr>
</tbody>
</table>

N

- 2s: 0.86, 0.13
- 2px: 0.08, -0.69
- 2py: -0.69

W

- 5d_x^2: 0.21, -0.48
- 5d_z^2: -0.54
- 5d_y^2: 1.00
- 5dyz: -0.54
- 5d_{xy}: 1.00
- 6s: 0.13, 0.29
Table III. Energies, equilibrium distances, and charges for nitrogen bonded to different W(100) surface sites.

<table>
<thead>
<tr>
<th>Site</th>
<th>Bond Energy (Å)</th>
<th>r_e (Å)</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 CN</td>
<td>-3.25</td>
<td>2.05</td>
<td>-.04</td>
</tr>
<tr>
<td>2 CN</td>
<td>-3.15</td>
<td>2.13</td>
<td>-1.36</td>
</tr>
<tr>
<td>1 CN</td>
<td>-2.85</td>
<td>1.88</td>
<td>-1.13</td>
</tr>
</tbody>
</table>
Table IV. Totally symmetric molecular orbitals for the surface arrays representing the 1 CN and 5 CN sites.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>Ψ_1</th>
<th>Ψ_2</th>
<th>Ψ_3</th>
<th>Ψ_4</th>
<th>Ψ_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>-12.43</td>
<td>-10.69</td>
<td>-10.38</td>
<td>-9.77</td>
<td>-8.47</td>
</tr>
</tbody>
</table>

W(1)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$5d_{x^2}$</td>
<td>-.54</td>
<td>-.10</td>
<td>-.19</td>
</tr>
<tr>
<td></td>
<td>6s</td>
<td>-.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W(2, 3, 4, 5)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$5d_{x^2}$</td>
<td>.22</td>
<td>.17</td>
<td>.16</td>
</tr>
<tr>
<td></td>
<td>$5d_{xz}$ (2, 5)</td>
<td>±.15</td>
<td>±.31</td>
<td>±.07</td>
</tr>
<tr>
<td></td>
<td>$5d_{xy}$ (2, y)</td>
<td>±.12</td>
<td>±.30</td>
<td>±.19</td>
</tr>
<tr>
<td></td>
<td>$5d_{yz}$ (3, 4)</td>
<td>±.15</td>
<td>±.31</td>
<td>±.07</td>
</tr>
<tr>
<td></td>
<td>6s</td>
<td>-.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W(6, 7, 8, 9)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$5d_{x^2}$</td>
<td>-.10</td>
<td>-.19</td>
</tr>
<tr>
<td></td>
<td>$5d_{xz}$</td>
<td>±.11</td>
<td>±.28</td>
</tr>
<tr>
<td></td>
<td>$5d_{yz}$</td>
<td>±.11</td>
<td>±.28</td>
</tr>
<tr>
<td></td>
<td>$5d_{xy}$</td>
<td>±.12</td>
<td>±.22</td>
</tr>
<tr>
<td></td>
<td>6s</td>
<td>-.12</td>
<td></td>
</tr>
</tbody>
</table>
Table V. Totally symmetric molecular orbitals for the surface array representing the 2 CN site.

<table>
<thead>
<tr>
<th></th>
<th>ψ_1</th>
<th>ψ_2</th>
<th>ψ_3</th>
<th>ψ_4</th>
<th>ψ_5</th>
<th>ψ_6</th>
<th>ψ_7</th>
<th>ψ_8</th>
<th>ψ_9</th>
<th>ψ_{10}</th>
<th>ψ_{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>W(1, 2)</td>
<td></td>
</tr>
<tr>
<td>5d$_{z^2}$</td>
<td></td>
</tr>
<tr>
<td>-12.78</td>
<td>0.36</td>
<td>0.09</td>
<td></td>
<td>-0.8</td>
<td>0.09</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>0.33</td>
<td></td>
<td></td>
<td>-0.19</td>
<td>0.06</td>
<td>0.05</td>
<td>-0.08</td>
<td>-0.30</td>
<td>-0.14</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>5d$_{y^2}$</td>
<td>±1.12</td>
<td>±0.08</td>
<td>±0.32</td>
<td>±0.21</td>
<td>±0.17</td>
<td>±0.18</td>
<td>±0.10</td>
<td>±0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(3, 4)</td>
<td></td>
</tr>
<tr>
<td>5d$_{z^2}$</td>
<td></td>
</tr>
<tr>
<td>-10.87</td>
<td>0.36</td>
<td>0.09</td>
<td></td>
<td>-0.8</td>
<td>0.09</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>0.33</td>
<td></td>
<td></td>
<td>-0.19</td>
<td>0.06</td>
<td>0.05</td>
<td>-0.08</td>
<td>-0.30</td>
<td>-0.14</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>5d$_{y^2}$</td>
<td>±1.12</td>
<td>±0.08</td>
<td>±0.32</td>
<td>±0.21</td>
<td>±0.17</td>
<td>±0.18</td>
<td>±0.10</td>
<td>±0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(5, 6, 7, 8)</td>
<td></td>
</tr>
<tr>
<td>5d$_{z^2}$</td>
<td></td>
</tr>
<tr>
<td>-10.82</td>
<td>0.12</td>
<td>0.05</td>
<td>-0.17</td>
<td>0.07</td>
<td>0.08</td>
<td>0.06</td>
<td>0.08</td>
<td>-0.12</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>0.13</td>
<td></td>
<td></td>
<td>0.07</td>
<td>0.13</td>
<td>±0.19</td>
<td>±0.14</td>
<td>±0.24</td>
<td>±0.10</td>
<td>±2.6</td>
<td></td>
</tr>
<tr>
<td>5d$_{y^2}$</td>
<td>±0.05</td>
<td>±0.07</td>
<td>±0.14</td>
<td>±0.23</td>
<td>±0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>±0.12</td>
<td>±0.08</td>
<td>±0.24</td>
<td>±0.18</td>
<td>±0.09</td>
<td>±0.18</td>
<td>±0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(9, 10, 11, 12)</td>
<td></td>
</tr>
<tr>
<td>5d$_{z^2}$</td>
<td></td>
</tr>
<tr>
<td>-10.02</td>
<td>0.12</td>
<td>±0.05</td>
<td>0.17</td>
<td>0.07</td>
<td>0.08</td>
<td>0.06</td>
<td>0.08</td>
<td>-0.12</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>0.13</td>
<td></td>
<td></td>
<td>0.07</td>
<td>0.13</td>
<td>±0.19</td>
<td>±0.14</td>
<td>±0.24</td>
<td>±0.10</td>
<td>±2.6</td>
<td></td>
</tr>
<tr>
<td>5d$_{y^2}$</td>
<td>±0.05</td>
<td>±0.07</td>
<td>±0.14</td>
<td>±0.23</td>
<td>±0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>±0.12</td>
<td>±0.08</td>
<td>±0.24</td>
<td>±0.18</td>
<td>±0.09</td>
<td>±0.18</td>
<td>±0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table VI. Totally symmetric molecular orbital for \(\text{W}_9\text{N} \) surface "molecule" where nitrogen is bonded at a 1 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>(\Psi_6)</th>
<th>(\Psi_1)</th>
<th>(\Psi_2)</th>
<th>(\Psi_3)</th>
<th>(\Psi_4)</th>
<th>(\Psi_7)</th>
<th>(\Psi_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>(-18.33)</td>
<td>(-12.17)</td>
<td>(-10.57)</td>
<td>(-10.38)</td>
<td>(-9.82)</td>
<td>(-9.47)</td>
<td>(-8.43)</td>
</tr>
<tr>
<td>N 2s</td>
<td>0.89</td>
<td>-0.14</td>
<td>-0.21</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>2p_z</td>
<td>-0.03</td>
<td>0.46</td>
<td>-0.10</td>
<td>-0.33</td>
<td>-0.65</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>W(1) 5d_z^2</td>
<td>0.17</td>
<td>-0.21</td>
<td>0.38</td>
<td>-0.05</td>
<td>-0.07</td>
<td>-0.06</td>
<td>0.08</td>
</tr>
<tr>
<td>6s</td>
<td>0.11</td>
<td>0.19</td>
<td>-0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(2, 3, 4, 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d_z^2</td>
<td>-0.21</td>
<td>-0.16</td>
<td>0.07</td>
<td>-0.25</td>
<td>-0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d_{xz}(2, 5)</td>
<td>±0.12</td>
<td>±0.06</td>
<td>±0.33</td>
<td>±0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d_{x2-y^2}</td>
<td>±0.08</td>
<td>±0.30</td>
<td>±0.11</td>
<td>±0.22</td>
<td>±0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d_{yz}(3, 4)</td>
<td>±0.12</td>
<td>±0.06</td>
<td>±0.33</td>
<td>±0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>0.18</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(6, 7, 8, 9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d_z^2</td>
<td>0.10</td>
<td>0.19</td>
<td>0.10</td>
<td>-0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d_{xz}</td>
<td>±0.11</td>
<td>±0.05</td>
<td>±0.23</td>
<td>±0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d_{yz}</td>
<td>±0.11</td>
<td>±0.05</td>
<td>±0.23</td>
<td>±0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d_{xy}</td>
<td>±0.10</td>
<td>±0.23</td>
<td>±0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table VII. Totally symmetric molecular orbitals for the W₁₂N surface "molecule" where nitrogen is bonded at a 2 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>(\psi_1)</th>
<th>(\psi_2)</th>
<th>(\psi_3)</th>
<th>(\psi_4)</th>
<th>(\psi_5)</th>
<th>(\psi_6)</th>
<th>(\psi_7)</th>
<th>(\psi_8)</th>
<th>(\psi_9)</th>
<th>(\psi_{10})</th>
<th>(\psi_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>(-18.47)</td>
<td>(-12.42)</td>
<td>(-11.35)</td>
<td>(-10.98)</td>
<td>(-10.63)</td>
<td>(-10.22)</td>
<td>(-10.03)</td>
<td>(-9.79)</td>
<td>(-9.62)</td>
<td>(-9.33)</td>
<td>(-8.72)</td>
</tr>
</tbody>
</table>

N

\[\begin{array}{lcccccccccc}
2s & -.86 & -.17 & .05 & .05 & -.10 & -.16 & -.05 & .03 & -.08 & .03 & -.03 & .03 \\
2p_z & .02 & .18 & .26 & -.26 & -.47 & -.05 & .34 & -.16 & .32 & -.01 & .28 & .17 \\
\end{array} \]

W(1,2)

\[\begin{array}{lcccccccccc}
5d_{z^2} & .09 & .36 & .07 & .07 & 1.1 & -.07 & -.07 & -.09 \\
5d_{x^2-y^2} & .06 & .32 & .06 & 1.14 & .07 & .12 & -.08 & -.14 & -.08 \\
5d_{yz} & ±.11 & ±.14 & ±.14 & ±.08 & ±.15 & ±.17 & ±.07 & ±.11 & ±.13 & ±.09 & ±.12 & ±.06 \\
6s & ±.09 & .13 & & & & & & & & & & \\
\end{array} \]

W(3,4)

\[\begin{array}{lcccccccccc}
5d_{z^2} & -1.31 & .14 & -.12 & .09 & .19 & -.05 & -.05 & -.09 & -.15 & .18 \\
5d_{xz} & ±.14 & ±.08 & ±.37 & ±.16 & ±.19 & ±.07 & ±.20 & ±.23 & ±.08 \\
5d_{x^2-y^2} & -1.31 & .12 & .10 & -.14 & -.11 & -.06 & .17 & & & & \\
6s & .18 & & & & & & & & & & \\
\end{array} \]

W(5, 6, 7, 8)

\[\begin{array}{lcccccccccc}
5d_{z^2} & -.09 & -.17 & -.14 & -.10 & & -1.12 & & -1.14 \\
5d_{xz} & ±.05 & ±.16 & ±.17 & ±.10 & ±.19 & ±.05 & ±.29 & ±.13 \\
5d_{x^2-y^2} & -.12 & .09 & .20 & .08 & .08 & .22 & & .17 \\
5d_{yz} & ±.05 & ±.05 & ±.15 & ±.08 & ±.20 & ±.25 & ±.10 & & \\
5d_{xy} & & ±.11 & ±.08 & ±.07 & ±.10 & ±.11 & ±.14 & ±.06 & ±.05 \\
6s & ±.12 & .05 & & & & & & & & & \\
\end{array} \]

W(9, 10, 11, 12)

\[\begin{array}{lcccccccccc}
5d_{z^2} & .10 & .16 & -.08 & .09 & -.10 & -.16 \\
5d_{xz} & ±.06 & ±.06 & ±.17 & ±.17 & ±.21 & ±.14 & ±.15 \\
5d_{x^2-y^2} & .11 & -.09 & .06 & -.13 & .07 & .11 & .10 & -.22 & .08 & ±.31 \\
5d_{yz} & ±.26 & ±.08 & ±.17 & ±.08 & ±.20 & ±.07 & ±.12 \\
5d_{xy} & ±.07 & ±.22 & ±.08 & ±.20 & ±.07 & ±.12 \\
6s & ±.10 & & & & & & & & & & \\
\end{array} \]
Table VIII - Totally symmetric molecular orbitals for the W\textsubscript{9}N surface molecule where nitrogen is bonded at a 5 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>(\Psi_6)</th>
<th>(\Psi_1')</th>
<th>(\Psi_2')</th>
<th>(\Psi_3')</th>
<th>(\Psi_4')</th>
<th>(\Psi_5')</th>
<th>(\Psi_7')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>(-18.71)</td>
<td>(-11.97)</td>
<td>(-10.70)</td>
<td>(-10.36)</td>
<td>(-9.39)</td>
<td>(-8.61)</td>
<td>(-7.49)</td>
</tr>
</tbody>
</table>

N

| 2s | -.82 | .11 | .10 | .17 | -.09 | .06 |
| 2p\(_z\) | -.11 | .56 | .25 | .43 | .02 | -.21 |

W(1)

| 5d\(_{z2}\) | -.12 | .28 | -.23 | .09 | -.31 | .35 |
| 6s | -.06 | -.21 |

W(2, 3, 4, 5)

5d\(_{z2}\)	.15	-.17	-.13	-.07	.22
5d\(_{xz}\)(2, 5)	±.21	±.18	±.16	±.21	
5d\(_{x2-y2}\)	±.06	±.08	±.24	±.17	
5d\(_{yz}\)(3, 4)	±.21	±.18	±.16	±.21	
6s	-.05	-.14			

W(6, 7, 8, 9)

5d\(_{z2}\)	-.11	.19	.08	.24
5d\(_{xz}\)	±.05	±.07	±.06	±.30
5d\(_{yz}\)	±.05	±.07	±.06	±.30
5d\(_{xy}\)	±.06	±.10	±.29	±.35
6s	-.13	-.09		
Table IX. Molecular orbitals which belong to the e representation in the C_{4v} symmetry group for the W_9 surface arrays representing the 1 CN and 5 CN sites.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>Ψ_1</th>
<th>Ψ_2</th>
<th>Ψ_3</th>
<th>Ψ_4</th>
<th>Ψ_5</th>
<th>Ψ_6</th>
<th>Ψ_7</th>
<th>Ψ_8</th>
<th>Ψ_9</th>
<th>Ψ_{10}</th>
<th>Ψ_{11}</th>
<th>Ψ_{12}</th>
<th>Ψ_{13}</th>
<th>Ψ_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>(-10.68)</td>
<td>(-10.17)</td>
<td>(-9.71)</td>
<td>(-9.58)</td>
<td>(-9.24)</td>
<td>(-8.91)</td>
<td>(-8.80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(1)</td>
<td></td>
</tr>
<tr>
<td>$5d_{xz}$</td>
<td>-0.50</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.19</td>
<td>-0.07</td>
<td>-0.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{yz}$</td>
<td>0.10</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19</td>
<td>0.06</td>
<td>0.08</td>
<td>-0.19</td>
<td>-0.19</td>
<td>-0.37</td>
</tr>
<tr>
<td>W(2, 5)</td>
<td></td>
</tr>
<tr>
<td>$5d_{z^2}$</td>
<td>±0.16</td>
<td>±0.13</td>
<td>±0.15</td>
<td>±0.26</td>
<td>±0.11</td>
<td>±0.14</td>
<td>±0.18</td>
<td>±0.10</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{xz}$</td>
<td>-0.23</td>
<td>-0.05</td>
<td>±0.05</td>
<td>±0.13</td>
<td>-0.17</td>
<td>-0.22</td>
<td>-0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{x^2-y^2}$</td>
<td>±0.12</td>
<td>±0.17</td>
<td>±0.21</td>
<td>±0.14</td>
<td>±0.26</td>
<td>±0.17</td>
<td>±0.22</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{yz}$</td>
<td>-0.17</td>
<td>±0.16</td>
<td>±0.13</td>
<td>±0.16</td>
<td>±0.35</td>
<td></td>
<td>±0.08</td>
<td>±0.05</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{xy}$</td>
<td>±0.22</td>
<td>±0.19</td>
<td>±0.15</td>
<td>±0.07</td>
<td>±0.12</td>
<td>±0.16</td>
<td>±0.07</td>
<td>±0.07</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$6s$</td>
<td>±0.07</td>
<td>±0.08</td>
<td>±0.20</td>
<td>±0.20</td>
<td>±0.12</td>
<td>±0.16</td>
<td>±0.12</td>
<td>±0.08</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(1, 4)</td>
<td></td>
</tr>
<tr>
<td>$5d_{z^2}$</td>
<td>±0.16</td>
<td>±0.15</td>
<td>±0.13</td>
<td>±0.26</td>
<td>±0.11</td>
<td>±0.18</td>
<td>±0.14</td>
<td>±0.10</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{xz}$</td>
<td>0.17</td>
<td>±0.13</td>
<td>±0.16</td>
<td>±0.16</td>
<td>±0.35</td>
<td></td>
<td>±0.08</td>
<td>-0.05</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{x^2-y^2}$</td>
<td>±0.12</td>
<td>±0.21</td>
<td>±0.17</td>
<td>±0.14</td>
<td>±0.26</td>
<td>±0.22</td>
<td>±0.17</td>
<td>±0.07</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{yz}$</td>
<td>±0.05</td>
<td>±0.23</td>
<td>±0.05</td>
<td>±0.13</td>
<td>±0.22</td>
<td>-0.17</td>
<td>-0.29</td>
<td>±0.10</td>
<td>±0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{xy}$</td>
<td>±0.22</td>
<td>±0.15</td>
<td>±0.18</td>
<td>±0.07</td>
<td>±0.32</td>
<td>±0.07</td>
<td>±0.08</td>
<td>±0.07</td>
<td>±0.07</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
</tr>
<tr>
<td>$6s$</td>
<td>±0.08</td>
<td>±0.07</td>
<td>±0.20</td>
<td>±0.20</td>
<td>±0.16</td>
<td>±0.12</td>
<td>±0.08</td>
<td>±0.07</td>
<td>±0.07</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
</tr>
<tr>
<td>W(6, 9)</td>
<td></td>
</tr>
<tr>
<td>$5d_{z^2}$</td>
<td>±0.21</td>
<td>±0.14</td>
<td>±0.10</td>
<td>±0.26</td>
<td>±0.32</td>
<td>±0.06</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{xz}$</td>
<td>0.08</td>
<td>-0.09</td>
<td>-0.08</td>
<td>0.19</td>
<td>-0.07</td>
<td>0.18</td>
<td>0.09</td>
<td>0.09</td>
<td>-0.11</td>
<td>±0.21</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
</tr>
<tr>
<td>$5d_{x^2-y^2}$</td>
<td>±0.09</td>
<td>±0.06</td>
<td>±0.11</td>
<td>±0.17</td>
<td>±0.24</td>
<td>±0.18</td>
<td>±0.10</td>
<td>±0.08</td>
<td>±0.17</td>
<td>±0.12</td>
<td>±0.12</td>
<td>±0.12</td>
<td>±0.12</td>
<td>±0.12</td>
</tr>
<tr>
<td>$5d_{yz}$</td>
<td>±0.06</td>
<td>-0.11</td>
<td>-0.05</td>
<td>±0.20</td>
<td>-0.06</td>
<td>±0.19</td>
<td>0.10</td>
<td>-0.13</td>
<td>±0.07</td>
<td>±0.24</td>
<td>±0.24</td>
<td>±0.24</td>
<td>±0.24</td>
<td>±0.24</td>
</tr>
<tr>
<td>$5d_{xy}$</td>
<td>±0.08</td>
<td>±0.10</td>
<td>±0.07</td>
<td>±0.08</td>
<td>±0.26</td>
<td>±0.09</td>
<td>±0.11</td>
<td>±0.25</td>
<td>±0.37</td>
<td>±0.37</td>
<td>±0.37</td>
<td>±0.37</td>
<td>±0.37</td>
<td>±0.37</td>
</tr>
<tr>
<td>$6s$</td>
<td>±0.10</td>
<td>±0.19</td>
<td>±0.14</td>
<td>±0.15</td>
<td>±0.18</td>
<td>±0.23</td>
<td>±0.05</td>
<td>±0.05</td>
<td>±0.08</td>
<td>±0.08</td>
<td>±0.08</td>
<td>±0.08</td>
<td>±0.08</td>
<td>±0.08</td>
</tr>
<tr>
<td>W(7, H)</td>
<td></td>
</tr>
<tr>
<td>$5d_{z^2}$</td>
<td>±0.21</td>
<td>±0.10</td>
<td>±0.14</td>
<td>±0.05</td>
<td>±0.32</td>
<td>±0.26</td>
<td>±0.11</td>
<td>±0.08</td>
<td>±0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5d_{xz}$</td>
<td>0.11</td>
<td>0.06</td>
<td>0.20</td>
<td>-0.05</td>
<td>0.05</td>
<td>0.06</td>
<td>0.19</td>
<td>0.10</td>
<td>0.07</td>
<td>±0.13</td>
<td>±0.13</td>
<td>±0.13</td>
<td>±0.13</td>
<td>±0.13</td>
</tr>
<tr>
<td>$5d_{x^2-y^2}$</td>
<td>±0.06</td>
<td>±0.09</td>
<td>±0.11</td>
<td>±0.24</td>
<td>±0.17</td>
<td>±0.18</td>
<td>±0.08</td>
<td>±0.10</td>
<td>±0.12</td>
<td>±0.12</td>
<td>±0.12</td>
<td>±0.12</td>
<td>±0.12</td>
<td>±0.12</td>
</tr>
<tr>
<td>$5d_{yz}$</td>
<td>-0.09</td>
<td>-0.08</td>
<td>0.19</td>
<td>-0.08</td>
<td>-0.07</td>
<td>0.09</td>
<td>0.18</td>
<td>±0.09</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
<td>±0.11</td>
</tr>
<tr>
<td>$5d_{xy}$</td>
<td>±0.10</td>
<td>±0.07</td>
<td>±0.05</td>
<td>±0.08</td>
<td>±0.26</td>
<td>±0.11</td>
<td>±0.09</td>
<td>±0.37</td>
<td>±0.25</td>
<td>±0.37</td>
<td>±0.37</td>
<td>±0.37</td>
<td>±0.37</td>
<td>±0.37</td>
</tr>
<tr>
<td>$6s$</td>
<td>±0.10</td>
<td>±0.14</td>
<td>±0.19</td>
<td>±0.18</td>
<td>±0.15</td>
<td>±0.23</td>
<td>±0.05</td>
<td>±0.08</td>
<td>±0.05</td>
<td>±0.08</td>
<td>±0.08</td>
<td>±0.08</td>
<td>±0.08</td>
<td>±0.08</td>
</tr>
</tbody>
</table>
Table X. Molecular orbitals which belong to the b_1 and b_2 representations in the C_{2v} symmetry group for the W_{12} surface array representing the 2 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>ψ_1</th>
<th>ψ_2</th>
<th>ψ_3</th>
<th>ψ_4</th>
<th>ψ_5</th>
<th>ψ_6</th>
<th>ψ_7</th>
<th>ψ_8</th>
<th>ψ_9</th>
<th>ψ_{10}</th>
<th>ψ_{11}</th>
<th>ψ_{12}</th>
<th>ψ_{13}</th>
<th>ψ_{14}</th>
<th>ψ_{15}</th>
<th>ψ_{16}</th>
<th>ψ_{17}</th>
<th>ψ_{18}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{18}</td>
<td>v_{15}</td>
<td>v_{10}</td>
<td>v_{19}</td>
<td>v_{09}</td>
<td>v_{07}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{14}</td>
<td>v_{05}</td>
<td>v_{05}</td>
<td>v_{05}</td>
<td>v_{05}</td>
<td>v_{05}</td>
<td>v_{05}</td>
<td>v_{05}</td>
<td>v_{05}</td>
<td>v_{05}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{16}</td>
<td>v_{17}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{15}</td>
<td>v_{18}</td>
<td>v_{10}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{14}</td>
<td>v_{17}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{13}</td>
<td>v_{16}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{12}</td>
<td>v_{15}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{11}</td>
<td>v_{14}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{10}</td>
<td>v_{13}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{09}</td>
<td>v_{12}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{08}</td>
<td>v_{11}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{07}</td>
<td>v_{10}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{06}</td>
<td>v_{09}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{05}</td>
<td>v_{08}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{04}</td>
<td>v_{07}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{03}</td>
<td>v_{06}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{02}</td>
<td>v_{05}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>$W_{1(1)}$</td>
<td>v_{01}</td>
<td>v_{04}</td>
<td>v_{18}</td>
<td>v_{19}</td>
<td>v_{07}</td>
<td>v_{09}</td>
<td>v_{10}</td>
<td>v_{08}</td>
<td>v_{05}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
<td>v_{10}</td>
</tr>
<tr>
<td>Molecular</td>
<td>(\psi_1)</td>
<td>(\psi_2)</td>
<td>(\psi_3)</td>
<td>(\psi_4)</td>
<td>(\psi_5)</td>
<td>(\psi_6)</td>
<td>(\psi_7)</td>
<td>(\psi_8)</td>
<td>(\psi_9)</td>
<td>(\psi_{10})</td>
<td>(\psi_{11})</td>
<td>(\psi_{12})</td>
<td>(\psi_{13})</td>
<td>(\psi_{14})</td>
<td>(\psi_{15})</td>
<td>(\psi_{16})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (eV)</td>
<td>(-10.42)</td>
<td>(-10.19)</td>
<td>(-9.87)</td>
<td>(-9.70)</td>
<td>(-9.35)</td>
<td>(-9.24)</td>
<td>(-8.90)</td>
<td>(-8.23)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-.17</td>
<td>.08</td>
<td>-.08</td>
<td>-.48</td>
<td>-.30</td>
<td>-.25</td>
<td>.05</td>
<td>-.46</td>
<td>-.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.17</td>
<td>.08</td>
<td>-.08</td>
<td>-.48</td>
<td>-.25</td>
<td>.30</td>
<td>.05</td>
<td>-.23</td>
<td>-.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(1,1)</td>
<td>(\psi_{1x})</td>
<td>.55</td>
<td>.14</td>
<td>.10</td>
<td>.16</td>
<td>.05</td>
<td>-.12</td>
<td>-.05</td>
<td>-.06</td>
<td>-.19</td>
<td>.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\psi_{1y})</td>
<td>.55</td>
<td>-.14</td>
<td>-.16</td>
<td>.10</td>
<td>-.12</td>
<td>-.05</td>
<td>-.06</td>
<td>-.09</td>
<td>-.19</td>
<td>.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(2,4)</td>
<td>(\psi_{2x})</td>
<td>.12</td>
<td>.16</td>
<td>.16</td>
<td>.14</td>
<td>.23</td>
<td>.13</td>
<td>.11</td>
<td>.08</td>
<td>.19</td>
<td>.08</td>
<td>.10</td>
<td>.10</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\psi_{2y})</td>
<td>.13</td>
<td>-.13</td>
<td>.07</td>
<td>.11</td>
<td>-.11</td>
<td>.27</td>
<td>.11</td>
<td>-.25</td>
<td>-.19</td>
<td>.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(1,4)</td>
<td>(\psi_{3x})</td>
<td>.12</td>
<td>.16</td>
<td>.16</td>
<td>.17</td>
<td>.07</td>
<td>.11</td>
<td>.11</td>
<td>.10</td>
<td>.06</td>
<td>.26</td>
<td>.21</td>
<td>.26</td>
<td>.22</td>
<td>.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\psi_{3y})</td>
<td>.19</td>
<td>.13</td>
<td>-.11</td>
<td>.07</td>
<td>.27</td>
<td>.11</td>
<td>-.25</td>
<td>.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(2,6)</td>
<td>(\psi_{5x})</td>
<td>.12</td>
<td>.16</td>
<td>.16</td>
<td>.17</td>
<td>.07</td>
<td>.11</td>
<td>.11</td>
<td>.10</td>
<td>.06</td>
<td>.24</td>
<td>.13</td>
<td>.29</td>
<td>.30</td>
<td>.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\psi_{5y})</td>
<td>.19</td>
<td>.13</td>
<td>-.11</td>
<td>.07</td>
<td>.27</td>
<td>.11</td>
<td>-.25</td>
<td>.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(1,6)</td>
<td>(\psi_{6x})</td>
<td>.20</td>
<td>.05</td>
<td>.05</td>
<td>.17</td>
<td>.05</td>
<td>.42</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\psi_{6y})</td>
<td>.07</td>
<td>.06</td>
<td>.09</td>
<td>.25</td>
<td>.05</td>
<td>.42</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>W(2,8)</td>
<td>(\psi_{7x})</td>
<td>.20</td>
<td>.05</td>
<td>.05</td>
<td>.17</td>
<td>.05</td>
<td>.42</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\psi_{7y})</td>
<td>.06</td>
<td>.07</td>
<td>.09</td>
<td>.25</td>
<td>.05</td>
<td>.42</td>
<td>.05</td>
<td></td>
</tr>
</tbody>
</table>

Table XI. Molecular orbitals which belong to the \(e \) representation for the W\(_2\)N surface "molecule" where nitrogen is bonded at a 1-CN site.
Molecular Orbital	\(\psi_1 \)	\(\psi_2 \)	\(\psi_3 \)	\(\psi_4 \)	\(\psi_5 \)	\(\psi_6 \)	\(\psi_7 \)	\(\psi_8 \)	\(\psi_9 \)	\(\psi_{10} \)	\(\psi_{11} \)	\(\psi_{12} \)	\(\psi_{13} \)	\(\psi_{14} \)	\(\psi_{15} \)	\(\psi_{16} \)	\(\psi_{17} \)	\(\psi_{18} \)			
\(2p_x \)	.15	-.01	.10	-.08	-.22	-.10	-.02	-.10	-.31	.15	.34	.34	.34	.20	.20	.20	.20	.20	.20	.20	
\(2p_y \)	.39	-.02	-.25	.33	.15	.21	-.15	.34	.02	.44	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	
\(5d_{x^2-y^2} \)	-.19	.21	-.09	-.13	-.24	-.23	-.10	-.14	-.05	-.22	.06	-.22	.06	-.22	.06	-.22	.06	-.22	.06	-.22	.06
\(5d_{x+y} \)	a.28	.31	.07	.05	.07	.10	.19	.06	.15	.06	.15	.06	.15	.06	.15	.06	.15	.06	.15	.06	.15
\(6s \)	a.06	a.20	a.07																		
W(5, 6, 7, 8)																					
\(5d_{z^2} \)	a.07	a.07	a.11	a.08	a.20	a.07	a.20	a.14	a.06	a.05	a.12	a.21	a.09								
\(5d_{x^2-y^2} \)	.05	a.10	a.12	.10	.10	a.23	.15	.14	-.06	.10	.27	.08	.16	.08	.13	.08	.13	.08	.13	.08	
W(9, 10, 11, 12)																					
\(5d_{z^2} \)	a.05																				
\(5d_{x^2-y^2} \)	-.06	a.06	-.09	.10	.19	.17	-.21	.06	.07	-.18	-.18	-.18	-.18	-.18	-.18	-.18	-.18	-.18	-.18	-.18	
W(5, 6, 7, 8)																					
\(5d_{x^2-y^2} \)	a.05	a.07	a.08	a.05	a.13	a.10	a.08	a.05													
W(9, 10, 11, 12)																					
\(5d_{x^2-y^2} \)	a.05	a.07	a.08	a.05	a.13	a.10	a.08	a.05													
\(6s \)	a.13	a.19	a.12	a.15																	

Table XI: Molecular orbitals which belong to the \(b_1 \) and \(b_2 \) representations for the \(W_4N_2 \) surface molecule where nitrogen is bonded at a 2 CN site.
Table XIII. Molecular orbitals which belong to the e representation for the W_2N surface "molecule" where nitrogen is bonded at a N_CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>ψ_1</th>
<th>ψ_2</th>
<th>ψ_3</th>
<th>ψ_4</th>
<th>ψ_5</th>
<th>ψ_6</th>
<th>ψ_7</th>
<th>ψ_8</th>
<th>ψ_9</th>
<th>ψ_{10}</th>
<th>ψ_{11}</th>
<th>ψ_{12}</th>
<th>ψ_{13}</th>
<th>ψ_{14}</th>
<th>ψ_{15}</th>
<th>ψ_{16}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>(-11.10)</td>
<td>(-10.11)</td>
<td>(-10.16)</td>
<td>(-9.68)</td>
<td>(-9.51)</td>
<td>(-8.94)</td>
<td>(-8.81)</td>
<td>(-8.35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>d_{yz}</td>
<td>-0.1</td>
<td>10</td>
<td>0.09</td>
<td>0.05</td>
<td>0.08</td>
<td>0.05</td>
<td>0.02</td>
<td>0.11</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{xy}</td>
<td>-0.1</td>
<td>10</td>
<td>0.02</td>
<td>0.05</td>
<td>0.08</td>
<td>0.05</td>
<td>0.02</td>
<td>0.12</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(1)</td>
<td></td>
</tr>
<tr>
<td>d_{x^2}</td>
<td>-0.4</td>
<td>-0.24</td>
<td>-0.13</td>
<td>-0.19</td>
<td>-0.22</td>
<td>-0.37</td>
<td>0.11</td>
<td>0.13</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{y^2}</td>
<td>-0.4</td>
<td>0.24</td>
<td>-0.13</td>
<td>-0.19</td>
<td>-0.22</td>
<td>-0.37</td>
<td>0.11</td>
<td>0.13</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(2, 5)</td>
<td></td>
</tr>
<tr>
<td>$d_{x^2-2y^2}$</td>
<td>0.16</td>
<td>0.05</td>
<td>0.19</td>
<td>0.30</td>
<td>0.05</td>
<td>0.17</td>
<td>0.08</td>
<td>0.10</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{xy}</td>
<td>0.11</td>
<td>-0.11</td>
<td>-0.33</td>
<td>-0.05</td>
<td>-0.09</td>
<td>-0.05</td>
<td>-0.07</td>
<td>-0.12</td>
<td>-0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(3, 4)</td>
<td></td>
</tr>
<tr>
<td>d_{x^2}</td>
<td>0.16</td>
<td>0.19</td>
<td>0.05</td>
<td>0.30</td>
<td>0.05</td>
<td>0.17</td>
<td>0.08</td>
<td>0.10</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{xy}</td>
<td>0.13</td>
<td>-0.19</td>
<td>-0.22</td>
<td>-0.24</td>
<td>-0.06</td>
<td>-0.12</td>
<td>-0.10</td>
<td>-0.09</td>
<td>-0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(6, 9)</td>
<td></td>
</tr>
<tr>
<td>d_{x^2}</td>
<td>0.18</td>
<td>0.14</td>
<td>0.11</td>
<td>0.30</td>
<td>0.27</td>
<td>0.06</td>
<td>0.06</td>
<td>0.19</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{xy}</td>
<td>0.15</td>
<td>-0.19</td>
<td>-0.09</td>
<td>-0.14</td>
<td>-0.14</td>
<td>-0.16</td>
<td>0.10</td>
<td>-0.22</td>
<td>-0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(7, 8)</td>
<td></td>
</tr>
<tr>
<td>d_{x^2}</td>
<td>0.11</td>
<td>0.11</td>
<td>0.14</td>
<td>0.27</td>
<td>0.30</td>
<td>0.06</td>
<td>0.06</td>
<td>0.19</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{xy}</td>
<td>0.15</td>
<td>0.06</td>
<td>0.21</td>
<td>0.15</td>
<td>-0.15</td>
<td>0.16</td>
<td>0.10</td>
<td>0.22</td>
<td>0.30</td>
<td>-0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_{x^2-2y^2}$</td>
<td>0.11</td>
<td>0.06</td>
<td>0.06</td>
<td>0.22</td>
<td>0.17</td>
<td>0.10</td>
<td>0.10</td>
<td>0.17</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_{xy}</td>
<td>0.08</td>
<td>0.09</td>
<td>0.09</td>
<td>0.07</td>
<td>0.09</td>
<td>0.16</td>
<td>0.16</td>
<td>0.11</td>
<td>0.13</td>
<td>0.30</td>
<td>0.30</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>0.06</td>
<td>0.07</td>
<td>0.06</td>
<td>0.17</td>
<td>0.21</td>
<td>0.20</td>
<td>0.20</td>
<td>0.09</td>
<td>0.10</td>
<td>0.07</td>
<td>0.07</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. Surface arrays used to model adsorption on different W(100) surface sites.

Figure 2. Dependence of bond energy on bond distance for WN molecule with and without inclusion of W 5p orbitals.

Figure 3. Dependence of non-bonding (5p orbital) repulsive energy on distance for the WN molecules.

Figure 4. Additivity of non-bonded orbital repulsive energy.
 a) Difference in E(r) for W₂N between calculations including and omitting W 5p orbitals.
 b) E(r) calculated by pairwise addition of analytic repulsive energy functions.

Figure 5. Additivity of non-bonded orbital repulsive energy of abbreviated surface arrays.
 a) Difference in E(r) for WₙN (n = 4, 5) between calculations including and omitting W 5p orbitals.
 b) E(r) calculated by pairwise addition of analytic repulsive energy functions.

Figure 6. Bond energies as functions of distances for nitrogen adsorbed on different W(100) surface sites.

Figure 7. Molecular orbital - energy diagrams for the totally symmetric occupied orbitals for nitrogen adsorbed on different W(100) surface sites.
Figure 8. Molecular orbital-energy diagrams for the occupied orbitals belonging to the representations $e(W_g)$, and b_1 and $b_2 (W_{12})$ for nitrogen adsorbed on different $W(100)$ surface sites.
Figure 1. Surface arrays used to model adsorption on different W(100) surface sites.
Figure 2. Dependence of bond energy on bond distance for WN molecule with and without inclusion of W 5p orbitals.
Figure 3. Dependence of non-bonding (5p orbital) repulsive energy on distance for the WN molecules.
Figure 4. Additivity of non-bonded orbital repulsive energy.

a) Difference in $E(r)$ for W$_2$N between calculations including and omitting W 5p orbitals.

b) $E(r)$ calculated by pairwise addition of analytic repulsive energy functions.
Figure 5. Additivity of non-bonded orbital repulsive energy of abbreviated surface arrays.

a) Difference in $E(r)$ for W_nN (n = 4, 5) between calculations including and omitting W 5p orbitals.

b) $E(r)$ calculated by pairwise addition of analytic repulsive energy functions.
Figure 6. Bond energies as functions of distances for nitrogen adsorbed on different W(100) surface sites.
Figure 7. Molecular orbital-energy diagrams for the totally symmetric occupied orbitals for nitrogen adsorbed on different W(100) surface sites.
Figure 8. Molecular orbital-energy diagrams for the occupied orbitals belonging to the representations $e(W_9)$, and b_1 and $b_2 (W_{12})$ for nitrogen adsorbed on different $W(100)$ surface sites.
APPENDIX C.

A MOLECULAR ORBITAL INVESTIGATION OF CHEMISORPTION. III. OXYGEN ON TUNGSTEN (100) SURFACE
A Molecular Orbital Investigation of
Chemisorption. III. Oxygen on Tungsten (100) Surface

LEON W. ANDERS AND ROBERT S. HANSEN

Ames Laboratory-USAEC and Department of Chemistry
Iowa State University, Ames, Iowa 50010

AND

L. S. BARTELL

Department of Chemistry, University of Michigan
Ann Arbor, Michigan 48104

Abstract

The relative bonding energies of oxygen chemisorbed at three
symmetric sites on a W(100) surface represented by finite arrays of
tungsten atoms were obtained by means of Extended Hückel Molecular
Orbital Theory (EHMO). The preferred site for chemisorbed oxygen
was the 2 CN site. The selection of this site by an O adatom is consistent
with the usual divalent property of oxygen. Based upon this site selection,
a surface structure for O adatoms on the W(100) can be proposed for
observed (2x1) LEED patterns (8).
I. INTRODUCTION

In applying the Extended Hückel Molecular Orbital (EHMO) technique to the chemisorption of hydrogen\(^1\) and nitrogen\(^2\) on a tungsten (100) surface, we have found that the preferred site, for these atoms are different. Hydrogen preferred a site where it could most effectively bond to a single surface atom and nitrogen a site where it could interact with five tungsten atoms satisfying its multiple valency. An atom with yet different bonding properties is the next obvious step in the study of trying to develop an overall understanding of chemisorption and sites selected by adsorbates on any surface. In this paper, we have selected oxygen because of its usual divalent properties. This should add an additional test in determining if a metal surface will accept an adsorbate at a site determined by the chemical properties of the adsorbate atom.

II. PROCEDURE

The EHMO procedure has been outlined in our two previous papers.\(^1,\!\!^2\) In Table I are listed the orbital exponents for the Slater type orbitals (STO) of the oxygen 2s and 2p orbitals which have been derived from Slater's rules.\(^3\) The valence orbital ionization potential

\[\text{VOIP}(q) = Aq^2 + Bq + C \]

was calculated as a function of atomic charge from the parameters \(A, B\) and \(C\) which are also listed in Table I. These values were taken from the work of Basch, Viste and Gray.\(^4\) As in the previous studies,\(^1,\!\!^2\) we
are reporting the results of the diatomic molecule, WO, and the surface "molecules", W\textsubscript{n}O, where the oxygen atom is placed at each of the three symmetric sites of the surface arrays in Fig. 1.

III. RESULTS

A. Diatomic Molecule

For the diatomic molecule, WO, the bonding energy E as a function of internuclear separation r is plotted in Fig. 2. The presence of the 5p orbitals of tungsten in the basis set produced a minimum in curve a, because the complete occupation of these non-bonding orbitals provide the repulsion at smaller internuclear separation. \(E = A e^{-r/a} \) (2)
can be used to approximate this repulsive energy. The values for the parameters A and \(\alpha \) needed to calculate the repulsive energy by this analytical exponential term can be determined from the plot of Fig. 3 \((A_{WO} = 4308.6 \text{ ev and } \alpha_{WO} = .209 \text{ Å}^{-1})\).

From the sum of the single bond covalent radii (0.66Å for O and 1.30Å for W) and the equilibrium bond length for the WO molecule of 1.68Å (Fig. 2), Pauling's empirical relationship\(^5\) between bond length and bond order gives a value of 2.4 for the bond order. From Table II, it is
observed that Ψ_2, Ψ_3 and Ψ_4 are the most significant bonding molecular orbitals, as was the case for the WN molecule which had a bond order of 3.1. The resulting smaller bond order for the WO molecule can be explained by a comparison of overlap population of the atomic orbitals forming the σ and π bonds of these diatomic molecules. The overlap population in the σ bond for the WN molecule was 0.69 compared to 0.48 for the WO molecule and in the π bond for WN molecule, the overlap population was 0.86 compared to 0.62 in the WO molecule. The total overlap population for the WN molecule is 1.55 compared to 1.10 for the WO molecule. This reduction in overlap population can account for the reduction in bond order.

It was originally proposed that the computation could be simplified if the non-bonding 5p orbitals which provide the repulsive energy could be omitted from the basis set. In the case of hydrogen this was possible, but it was shown that nitrogen bonded to larger groups of atoms would not allow the repulsive energy to be calculated by the summation of pairwise interactions. A similar comparison is made for the interaction of oxygen with larger arrays of atoms. The repulsive energies resulting from the presence of the 5p orbitals of tungsten in the basis set are plotted as curves a in Fig. 4. The repulsive energies calculated by the summation of pairwise repulsions
determined by the analytical exponential term are plotted as curves b. As the case with nitrogen, it is also observed that the repulsive energies can not be properly approximated by the pairwise summation of exponential term when the oxygen is bonded to larger arrays of tungsten atoms. Therefore, it was approximated instead by direct calculation of the reduced arrays of Fig. 1 ($W_5 - 1$ CN and 5 CN sites and $W_4 - 2$ CN sites).

B. Oxygen Chemisorbed on a W(100) Surface

The previous adjustments of the VOIP for the orbitals of the edge atoms of the surface atom arrays (Fig. 1) were used to reduce charge transfer resulting from edge effects. With no further adjustment of the VOIP of the tungsten atoms, the VOIP for the orbitals of the oxygen atom were iterated to charge self-consistency at equilibrium separation at each of the symmetric sites. On the final iteration, the VOIP for the $2s$ and $2p$ orbitals of oxygen were: -23.53 ev and -8.77 ev at the 1 CN site, -23.73 ev and -8.92 ev at the 2 CN site and -25.91 ev and -10.64 ev at the 5 CN site. To insure the
results were not dependent upon VOIP parametrization, the calculations were repeated using -23.73 ev and -8.92 ev for the 2s and 2p orbitals of oxygen respectively at all the sites. From these calculations, the bonding energies for oxygen on each of the surface arrays were determined as a function of internuclear separation r and plotted in Fig. 5. The internuclear separation r was the distance to the nearest tungsten atom(s) for the oxygen at each of the sites. The bonding energy E was calculated according to the following relationship:

$$E = \sum_{W_n} n_i \epsilon_i - \sum_{W_n} n_i \epsilon_i - \sum_{O} n_i \epsilon_i + E_{\text{Rep}}$$ \hspace{1cm} (3)$$

where the first term is the summation over the energies ϵ_i of the occupied molecular orbitals of the surface "molecule" W_nO, the next term is the summation over the energies ϵ_i of the occupied molecular orbitals of the W_n surface "molecule" representing the surface for each site, and the next term is the summation over the energies ϵ_i of the occupied atomic orbitals of the oxygen atom at infinite separation. The repulsive energy E_{Rep} is that determined in prior calculation using abbreviated surface arrays in which the 5p orbitals could be included in the basis set. A summary of the above results where oxygen is at equilibrium separation at each site is found in Table III.
The only molecular orbitals of interest from the W_n surface arrays are those belonging to the same irreducible representation in the appropriate symmetry groups ($W_9 - C_{4v}$ and $W_{12} - C_{2v}$) as the atomic orbitals of oxygen. In Fig. 6, the molecular orbital energy diagrams are shown for the molecular orbitals belonging to the totally symmetric irreducible representation for surface "molecules" with oxygen bonded to each of the surface arrays in Fig. 1. On the sides of each panel in Fig. 6 are the occupied totally symmetric molecular orbitals of the W_n arrays and the atomic orbitals of oxygen ($2s$ and $2p_z$). The occupied totally symmetric molecular orbitals of the W_nO surface molecules are represented in the center of the panels. The totally symmetric orbitals for the W_9 and W_{12} arrays are tabulated in Tables IV and V and can be compared with the tabulated totally symmetric orbitals for the W_nO surface "molecules" (Table VI - 1 CN, Table VII - 2 CN and Table VIII - 5 CN). From these tables, it is observed that the lowest molecular orbital in each surface "molecule" is extensively $2s$ in character. The other additional molecular orbital formed as a result of the $2p_z$ atomic orbital interacting with the totally symmetric orbitals for each of the W_n arrays ($\Psi_7 - 1$ CN and 5 CN and $\Psi_{13} - 2$ CN) increase in energy in going from the 1 CN to the 2 CN to the 5 CN site. The Ψ_7 molecular orbital at the 5 CN is even above the highest occupied molecular orbital (HOMO). Similar behavior was also observed for the interaction of the totally symmetric
atomic orbital of hydrogen1 and nitrogen2 with the \(W_n \) arrays.

The 2p\textsubscript{x} and 2p\textsubscript{y} orbitals of oxygen, as in the case of nitrogen,2 play a very important role in the selection of the site for preferred bonding. In Fig. 7 the molecular orbital energy diagrams are shown for these atomic orbitals interacting with the appropriate molecular orbitals of the \(W_n \) arrays forming the molecular orbitals of the \(W_nO \) surface "molecules". A comparison can be made between the tabulated molecular orbitals (Table XI - 1 CN, Table XII - 2 CN and Table XIII - 5 CN) for the \(W_nO \) surface "molecules" with the tabulated molecular orbitals (Table IX - \(W_9 \), Table X - \(W_{12} \)) of appropriate symmetry for the \(W_n \) arrays. With oxygen at the 5 CN site, the 2p\textsubscript{x} and 2p\textsubscript{y} orbitals interact primarily with three sets of degenerate orbitals of the \(W_9 \) array. The resulting orbitals of the \(W_9O \) "molecule" are not as energetically favorable as those similar molecular orbitals of the \(W_9N \) "molecule".2 The influence of these p orbitals of oxygen in selecting the 2 CN site is consistent with the usual divalent property of oxygen.

IV. DISCUSSION

As reported by Madey,6 the adsorption oxygen on \(W(100) \) surface is a complex process. Oxygen will not desorb from the \(W(100) \) surface as molecular oxygen, but as oxides of tungsten and even as atomic
Estrup and Anderson reported an oxygen (2 x 1) LEED pattern formed by heating a streaked (4 x 1) structure formed by room temperature of oxygen. Our calculations indicate that oxygen prefers the 2 CN site. The divalent property of oxygen has predominated in selecting the bonding site. In Fig. 5, the equilibrium internuclear W-O distance (2.05 Å) is comparable to the sum of the W metallic radius (1.37 Å) and the O covalent radius (0.66 Å). The bonding of oxygen at the 2 CN sites can be effectively described as two single bonds to each tungsten atom at this site. If the oxygen atoms were bonded on the W(100) surface at 2 CN sites as depicted in Fig. 8, each oxygen atom would be bonded to two tungsten atoms and these two tungsten atoms would not be bonded to any other oxygen atom. Such a surface structure of adsorbed oxygen would account for the observed (2 x 1) LEED pattern.
References

Table I. Orbital exponents for STO of the oxygen atom and parameters needed to calculate VOIP as a function of atomic charge.

<table>
<thead>
<tr>
<th>Orbital</th>
<th>Orbital Exponent</th>
<th>A $[\text{ev}/(\text{e})^2]$</th>
<th>B $[\text{ev/e}]$</th>
<th>C $[\text{ev}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2s</td>
<td>2.275</td>
<td>3.46</td>
<td>22.89</td>
<td>32.33</td>
</tr>
<tr>
<td>2p</td>
<td>2.275</td>
<td>3.46</td>
<td>18.57</td>
<td>15.80</td>
</tr>
</tbody>
</table>
Table II. Occupied Molecular Orbitals for the diatomic molecule WO.

<table>
<thead>
<tr>
<th>W-O</th>
<th>Ψ_1</th>
<th>Ψ_2</th>
<th>Ψ_3</th>
<th>Ψ_4</th>
<th>Ψ_5</th>
<th>Ψ_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>(-27.21)</td>
<td>(-12.50)</td>
<td>(-12.50)</td>
<td>(-11.95)</td>
<td>(-9.80)</td>
<td>(-9.80)</td>
</tr>
</tbody>
</table>

O
- 2s .93 .10
- 2p_z .84
- 2p_x -.81
- 2p_y -.81

W
- 5d_z2 .13 -.35
- 5d_xz -.44
- 5d_x2-y2 1.00
- 5d_xy 1.00
- 6s .18
Table III. Energies, equilibrium distances, and charges for oxygen bonded to different W(100) surface sites.

| Site | Bond Energy (eV) | r_e (\AA) | Charge $|e|$ |
|------|------------------|--------------|-----------|
| 1 CN | -1.06 | 1.93 | -0.45 |
| 2 CN | -1.30 | 2.05 | -0.40 |
| 5 CN | -0.80 | 1.98 | ±0.90 |
Table IV. Totally symmetric molecular orbitals for the surface arrays representing the 1 CN and 5 CN sites.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>(\Psi_1)</th>
<th>(\Psi_2)</th>
<th>(\Psi_3)</th>
<th>(\Psi_4)</th>
<th>(\Psi_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>(-12.43)</td>
<td>(-10.69)</td>
<td>(-10.38)</td>
<td>(-9.77)</td>
<td>(-8.47)</td>
</tr>
<tr>
<td>W(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_{z^2})</td>
<td>-.54</td>
<td>-.10</td>
<td>-.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>-.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(2, 3, 4, 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_{z^2})</td>
<td>.22</td>
<td>.17</td>
<td>.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_{xz}) (2, 5)</td>
<td>±.15</td>
<td>±.31</td>
<td>±.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_{x^2-y^2})</td>
<td>±.12</td>
<td>±.30</td>
<td>±.19</td>
<td>±.05</td>
<td></td>
</tr>
<tr>
<td>5d(_{yz}) (3, 4)</td>
<td>±.15</td>
<td>±.31</td>
<td>±.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>-.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(6, 7, 8, 9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_{z^2})</td>
<td>-.10</td>
<td>-.19</td>
<td>.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_{xz})</td>
<td>±.11</td>
<td>±.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_{yz})</td>
<td>±.11</td>
<td>±.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_{xy})</td>
<td>±.12</td>
<td>±.22</td>
<td>±.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>-.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table V. Totally symmetric molecular orbitals for the surface array representing the 2 CN site.

<table>
<thead>
<tr>
<th></th>
<th>(\psi_1)</th>
<th>(\psi_2)</th>
<th>(\psi_3)</th>
<th>(\psi_4)</th>
<th>(\psi_5)</th>
<th>(\psi_6)</th>
<th>(\psi_7)</th>
<th>(\psi_8)</th>
<th>(\psi_9)</th>
<th>(\psi_{10})</th>
<th>(\psi_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W(1, 2))</td>
<td></td>
</tr>
<tr>
<td>5d(z^2)</td>
<td>-12.78</td>
<td>-11.31</td>
<td>-10.87</td>
<td>-10.82</td>
<td>-10.25</td>
<td>-10.03</td>
<td>-9.68</td>
<td>-9.62</td>
<td>-8.97</td>
<td>-8.72</td>
<td>-8.32</td>
</tr>
<tr>
<td>5d(x^2-y^2)</td>
<td>.33</td>
<td>.08</td>
<td>.09</td>
<td>.15</td>
<td>.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(yz)</td>
<td>±.12</td>
<td>±.08</td>
<td>±.32</td>
<td>±.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>(W(3, 4))</td>
<td></td>
</tr>
<tr>
<td>5d(z^2)</td>
<td>.36</td>
<td>.09</td>
<td>.08</td>
<td>.09</td>
<td>.15</td>
<td>.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(xz)</td>
<td>±.12</td>
<td>±.08</td>
<td>±.32</td>
<td>±.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(x^2-y^2)</td>
<td>±.19</td>
<td>.05</td>
<td>.05</td>
<td>.08</td>
<td>-1.30</td>
<td>-1.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>(W(5, 6, 7, 8))</td>
<td></td>
</tr>
<tr>
<td>5d(z^2)</td>
<td>.12</td>
<td>.05</td>
<td>.05</td>
<td>.17</td>
<td>.07</td>
<td>.08</td>
<td>.06</td>
<td>.08</td>
<td>-1.12</td>
<td>.11</td>
<td>.11</td>
</tr>
<tr>
<td>5d(xz)</td>
<td>±.05</td>
<td>±.07</td>
<td>±.14</td>
<td>±.23</td>
<td>±.09</td>
<td>±.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(x^2-y^2)</td>
<td>-1.13</td>
<td>.05</td>
<td>.05</td>
<td>.11</td>
<td>.10</td>
<td>-1.66</td>
<td>.05</td>
<td>-1.20</td>
<td>-1.05</td>
<td>-1.14</td>
<td>-1.14</td>
</tr>
<tr>
<td>5d(yz)</td>
<td>±.12</td>
<td>±.13</td>
<td>±.19</td>
<td>±.14</td>
<td>±.24</td>
<td>±.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>(W(9, 10, 11, 12))</td>
<td></td>
</tr>
<tr>
<td>5d(z^2)</td>
<td>.12</td>
<td>±.05</td>
<td>±.17</td>
<td>.07</td>
<td>.08</td>
<td>.06</td>
<td>.08</td>
<td>-1.12</td>
<td>.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(xz)</td>
<td>±.07</td>
<td>±.13</td>
<td>±.19</td>
<td>±.23</td>
<td>±.14</td>
<td>±.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(x^2-y^2)</td>
<td>±.05</td>
<td>±.07</td>
<td>±.14</td>
<td>±.09</td>
<td>±.20</td>
<td>±.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(yz)</td>
<td>±.12</td>
<td>±.08</td>
<td>±.14</td>
<td>±.09</td>
<td>±.18</td>
<td>±.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>.10</td>
<td></td>
</tr>
</tbody>
</table>
Table VI. Totally symmetric molecular orbital for \(\text{W}_9\text{O} \) surface "molecule" where oxygen is bonded at a 1 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>(\Psi_6)</th>
<th>(\Psi'_1)</th>
<th>(\Psi'_2)</th>
<th>(\Psi'_3)</th>
<th>(\Psi'_4)</th>
<th>(\Psi'_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>(-23.98)</td>
<td>(-12.23)</td>
<td>(-10.49)</td>
<td>(-10.37)</td>
<td>(-9.78)</td>
<td>(-9.23)</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2s</td>
<td>.95</td>
<td>.09</td>
<td>.14</td>
<td>-.05</td>
<td>.03</td>
<td>-.05</td>
</tr>
<tr>
<td>2p(_z)</td>
<td></td>
<td>.02</td>
<td>-.31</td>
<td>.11</td>
<td>-.18</td>
<td>.78</td>
</tr>
<tr>
<td>W(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_z^2)</td>
<td>.10</td>
<td>.17</td>
<td>-.37</td>
<td>.10</td>
<td>-.09</td>
<td>.15</td>
</tr>
<tr>
<td>6s</td>
<td>.07</td>
<td>-.20</td>
<td>.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(2, 3, 4, 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_z^2)</td>
<td></td>
<td>.25</td>
<td>.12</td>
<td>.14</td>
<td>.20</td>
<td>-.08</td>
</tr>
<tr>
<td>5d(_xz) (2, 5)</td>
<td>±.14</td>
<td>±.09</td>
<td>±.32</td>
<td>±.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_x^2-y^2)</td>
<td>±.05</td>
<td>±.32</td>
<td>±.17</td>
<td>±.15</td>
<td>±.10</td>
<td></td>
</tr>
<tr>
<td>5d(_y^2) (3, 4)</td>
<td>±.14</td>
<td>±.09</td>
<td>±.32</td>
<td>±.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>-.18</td>
<td>-.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(6, 7, 8, 9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_z^2)</td>
<td>-.13</td>
<td>-.16</td>
<td>-.09</td>
<td>-.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_xz)</td>
<td>±.11</td>
<td>±.06</td>
<td>±.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_yz)</td>
<td>±.11</td>
<td>±.06</td>
<td>±.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d(_xy)</td>
<td>±.11</td>
<td>±.06</td>
<td>±.22</td>
<td>±.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>-.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table VII. Totally symmetric molecular orbitals for the W$_2$O$_7$ surface "molecule" where oxygen is bonded at a 2 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>ψ_{12}</th>
<th>ψ_{13}</th>
<th>ψ_{14}</th>
<th>ψ_{15}</th>
<th>ψ_{16}</th>
<th>ψ_{17}</th>
<th>ψ_{18}</th>
<th>ψ_{19}</th>
<th>ψ_{20}</th>
<th>ψ_{21}</th>
<th>ψ_{22}</th>
<th>ψ_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>(-24.07)</td>
<td>(-12.45)</td>
<td>(-11.33)</td>
<td>(-10.92)</td>
<td>(-10.61)</td>
<td>(-10.02)</td>
<td>(-9.71)</td>
<td>(-9.59)</td>
<td>(-9.27)</td>
<td>(-8.72)</td>
<td>(-8.53)</td>
<td>(-8.26)</td>
</tr>
<tr>
<td>2s</td>
<td>+.93</td>
<td>+.11</td>
<td>+.03</td>
<td>+.02</td>
<td>+.07</td>
<td>+.10</td>
<td>-.06</td>
<td>-.03</td>
<td>-.09</td>
<td>-.03</td>
<td>-.02</td>
<td>-.02</td>
</tr>
<tr>
<td>2p$_\alpha$</td>
<td>-.01</td>
<td>-.02</td>
<td>+.11</td>
<td>-.17</td>
<td>-.03</td>
<td>-.31</td>
<td>-.09</td>
<td>-.32</td>
<td>-.29</td>
<td>+.45</td>
<td>-.32</td>
<td>+.21</td>
</tr>
<tr>
<td>W(1,2)</td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td></td>
<td></td>
<td></td>
<td>-.08</td>
<td>+.31</td>
<td>+.06</td>
<td>+.14</td>
<td>-.08</td>
<td>+.15</td>
<td>+.09</td>
<td>+.12</td>
<td>-.08</td>
</tr>
<tr>
<td>5d$_{y^2}$</td>
<td>+.07</td>
<td>+.12</td>
<td>+.16</td>
<td>+.14</td>
<td>+.11</td>
<td>+.09</td>
<td>+.09</td>
<td>+.21</td>
<td>+.13</td>
<td>+.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>+.06</td>
<td>-.14</td>
<td></td>
</tr>
<tr>
<td>W(3,4)</td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td></td>
</tr>
<tr>
<td>5d$_{y^2}$</td>
<td>+.14</td>
<td>+.11</td>
<td>+.16</td>
<td>+.14</td>
<td>+.11</td>
<td>+.09</td>
<td>+.09</td>
<td>+.21</td>
<td>+.13</td>
<td>+.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td></td>
<td></td>
<td></td>
<td>-.32</td>
<td>-.08</td>
<td>+.11</td>
<td>-.14</td>
<td>+.20</td>
<td>-.20</td>
<td>-.21</td>
<td>-.16</td>
<td></td>
</tr>
<tr>
<td>W(5,6,7,8)</td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td></td>
<td></td>
<td></td>
<td>-.12</td>
<td>+.10</td>
<td>+.21</td>
<td>+.11</td>
<td>+.20</td>
<td>+.17</td>
<td>+.17</td>
<td>+.25</td>
<td>+.10</td>
</tr>
<tr>
<td>5d$_{y^2}$</td>
<td>+.06</td>
<td>+.05</td>
<td>+.07</td>
<td>+.12</td>
<td>+.17</td>
<td>+.17</td>
<td>+.25</td>
<td>+.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>-.12</td>
<td>+.10</td>
<td>+.07</td>
<td>+.19</td>
<td>+.23</td>
<td>+.15</td>
<td>+.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(9,10,11,12)</td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td></td>
<td></td>
<td></td>
<td>-.10</td>
<td>-.12</td>
<td>-.17</td>
<td>-.05</td>
<td>+.09</td>
<td>+.10</td>
<td>+.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{y^2}$</td>
<td>+.06</td>
<td>+.05</td>
<td>+.23</td>
<td>+.08</td>
<td>+.21</td>
<td>+.13</td>
<td>+.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>+.12</td>
<td>+.08</td>
<td>-.14</td>
<td>-.11</td>
<td>+.07</td>
<td>-.12</td>
<td>-.10</td>
<td>+.22</td>
<td>+.07</td>
<td>+.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{y^2}$</td>
<td>+.06</td>
<td>+.10</td>
<td>+.06</td>
<td>+.26</td>
<td>+.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>+.14</td>
<td>+.15</td>
<td>+.10</td>
<td>+.24</td>
<td>+.20</td>
<td>+.07</td>
<td>+.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table VIII. Totally symmetric molecular orbitals for the W₉ O surface "molecule" where oxygen is bonded at a 5 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>Ψ_6</th>
<th>Ψ'_1</th>
<th>Ψ'_3</th>
<th>Ψ'_2</th>
<th>Ψ'_4</th>
<th>Ψ'_5</th>
<th>Ψ'_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (ev)</td>
<td>(-24.15)</td>
<td>(-12.01)</td>
<td>(-10.49)</td>
<td>(-10.18)</td>
<td>(-9.38)</td>
<td>(-8.62)</td>
<td>(-7.59)</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2s</td>
<td>.91</td>
<td>-.09</td>
<td>.04</td>
<td>.15</td>
<td>-.08</td>
<td>-.07</td>
<td></td>
</tr>
<tr>
<td>2p$_z$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.07</td>
<td>.25</td>
<td>-.45</td>
<td>.56</td>
<td>.04</td>
<td>.23</td>
<td></td>
</tr>
<tr>
<td>W(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_z^2$</td>
<td>.07</td>
<td>-.25</td>
<td>-.23</td>
<td>.04</td>
<td>-.33</td>
<td>-.05</td>
<td>-.27</td>
</tr>
<tr>
<td>6s</td>
<td>.04</td>
<td>.21</td>
<td></td>
<td>-.04</td>
<td>-.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(2, 3, 4, 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_z^2$</td>
<td>.06</td>
<td>.24</td>
<td></td>
<td>-.11</td>
<td>-.08</td>
<td>-.22</td>
<td></td>
</tr>
<tr>
<td>5d$_{xz}$ (2, 5)</td>
<td>±.07</td>
<td>±.31</td>
<td>±.11</td>
<td>±.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>±.04</td>
<td>±.10</td>
<td>±.20</td>
<td>±.15</td>
<td>±.06</td>
<td>±.17</td>
<td></td>
</tr>
<tr>
<td>5d$_{yz}$ (3, 4)</td>
<td>±.07</td>
<td>±.31</td>
<td>±.11</td>
<td>±.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>.03</td>
<td>.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(6, 7, 8, 9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_z^2$</td>
<td>-.20</td>
<td>-.07</td>
<td>.07</td>
<td>.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xz}$</td>
<td>±.09</td>
<td>±.06</td>
<td>±.29</td>
<td>±.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{yz}$</td>
<td>±.09</td>
<td>±.06</td>
<td>±.29</td>
<td>±.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xy}$</td>
<td>±.16</td>
<td>±.25</td>
<td>±.36</td>
<td>±.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>.13</td>
<td>-.09</td>
<td>.05</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table IX. Molecular orbitals which belong to the e representation in the C_{4v} symmetry group for the W$_5$ surface arrays representing the 1 CN and 5 CN sites.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>ψ_1</th>
<th>ψ_2</th>
<th>ψ_3</th>
<th>ψ_4</th>
<th>ψ_5</th>
<th>ψ_6</th>
<th>ψ_7</th>
<th>ψ_8</th>
<th>ψ_9</th>
<th>ψ_{10}</th>
<th>ψ_{11}</th>
<th>ψ_{12}</th>
<th>ψ_{13}</th>
<th>ψ_{14}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>(-10.68)</td>
<td>(-10.17)</td>
<td>(-9.71)</td>
<td>(-9.58)</td>
<td>(-9.24)</td>
<td>(-8.91)</td>
<td>(-8.80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(1)</td>
<td></td>
</tr>
<tr>
<td>5d$_{xz}$</td>
<td>-0.50</td>
<td>0.10</td>
<td>-0.21</td>
<td>0.19</td>
<td>0.06</td>
<td>0.08</td>
<td>-0.19</td>
<td>-0.07</td>
<td>-0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{yz}$</td>
<td>0.10</td>
<td>0.50</td>
<td>-0.21</td>
<td>0.19</td>
<td>-0.08</td>
<td>0.06</td>
<td>-0.19</td>
<td>0.37</td>
<td>-0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(2, 5)</td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>±0.16</td>
<td>±0.13</td>
<td>±0.15</td>
<td>±0.26</td>
<td>±0.11</td>
<td>±0.18</td>
<td>±0.10</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xz}$</td>
<td>±0.21</td>
<td>0.05</td>
<td>-0.05</td>
<td>0.13</td>
<td>±0.22</td>
<td>-0.29</td>
<td>±0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xy}$</td>
<td>±0.12</td>
<td>±0.17</td>
<td>±0.21</td>
<td>±0.14</td>
<td>±0.26</td>
<td>±0.17</td>
<td>±0.22</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{yz}$</td>
<td>±0.17</td>
<td>±0.16</td>
<td>±0.13</td>
<td>±0.16</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
<td>±0.08</td>
<td>±0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xy}$</td>
<td>±0.22</td>
<td>±0.15</td>
<td>±0.18</td>
<td>±0.07</td>
<td>±0.12</td>
<td>±0.16</td>
<td>±0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>±0.07</td>
<td>±0.08</td>
<td>±0.20</td>
<td>±0.20</td>
<td>±0.12</td>
<td>±0.16</td>
<td>±0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(4, 6)</td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>±0.16</td>
<td>±0.15</td>
<td>±0.13</td>
<td>±0.26</td>
<td>±0.11</td>
<td>±0.18</td>
<td>±0.10</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xz}$</td>
<td>±0.17</td>
<td>±0.16</td>
<td>±0.16</td>
<td>±0.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>±0.08</td>
<td>±0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xy}$</td>
<td>±0.12</td>
<td>±0.21</td>
<td>±0.05</td>
<td>-0.13</td>
<td>±0.22</td>
<td>-0.29</td>
<td>-0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{yz}$</td>
<td>±0.22</td>
<td>±0.15</td>
<td>±0.18</td>
<td>±0.07</td>
<td>±0.32</td>
<td>±0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>±0.08</td>
<td>±0.07</td>
<td>±0.20</td>
<td>±0.20</td>
<td>±0.16</td>
<td>±0.12</td>
<td>±0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(7, 8)</td>
<td></td>
</tr>
<tr>
<td>5d$_{z^2}$</td>
<td>±0.21</td>
<td>±0.14</td>
<td>±0.10</td>
<td>±0.26</td>
<td>±0.32</td>
<td>±0.08</td>
<td>±0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xy}$</td>
<td>±0.08</td>
<td>±0.04</td>
<td>±0.04</td>
<td>±0.19</td>
<td>±0.07</td>
<td>±0.18</td>
<td>±0.09</td>
<td>±0.11</td>
<td>±0.21</td>
<td>±0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>±0.03</td>
<td>±0.06</td>
<td>±0.11</td>
<td>±0.24</td>
<td>±0.18</td>
<td>±0.10</td>
<td>±0.08</td>
<td>±0.17</td>
<td>±0.12</td>
<td>±0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xy}$</td>
<td>±0.06</td>
<td>±0.11</td>
<td>±0.10</td>
<td>±0.05</td>
<td>±0.05</td>
<td>±0.19</td>
<td>±0.10</td>
<td>±0.13</td>
<td>±0.07</td>
<td>±0.25</td>
<td>±0.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>±0.10</td>
<td>±0.19</td>
<td>±0.15</td>
<td>±0.18</td>
<td>±0.23</td>
<td>±0.05</td>
<td>±0.05</td>
<td>±0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W(11, 8)</td>
<td></td>
</tr>
<tr>
<td>5d$_{z^2}$</td>
<td>±0.21</td>
<td>±0.10</td>
<td>±0.14</td>
<td>±0.05</td>
<td>±0.32</td>
<td>±0.26</td>
<td>±0.11</td>
<td>±0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xy}$</td>
<td>±0.11</td>
<td>±0.06</td>
<td>±0.05</td>
<td>±0.06</td>
<td>±0.19</td>
<td>±0.10</td>
<td>±0.07</td>
<td>±0.13</td>
<td>±0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{x^2-y^2}$</td>
<td>±0.04</td>
<td>±0.06</td>
<td>±0.11</td>
<td>±0.24</td>
<td>±0.18</td>
<td>±0.08</td>
<td>±0.10</td>
<td>±0.12</td>
<td>±0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d$_{xy}$</td>
<td>±0.10</td>
<td>±0.07</td>
<td>±0.05</td>
<td>±0.05</td>
<td>±0.18</td>
<td>±0.26</td>
<td>±0.11</td>
<td>±0.09</td>
<td>±0.37</td>
<td>±0.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6s</td>
<td>±0.10</td>
<td>±0.14</td>
<td>±0.15</td>
<td>±0.18</td>
<td>±0.23</td>
<td>±0.05</td>
<td>±0.08</td>
<td>±0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1 Molecular orbitals which belong to the π_L and π_T representations in the $1 \sigma_2$ symmetry group for the W_{CN} surface array representing the CN site.

<table>
<thead>
<tr>
<th>Molecular orbital</th>
<th>π_L</th>
<th>π_T</th>
<th>π_L</th>
<th>π_T</th>
<th>π_L</th>
<th>π_T</th>
<th>π_L</th>
<th>π_T</th>
<th>π_L</th>
<th>π_T</th>
<th>π_L</th>
<th>π_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_1</td>
<td>-1.0</td>
<td>0.4</td>
<td>0.6</td>
<td>-0.8</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_2</td>
<td>0.4</td>
<td>-1.0</td>
<td>0.6</td>
<td>-0.8</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_3</td>
<td>-0.8</td>
<td>-0.8</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_7</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_8</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_9</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_{10}</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_{11}</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_{12}</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_{13}</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_{14}</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_{15}</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_{16}</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_{17}</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
<tr>
<td>ψ_{18}</td>
<td>-0.6</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
<td>-0.6</td>
<td>0.4</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

188

20
Table XI. Molecular orbitals which belong to the 8 representation for the W_5O surface “molecule” where oxygen is bonded at a 1 CN site.

Molecular Orbital	ψ_1	ψ_2	ψ_3	ψ_4	ψ_5	ψ_6	ψ_7	ψ_8	ψ_9	ψ_{10}	ψ_{11}	ψ_{12}	ψ_{13}	ψ_{14}	ψ_{15}	ψ_{16}	
Energy (eV)	(-10.72)	(-10.18)	(-9.72)	(-9.49)	(-9.23)	(-9.22)	(-8.90)	(-8.32)	(-8.32)	(-8.32)	(-8.32)	(-8.32)	(-8.32)	(-8.32)	(-8.32)	(-8.32)	(-8.32)
W(1)	-1.53	0.21	0.19	0.05	0.19	0.19	0.06	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
W(2,5)	a.15	a.20	a.13	a.21	a.25	a.11	a.06										
W(2,5')	+1.52	0.27	0.24	0.17	0.05	0.06	0.08	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
W(3)	a.15	a.20	a.11	a.13	a.25	a.11											
W(4)	a.15	a.20	a.11	a.13	a.25	a.11											
W(6)	a.15	a.20	a.11	a.13	a.25	a.11											
W(9)	a.15	a.20	a.11	a.13	a.25	a.11											
W(10)	a.15	a.20	a.11	a.13	a.25	a.11											
W(11)	a.15	a.20	a.11	a.13	a.25	a.11											
W(12)	a.15	a.20	a.11	a.13	a.25	a.11											
Table XII. Molecular orbitals which belong to the b_1 and b_2 representations for the W_2O surface "molecule" where oxygen is bonded at a 2 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>ψ_1</th>
<th>ψ_2</th>
<th>ψ_3</th>
<th>ψ_4</th>
<th>ψ_5</th>
<th>ψ_6</th>
<th>ψ_7</th>
<th>ψ_8</th>
<th>ψ_9</th>
<th>ψ_{10}</th>
<th>ψ_{11}</th>
<th>ψ_{12}</th>
<th>ψ_{13}</th>
<th>ψ_{14}</th>
<th>ψ_{15}</th>
<th>ψ_{16}</th>
<th>ψ_{17}</th>
<th>ψ_{18}</th>
<th>ψ_{19}</th>
<th>ψ_{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>(-11.04)</td>
<td>(-11.02)</td>
<td>(-10.96)</td>
<td>(-10.99)</td>
<td>(-10.88)</td>
<td>(-10.67)</td>
<td>(-10.59)</td>
<td>(-10.01)</td>
<td>(-9.83)</td>
<td>(-9.86)</td>
<td>(-9.68)</td>
<td>(-9.60)</td>
<td>(-9.52)</td>
<td>(-9.42)</td>
<td>(-9.21)</td>
<td>(-9.07)</td>
<td>(-8.87)</td>
<td>(-8.68)</td>
<td>(-8.54)</td>
<td>(-8.33)</td>
</tr>
</tbody>
</table>

| O 2p_x | -0.26 | -0.03 | -0.09 | -0.16 | -0.08 | -0.24 | -0.37 | -0.49 | -0.55 | -0.28 |
| O 2p_y | -0.14 | -0.33 | -0.31 | -0.14 | -0.21 | -0.20 | -0.30 | -0.17 | -0.20 | -0.28 |

W(1, 2)																			
5d_{x^2}	0.23	0.11	0.11	0.24	0.10	0.14	0.07	0.10	0.10	0.10									
5d_{xy}	-0.21	-0.09	-0.06	0.05	0.12	0.09	0.10	0.09	0.10	0.10									
5d_{x^2-y^2}	0.21	0.12	0.13	0.06	0.07	0.22	0.10	0.22	0.10	0.10									

W(1, 4)																			
5d_{x^2}	0.21	0.11	0.06	0.05	0.12	0.10	0.09	0.11	0.15	0.15									
5d_{xy}	0.07	0.23	-0.24	0.16	-0.27	-0.16	0.06	0.22	0.10	0.10									
5d_{x^2-y^2}	0.11	0.21	0.06	0.16	0.16	0.16	0.16	0.16	0.16	0.16									

W(6, 7, 8)																			
5d_{x^2}	-0.03	0.07	0.11	0.09	0.08	0.15	0.13	0.06	0.07	0.12	0.20	0.05	0.10						
5d_{xy}	0.10	0.07	0.12	0.08	0.08	0.15	0.06	0.11	0.17	0.08	0.16	0.12	0.12	0.05	0.10	0.10	0.10	0.10	0.10
5d_{x^2-y^2}	0.06	0.11	0.05	0.05	0.10	0.06	0.14	0.18	0.10	0.08	0.12	0.07	0.30	0.23	0.10	0.10	0.10	0.10	0.10

W(9, 10, 11, 12)																				
5d_{x^2}	0.05	0.06	0.11	0.06	0.06	0.12	0.08	0.11	0.11	0.05	0.07	0.12	0.10	0.06	0.12	0.08	0.09	0.12	0.09	
5d_{xy}	0.07	0.08	0.09	0.19	0.05	0.23	0.19	0.13	0.10	0.05	0.23	0.19	0.13	0.10	0.05	0.19	0.19	0.19	0.19	
5d_{x^2-y^2}	0.07	0.10	0.07	0.11	0.13	0.10	0.05	0.19	0.13	0.10	0.05	0.19	0.13	0.10	0.05	0.19	0.19	0.19	0.19	
5d_{z^2}	0.08	0.06	0.28	0.12	0.08	0.27	0.15	0.16	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	
6s	0.20	0.13	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14

106
Table XIII. Molecular orbitals which belong to the representation for the WO₃ surface "molecule" where oxygen is bonded to a 3 CN site.

<table>
<thead>
<tr>
<th>Molecular Orbital</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(t_1)</td>
<td>(t_2)</td>
<td>(t_3)</td>
<td>(t_4)</td>
<td>(t_5)</td>
<td>(t_6)</td>
<td>(t_7)</td>
<td>(t_8)</td>
<td>(t_9)</td>
<td>(t_{10})</td>
<td>(t_{11})</td>
<td>(t_{12})</td>
<td>(t_{13})</td>
<td>(t_{14})</td>
<td>(t_{15})</td>
</tr>
<tr>
<td>Energy (eV)</td>
<td>(-10.94)</td>
<td>(-10.19)</td>
<td>(-9.82)</td>
<td>(-9.40)</td>
<td>(-9.50)</td>
<td>(-8.90)</td>
<td>(-8.80)</td>
<td>(-8.30)</td>
<td>(-8.30)</td>
<td>(-8.30)</td>
<td>(-8.30)</td>
<td>(-8.30)</td>
<td>(-8.30)</td>
<td>(-8.30)</td>
<td>(-8.30)</td>
</tr>
<tr>
<td>(2p_x)</td>
<td>-39</td>
<td>-33</td>
<td>-31</td>
<td>-06</td>
<td>-11</td>
<td>-04</td>
<td>-05</td>
<td>-02</td>
<td>-02</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
</tr>
<tr>
<td>(2p_y)</td>
<td>-39</td>
<td>-33</td>
<td>-31</td>
<td>-06</td>
<td>-11</td>
<td>-04</td>
<td>-05</td>
<td>-02</td>
<td>-02</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
</tr>
<tr>
<td>(5d_{x^2})</td>
<td>-17</td>
<td>-11</td>
<td>-14</td>
<td>-18</td>
<td>-11</td>
<td>-04</td>
<td>-05</td>
<td>-02</td>
<td>-02</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
</tr>
<tr>
<td>(5d_{y^2})</td>
<td>-57</td>
<td>-05</td>
<td>-10</td>
<td>-14</td>
<td>-18</td>
<td>-11</td>
<td>-04</td>
<td>-05</td>
<td>-02</td>
<td>-02</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
</tr>
<tr>
<td>(5d_{z^2})</td>
<td>-17</td>
<td>-11</td>
<td>-14</td>
<td>-18</td>
<td>-11</td>
<td>-04</td>
<td>-05</td>
<td>-02</td>
<td>-02</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
</tr>
<tr>
<td>(5d_{x^2-y^2})</td>
<td>-17</td>
<td>-11</td>
<td>-14</td>
<td>-18</td>
<td>-11</td>
<td>-04</td>
<td>-05</td>
<td>-02</td>
<td>-02</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
<td>-01</td>
</tr>
<tr>
<td>(6s)</td>
<td>-10</td>
<td>-17</td>
<td>-20</td>
<td>-14</td>
<td>-17</td>
<td>-10</td>
<td>-7</td>
<td>-4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>(6p)</td>
<td>-10</td>
<td>-17</td>
<td>-20</td>
<td>-14</td>
<td>-17</td>
<td>-10</td>
<td>-7</td>
<td>-4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>(6d)</td>
<td>-10</td>
<td>-17</td>
<td>-20</td>
<td>-14</td>
<td>-17</td>
<td>-10</td>
<td>-7</td>
<td>-4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>(6f)</td>
<td>-10</td>
<td>-17</td>
<td>-20</td>
<td>-14</td>
<td>-17</td>
<td>-10</td>
<td>-7</td>
<td>-4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

The table lists the coefficients for various molecular orbitals at different energies, indicating the distribution of oxygen's bonding to a 3 CN site.
Figure Captions

Figure 1. Surface arrays used to model adsorption on different W(100) surface sites.

Figure 2. Dependence of bond energy on bond distance for WO molecule with and without inclusion of W 5p orbitals.

Figure 3. Dependence of non-bonding (5p orbital) repulsive energy on distance for the WO molecules.

Figure 4. Additivity of non-bonded orbital repulsive energy of abbreviated surface arrays.
 a) Difference in E(r) for W_nO (n = 4, 5) between calculations including and omitting W 5p orbitals.
 b) E(r) calculated by pairwise addition of analytic repulsive energy functions.

Figure 5. Bond energies as functions of distances for oxygen adsorbed on different W(100) surface sites.

Figure 6. Molecular orbital-energy diagrams for the totally symmetric occupied orbitals for oxygen adsorbed on different W(100) surface sites.

Figure 7. Molecular orbital-energy diagrams for the occupied orbitals belonging to the representations e(Wg), and b_1 and b_2 (W_12) for oxygen adsorbed on different W(100) surface sites.

Figure 8. Suggested structure for oxygen adsorbed on the W(100) based upon an oxygen adatom preferring a 2 CN site.
Figure 1. Surface arrays used to model adsorption on different W(100) surface sites.
Figure 2. Dependence of bond energy on bond distance for WO molecule with and without inclusion of W 5p orbitals.
Figure 3. Dependence of non-bonding (5p orbital) repulsive energy on distance for the WO molecules.
Figure 4. Additivity of non-bonded orbital repulsive energy of abbreviated surface arrays.

a) Difference in $E(r)$ for W_nO ($n = 4, 5$) between calculations including and omitting W 5p orbitals.

b) $E(r)$ calculated by pairwise addition of analytic repulsive energy functions.
Figure 5. Bond energies as functions of distances for oxygen adsorbed on different W(100) surface sites.
Figure 6. Molecular orbital-energy diagrams for the totally symmetric occupied orbitals for oxygen adsorbed on different W(100) surface sites.
Figure 7. Molecular orbital-energy diagrams for the occupied orbitals belonging to the representations \(e(W_9) \), and \(b_1 \) and \(b_2 \) \((W_{12})\) for oxygen adsorbed on different \(W(100) \) surface sites.
Figure 8. Suggested structure for oxygen adsorbed on the W(100) based upon an oxygen adatom preferring a 2 CN site.
MAIN PROGRAM TO CALCULATE THE OVERLAP MATRIX
RCALD OFFMANN CHEMISTRY DEPARTMENT HARVARD UNIVERSITY CAMBRIDGE

THIS PROGRAM CONSTRUCTS AN OVERLAP MATRIX FOR UP TO 140 ORBITALS ON
UP TO 50 ATOMS. THE ORBITALS MAY BE OF ANY PRINCIPAL QUANTUM NUMB
ANGULAR MOMENTUM S P D OR F AND THERE IS NO LIMITATION ON THE
NUMBER OF ORBITALS OF ANY TYPE EXCEPT THAT THE TOTAL MUST BE LESS
THAN 140.

THE PROGRAM USES SEVEN FILES 5=INPUT 6=OUTPUT 7=OUTPUT
3,4,8,9 ARE INTERMEDIATE FILES

RESTRICTION - NO MORE THAN 5 DIFFERENT TYPE ORBITALS ON ANY ATOM
RESTRICTION - DIFFERENT ORBITALS ON SAME CENTER MUST HAVE DIFFERENT
INPUT CONSISTS OF THE FOLLOWING
FIRST CARD IN FORMAT (7I2,F14.6)
N, MS, MC, MMM, MCRB, MK, CON
N IS THE NUMBER OF DIFFERENT ATOMS
THE OTHER INTEGERS ARE CONTROL PARAMETERS
MK=0 USES ARITHMETIC MEAN WOLFSBERG HELMHOLTZ FORMULA
MK=1 USES DIRECT PROPORTIONALITY OF HAMILTONIAN TO OVERLAP
MK=2 USES GEOMETRIC MEAN WOLFSBERG-HELMHOLTZ FORMULA
MCRB SPECIFIES AN ORBITAL NUMBER FOR WHICH A POPULATION ANALYSIS
IN ADDITION TO THE GENERAL ONE WILL BE DONE
IF MCRB=0 ONLY TOTAL POPULATION ANALYSIS WILL BE PERFORMED
MS=1 PUNCHES OUT S
MC=1 PUNCHES OUT C
MK>1 BYPASSES POPULATION ANALYSIS
MS GREATER THAN 1 PRODUCES TRACE PRINTOUT
MK GREATER THAN ZERO, AN EXPONENTIAL REPULSIVE ENERGY WILL BE
ADDED TO THE TOTAL ENERGY
SECOND CARD IS A TITLE CARD IN FORMAT(72H)
THEN THERE FOLLOW 2N CARDS, TWO FOR EACH ATOM
FOR EACH ATOM THE FIRST CARD IS IN FORMAT (I3,F7.3,3F10.6,F12.3,
F6.3)
THE SECOND CARD IN FORMAT (5(I21,F5.3,F6.2))
CN THE FIRST CARD ONE READS IN NORE(I)= THE NUMBER OF DIFFERENT TY
CRBITALS. ORBITALS ARE DIFFERENT IF THEY HAVE DIFFERENT N AND L
THE NEXT ENTRY ON THIS CARD IS THE CHARGE ON THE ATOM CORE
THE NEXT THREE ENTRIES ARE CARTESIAN COORDINATES X,Y,Z OF THE ATOM
ON THE SECOND CARD AS MANY 13 CHARACTER SPECIFICATIONS ARE READ IN
ARE PROVIDED BY NCRB(I) ON THE FIRST CARD EACH SET SPECIFIES AN
FIRST ITS N AND L QUANTUM NUMBERS, THEN THE SLATER EXPONENT, THEN THE
CULCULMB INTEGRAL
THE LAST CARD IN THE DATA IS IN FORMAT(72H)
THIS READS IN THE OCCUPATION NUMBERS OF THE VARIOUS MOLECULAR ORBITALS
STARTING FROM THE MOST BONDING UP TO THE ANTI-BONDING ONES
THE ORDERING FOR P LEVELS IS Z X Y
THE ORDERING FOR D LEVELS IS Z**2 XZ X**2-Y**2 YZ XY
THE ORDERING FOR P LEVELS IS Z X Y
THE ORDERING FOR D LEVELS IS Z**2 XZ X**2-Y**2 YZ XY
ONE HAS NO CHOICE AT ALL ABOUT THE DIRECTION IN WHICH THE BASIS
ORBITALS ARE POINTING. THEY ARE ALWAYS DEFINED WITH RESPECT TO THE
ABSOLUTE MOLECULAR COORDINATE SYSTEM
ALMOST ALL THE COMMUNICATION TO SUBPROGRAMS IS DONE THROUGH COMMON
AS USUAL THE NAMES OF THE SUBROUTINES HAVE LITTLE OR NO
RELATION TO THEIR FUNCTION
ONE SET OF DATA MAY BE PLACED IMMEDIATELY FOLLOWING ANOTHER.

THERE IS A LIMITATION IN THE DIMENSIONING OF AFUNCT AND BFUNCT
SC THAT JMAX=N1+N2+L1+L2+1 MUST BE LESS THAN 20 FOR THE HIGHEST
POSSIBLE COMBINATION OF THESE ARGUMENTS.

THIS CAN BE CHANGED BY EXPANDING THE DIMENSION STATEMENT
IN AFUNCT AND BFUNCT FOR A AND B BUT ONE MUST BE CAREFUL
IN DOING THIS, SEE NOTE AT BEGINNING OF AFUNCT

DIMENSION XX(150), YY(150), ZZ(150), AR(150), AL(150)
DIMENSION N(50,5), SLA(50,5), HII(50,5), ND(50,5), LO(50,5)
DIMENSION S(140), 140)
DIMENSION ALPHA(150)
DIMENSION A(100), B(100)
DIMENSION ICOUNT(50,2)
DIMENSION CORE(50)
DIMENSION ICCC(150)
DIMENSION DI(7), D2(7), M1(7), M2(7), M1SIG(7), M2SIG(7)
DIMENSION DITTO(84), IDITTO(84)
DIMENSION FACT(23)
DIMENSION DIM(5)
DIMENSION N(7)
DIMENSION LQ(150), MQ(150)
DIMENSION ENER(201), DIS(20), XL(5), YL(5), GL(5), DL(5)
COMMON /OAA/ S
COMMON /CAB/ ICC, XX, YY, N, NDIM
COMMON /CAC/ ZZ, LQ
COMMON /CAD/ A, B
COMMON /CAE/ ICCUNT, MC, ALPHA, CORE
COMMON /CAF/ MS, MC, MMR, MCRB, MK, CDN
COMMON /CAG/ L1, L2, N1, N2, SK1, SK2
COMMON /CAM/ SEPAR, WHEE, MAJ, MAK
COMMON /CAI/ NIN
COMMON /CAJ/ X1, X2, Y1, Y2, Z1, Z2
COMMON /CAL/ DIM
COMMON /CAM/ AR, AL, MR
COMMON /CAN/ ER, SUM

1 FCPMAT(712, F14.6, 212)
6 FCPMAT(1H1)
5 FCPMAT(72, 1 1)
4 FCPMAT(5(211,F5.3,F6.2))
715 FCPMAT(1H0, 50X, 2OH DISTANCE MATRIX
///)
2 FCPMAT(13, 57.2, 3F10.6, F12.3, F6.3)
8 FCPMAT(617, 5F10.6, F6.3, F6.2, F12.3, F6.3)
9 FCPMAT(110H ORBITAL ATOM N L M SIGMA X
1 Y Z EXP ALPHA PRE-EXP EXPON)
814 FCPMAT(44H0(I,J)=0.5*K*S(I,J)*(H(I,I)+H(J,J)) WITH K= F7.2)
815 FCPMAT(25H0(I,J)=K*S(I,J) WITH K= F7.2)
816 FCPMAT(45H0(I,J)=K*S(I,J)*SQRT(H(I,I)*H(J,J)) WITH K= F7.2)
821 FCPMAT(45H0 THE ORBITALS ARE NUMBERED AS FOLLOWS
822 FCPMAT(25H0 TOO MANY ORBITALS, EXIT)
577 FCPMAT(7211)
NTPN=1
1111 READ (5,1) N, MS, MC, MMM, MCRB, MK, MR, CCN, MG, NPP
IF(N) 3455, 3495, 3496
CONTINUE
WRITE (6,6)
READ (5,5)
WRITE (6,5)
CC 10 I=1,N
READ (5,2)NOR(I,J),CCRE(I),XX(I),YY(I),ZZ(I),AR(I),AL(I)
NCR=NCR(I,1)
READ (5,4)(NC(I,J),LC(I,J),SLA(I,J),HII(I,J),J=1,NORB)
CONTINUE
WRITE (6,821)
WRITE (6,9)
K = 1
DC 100 I=1,N
ICCLNT(I,1)=K
NC=NCR(I,1)
LC(I)=LC(I,1)
CC 58 J=1,NORB
IF(LQ(I)-LO(I,J)) 31,32,32
31 LG(I)=LC(I,J)
32 CONTINUE
KF=K+2*LG(I,J)
KS=KF-K+1
C
C GECRGE IS A LITTLE SUBROUTINE WHICH ORDERS M AND SIGMA FOR A GIVEN
C
CALL GECPGE(M1,M1SIG,KS)
DC 20 M=1,KS
MM=M+K-1
ALPHA(MM)=HII(I,J)
WRITE (6,8)MM,I,N8(I,J),LO(I,J),MI(M),M1SIG(M),XX(I),YY(I),
ZZ(I),SLA(I,J),ALPHA(MM),AR(I),AL(I)
98 K=K+KS
100 ICCUNI(I,2)=K-1
NDIM=ICCUNI(N,2)
C
ICCLNT IS AN ARRAY WHICH TELLS FOR ATOM I THE NUMBERS OF THE FIRST
C ORBITALS BELONGING TO THAT ATOM
C THIS IS USEFUL IN THE POPULATION ANALYSIS WHEN TOTALS OVER ATOMS A
C
MKK=MK+1
GO TO (817,818,819),MKK
817 WRITE (6,814)CCN
GO TO 820
818 WRITE (6,815)CCO
GO TO 820
819 WRITE (6,816)CCO
820 CONTINUE
IF(NDIM-140) 823,823,824
824 WRITE (6,822)
STCP
822 CONTINUE
C
NDIM = TOTAL NUMBER OF ORBITALS
C
NOW THE DISTANCE MATRIX IS COMPUTED AND PRINTED OUT
CC 714 I=1,N
DC 714 J=1,N
714 S(I,J)=SQRT((XX(I)-XX(J))^2+(YY(I)-YY(J))^2+(ZZ(I)-ZZ(J))^2)
WRITE (6,175)
CALL PEGLEG(S,N)

CALL REPU

WE NOW COMPUTE ALL THE FACTORIALS NECESSARY FOR THE OVERLAP COMPUT
HIGHEST IS FACT(24) AND FACT(I)=FACTORIAL(I-1)
RESTRICTION N1 CR N2 MUST BE LESS THAN 13
WHICH IS NOT MUCH OF A RESTRICTION AFTER ALL

FACT(1)=1.0
DC 2293 I=2,25
II=I-1
2293 FACT(I)=FLOAT(II)*FACT(II)
DC 94C I=1,NDIM
DC 940 J=1,NDIM
94C S(I,J)=C.C
CITTC(1) = 1.0
CITTA(1) = 1.0
M1(1) = C
M2(1) = C
M1SIG(1) = C
M2SIG(1) = C
NIN(3) = 1
NIN(5) = 1C
NIN(7) = 35
N1 = N - 1

C THE EVALUATION OF THE OVERLAP IS DONE IN A SET OF EIGHT NESTED
C DC LCCPS THE OUTERMOST ONE DEFINES AN ATOM PAIR, J GREATER THAN
C THE NEXT TWO LCCPS IN DEFINE AN ORBITAL PAIR II AND JJ IF THERE
C MORE THAN ONE ORBITAL ON A GIVEN ATOM THE NEXT TWO DO LOOPS
C ALN OVER ALL THE VALUES OF M AND SIGMA FOR BOTH ORBITALS
C THE INNERMOST PAIR OF LCCPS RUNS OVER M AND SIGMA AGAIN THIS TIME
C THE RESOLVED SET
C THE ARRAY LQ CONTAINS THE MAXIMUM L QUANTUM NUMBER FOR A GIVEN AT
C THE ROUTINE SUBROUTINE CERES WHICH CALLS RTNMAXN THEN NEED BE
C CALLED ONLY ONCE FOR EACH SET OF ATOMS
S555 DC 1000 I = 1, NMI
IP = I + 1
IKIN = IP, N
J = IP, N
X1 = XX(I)
Y1 = YY(I)
Z1 = ZZ(I)
NCRBI = NCR(I, 1)
DC 1000 J = IP, N
JKIN = ICIKNT(J, 1)
N1S = 0
N2S = 1
N1 = 0
N2 = 0
X2 = XX(J)
Y2 = YY(J)
Z2 = ZZ(J)
NCRBJ = NCR(J, 1)
SEPARN = SCRT((X1 - X2)**2 + (Y1 - Y2)**2 + (Z1 - Z2)**2)
LLCI = LC(I)
LLCJ = LC(J)
CALL CERES(LLCI, DITTO, SEPARN)
CALL CERES(LLCJ, DITTA, SEPARN)
SEPARN = SEPARN/0.529171
DC 900 II = 1, NDBRBI
M1 = NCR(I, II)
L1 = LC(I, II)
I1 = IKIN + N1
N1S = 2*L1 + 1
NI = N1 + N1S
NJ = 0
N2S = 0
SK1 = SLA(I, II)
IF(L1) 901, 902, 901
901 CALL GEGRGE(M1, M1SIG, N1S)
*CONTINUE
DO 910 JJ=1,NORBJ
K2=K2(J,JJ)
SK2=SLA(J,JJ)
L2=L2(J,JJ)
JI2=JJI2(J,JJ)
NZ=2*L2+1
NJ=NJ+NZ
IF(L2) 903,904,903
903 CALL GECRGE(M2,MSIG,N2S)
904 CONTINUE
C
C CLPAB ACQUIRES INFORMATION FROM AFUNCT AND BFUNCT THRU COMMON.
C
C MAX=N2+11+1+1+1
CALL AFUNCT(SEPARN *(SK1+SK2)/2.0,JMAX)
CALL BFUNCT(SEPARN *(SK1-SK2)/2.0,MSAX)
CC 80G III=1,N1S
CALL SEAN(III,N1S,DITTO,D1,NIN)
CC 801 JJ=1,N2S
ST(JJ,JIN)=0.0
CALL SEAN(JJJ,N2S,DITTA,D2,NIN)
C
C THE ORBITAL HAS BEEN EXPANDED WRT A LOCAL COORDINATE SYSTEM.
C JAM AND KAM ARE INDICES RANGING OVER THE LOCAL COORDINATE SYSTEMS
C OF I AND J RESPECTIVELY. WH EE REPRESENTS THE OVERLAP INTEGRAL
C BETWEEN LOCAL ORBITALS JAM AND KAM.
C
CC JPAX=N1+K2+L1+L2+1
CALL SEANAP(SEPARN*(SKI+SK2)/2.0,JPAX)
CC 80C III=1,N1S
CALL SEAN(III,N1S,DITTO,D1,NIN)
CC 801 JJ=1,N2S
ST(JJ,JIN)=0.0
CALL SEAN(JJJ,N2S,DITTA,D2,NIN)
C
C BECAUSE CLPAB CALCULATES OVERLAPS BETWEEN A RT.-HANDED SYSTEM AND
C A LEFT-HANDED SYSTEM, WITH Z-AXES POINTING TOWARDS EACH OTHER, WE
C MUST CHANGE SOME SIGNS.
C
CC KIX=1,7,2
IF(L2-(KIX-11+MAK) 124,123,124
124 CONTINUE
S(IN,JIN)=S(IN,JIN)+D1(JAM)*WHEE*D2(KAM)
CC 1201 I=1,NDIM
S(I,I)=1.0
CC 1201 J=1,NDIM
S(J,I)=S(I,J)
THE OCCUPATION NUMBERS ARE READ IN FROM MOST BONDBING TO ANTIBONDING BUT THEN THE DIRECTION HAS TO BE REVERSED BECAUSE THE EIGENVALUES COME OUT IN REVERSE ORDER

READ (5 ,977)(MQ(I),I=1,NDIM)
 DC 850 I=1,NDIM
 J=NDIM-I+1
 856 ICC(I)=MQ(I)
 CALL IGR
 IF(MG) 3495, 3495, 3001
 3495 GC TC 1111
 3001 ENER(NTRN)=SUM
 NTRN=NTRN+1
 IF(NTRN.GT.NPP) GC TO 3002
 GC TC 1111
 3002 READ (5,3112) IS,MO,XS,YS,XSF,XM,YSF,YM
 3112 FCFMAT(2I3,6F5.2)
 READ (5,3113) EINF,(DIS(I),I=1,NPP)
 3113 FCFMAT (F10.4,12F5.3)
 READ(5,3114) XL,YL,GL,DL
 3114 FCFMAT (2CA4)
 WRITE(6,3)
 3 FCFMAT(///12X,'DISTANCE',4X,'ENERGY',/)
 WRITE(6,2013) (DIS(I),ENER(I),I=1,NPP)
 WRITE (6,3)
 DC 3115 I=1,NPP
 ENER(I)=ENER(I)-EINF
 WRITE(6,2013) DIS(I),ENER(I)
 2013 FCFMAT(10X,2F10.3)
 3115 CONTINUE
 CALL GRAPH(NPP,DIS,ENER,IS,MO,XS,YS,XSF,XM,YSF,YM,QL,GL,DL)
 STCP
 ENC
THE SUBROUTINE CALCULATES THE TRANSFORMATION COEFFICIENTS OF ANGULAR MOMENTUM FUNCTIONS. THESE ARE CONSTRUCTED BY RECURSION FORMULA.

RESTRICTION: F ORBITALS ARE THE HIGHEST L THAT CAN BE TRANSFORMED.

THE ORDERING OF COEFFICIENTS IS SUCH THAT M PRIME VARIES FASTEST.

FOR THE SPECIAL CASE WHERE CALPHA = 1, SALPHA = 0, ACTUALLY THE DEFINITION OF EULER ANGLES OF THE ROTATION WHICH TAKEN THE MOLECULAR COORDINATE SYSTEM INTO THE LOCAL ONE IS ONE WITH ALPHA AND GAMMA INTERCHANGED FROM THE SYSTEM OF ROSE.

DIMENSION D(84)
DIMENSION SA(2,4), SG(2,4), IEPS(4), DP(20), OM(10)

COMMON /RTN/ LVAX, CBETA, SBETA, CGAMMA, SGAMMA
SA(1,1)=1.0
SG(1,1)=1.0
SA(2,1)=0.0
SG(2,1)=0.0
IEPS(1)=1
DO 10 M=1,LMAX
SA(1,M+1)=SA(1,M)
SA(2,M+1)=SA(2,M)
SG(1,M+1)=SG(1,M)*CGAMMA-SG(2,M)*SGAMMA
SG(2,M+1)=SG(2,M)*CGAMMA+SG(1,M)*SGAMMA
10 IEPS(M+1)=2
IPW1=0
IPW2=0
IP=0
IPM=0
IPM2=0
IP=1
CP(1)=1.0
CM(1)=0.0
DO 20 L=1,LMAX
LM1=L-1
LT2M1=L+LM1
F1=FLCAT(L*LT2M1)
F2=FLCAT(LM1*LT2M1)
F3=FLCAT(LM1*L)
IL=L+1
CC 190 MPP=1,IL
MP=MP-1
CC 180 MM=1,MPP
P=MM-1
IF=IP+1
IF(MP-LM1) 40,80,120
40 IF(IP)=IF(IP)+1
40 IP1=IP1+1
IP2=IP2+1
CNST1=F1/SQRT(FLCAT((L-MP)*(L+MP)*(L-M)*(L+M)))
CNST2=SQRT(FLCAT((LM1-MP)*(LM1+MP)*(LM1-M1)*LM1+M)))/F2
IF(M) 44,44,60
44 CP(IP)=CNST1*(CBETA*DP(IP1)-CNST2*DP(IP2))
CC TO 180
210

6C IPV=IPM+1
 IPM1=IPM1+1
 IPM2=IPM2+1
 CNST3=FLOAT(MP*MP)/F3
 DP(IP)=CNST1*(CBETA*DP(IPM1)-CNST2*DP(IPM2)-CNST3*DM(IMM1))
 CM(IP)=CNST1*(CBETA*DM(IM1)-CNST2*DM(IMM2)-CNST3*DP(IPM1))
 GC TC 16C

8C IPV=IPM1+1
 CNST1=FI/SQRT(FLOAT(LT2M1*(L-M)*(L+M)))
 IF(IP) 64,84,100
 84 DP(IP)=CNST1*CBETA*DP(IPM1)
 GC TC 18C

10C IPV=IPM1+1
 CNST3=FLOAT(MP*MP)/F3
 CP(IP)=CNST1*(CBETA*DP(IPM1)-CNST3*DM(IMM1))
 CM(IP)=CNST1*(CBETA*DM(IMM1)-CNST3*DP(IPM1))
 GC TC 18C

12C IF(M-L) 130,160,130
130 CNST4=SQRT(FI/FLOAT((L-M)*(L+M)*IEPS(L)))
140 IPV=IPM1-LM1
 IMM1=IMM1-LM1
 GC TC 148
145 IPV=IPM1+1
 IMM1=IMM1+1
 CM(IPM)-CNST4*SBETA*DM(IMM1)
148 DP(IP)=CNST4*SBETA*DP(IPM1)
 GC TG 18C

16C IPV=IPM1+1
 IF(M-L) 164,164,168
164 DP(IP)=CBETA*DP(IPM1)
 DP(IPM)=DP(IPM1)
 GC TC 18C
168 DP(IP)=-5*(CBETA*DP(IPM1)+DM(IMM1))
 DP(IPM)=-5*(CBETA*DM(IMM1)+DP(IPM1))
18C CCNTINUE

15C CCNTINUE
200 FSIG=-1.C
 FSIGP=-1.C
 I=1
 CC 400 L=1,LMAX
 IP=(L*(L+1)*(L+2))/6+1
 IM=((L-1)*(L+1))/6
 CC 390 ISIG=1,2
 ISIG=ISIGG-1
 ICSIG=1-ISIG
 FSIG=-FSIG
 FM=-FSIG
 LL=L+1
 DO 38C M2=ISIGG,LL
 M=M2-1
\[MP1 = MZ \]
\[FP = FM \]
\[DC 37C ISIGPP = 1,2 \]
\[ISIGP = ISIGPP - 1 \]
\[ICISIGP = I - ISIGP \]
\[FSIGP = -FSIGP \]
\[DC 360 MPZ = ISIGPP, LL \]
\[MP = MPZ - 1 \]
\[MPP1 = MPZ \]
\[I = I + 1 \]
\[IF(MP = M) 330, 330, 330 \]
\[30C IIF = IP + [(M*(M+1))/2 + MP] \]
\[31M = IIP + [(M-M-1)*M)/2 + MP \]
\[GC TO 35C \]
\[33C IIF = IP + [(MP*(MP+1))/2 + M] \]
\[34M = IIP + [(MP-1)*MP)/2 + M \]
\[35C IF(IIM) 351, 352, 351 \]
\[351 D(I) = F**(FSIGP*DP(IIP)*SA(ISIGP+1,MPP1)*SG(ISIG+1,MP1) - FSIG* \]
\[1DC(IIM)*SA(ICSIGP+1,MPP1)*SG(ICSIG+1,MP1)) \]
\[GC TO 360 \]
\[352 D(I) = F**(FSIGP*DP(IIP)*SA(ISIGP+1,MPP1)*SG(ISIG+1,MP1)) \]
\[36C CONTINUE \]
\[27C CONTINUE \]
\[38C CONTINUE \]
\[39C CONTINUE \]
\[40C CONTINUE \]
\[RETURN \]
\[EAC \]
SLBGFUN (RH02, IX)

This subroutine calculates the B-functions with indices of 0 to IX for the given value of RH02.

Originally written by R.M. Stevens

If the dimension of B is changed than one must also modify the statement defining IS so that the second entry in the argument XNF is the dimension of B minus 1.

DIMENSION A(100), B(100)
COMMON /CAD/ A, B
IA=IFIX(2.0*RH02)
IR=IA8S(IA)
IS=MINC(IR+1,99)
IF (RH2) 25,35,25

C = EXP(RH02)
F = EXP(-RH02)
R=C-F

If the value of RH02 is too small the sinh must be obtained by summing the infinite series rather than by addition of two exponentials.

IF (ABS(R)-0.1) 26,28,28

RA=0.0
T = RH02
CC 27 I=2,25
T = T*RH02**2/FLOAT((2*I-1)*(2*I-2))
RA = RA+T
F = (RA+RH02)*2.
B(1) = R/RH02

As many successive B-functions are generated from B-0 by the recurrence formulae as accuracy will permit.

CC 51 I=2,IX,IS
IF (IR) 32,40,32
IL=IS-1
CC 31 J=1,IL
K = I+J-1
IF ((-1)**K) 29,29,30
B(K) = (R+FLOAT(K-1)*B(K-1))/RH02
CC TO 31
B(K) = -(C+H-FLAT(K-1)*B(K-1))/RH02
CCONTINUE

After the recurrence formulae have been applied an appropriate number of times the next B-function is obtained by summation of the infinite series.

IF((-I)**IN) 44,44,42
TR = RH02
\begin{verbatim}
 105 B(IN) = -2.*TR/FLCAT(IN+1)
 CC 43 J = 1,500
 TR = TR*RHO2*2/FLOAT((2*J)*(2*J+1))
 IF (ABS(TR/B(IN))-0.000001) 51,51,43
 43 B(IN) = B(IN)-2.*TR/FLOAT(IN+1+2*J)
 44 TR = 1.
 107 B(IN) = 2.*TR/FLOAT(IN)
 DC 46 J = 1,500
 TR = TR*RHO2*2/FLOAT((2*J)*(2*J-1))
 IF (ABS(TR/B(IN))-0.000001) 51,51,46
 46 B(IN) = B(IN)+2.*TR/FLOAT(IN+2*J)
 51 CONTINUE
 CC TC 38

c
 IF THE ARGUMENT IS ZERO A SEPARATE FORMULA MUST BE USED.
c
 35 JY = IX/2+2
 CC 36 I =1,JY
 E(2*I)=0.0
 36 B(2*I-1)=2.*FLCAT(2*I-1)
 38 RETURN
 END
\end{verbatim}
SUBROUTINE BINCCE(I, J, B)

C THIS SUBROUTINE COMPUTES BINOMIAL COEFFICIENTS

DIMENSION FACT(25)
COMMON /CAL/ FACT
K = J - I
B = FACT(J+I)/FACT(I+1)/FACT(K+1)
1 RETURN
END

SUBROUTINE SEAN(I, N, DITTO, D, NIN)

C THIS SUBROUTINE FINDS THE RIGHT ELEMENTS OF DITTO AND PUTS THEM IN

COMMON DITTO(84), D(7), NIN(7)
IF(N-I) 1, 2, 1
2 D(1) = 1.0
RETURN
1 CONTINUE
LIB = NIN(N) + N*(I-1)
CC 85 JIB = 1, N
INGRID = JIB + LIB
85 D(JIB) = DITTO(INGRID)
RETURN
END
SUBROUTINE SEAN(I, N, DITTO, D, NIN)
C THIS SUBROUTINE FINDS THE RIGHT ELEMENTS OF DITTO AND PUTS THEM IN
C SMALLER ARRAY D
DIMENSION DITTO(84), D(7), NIN(7)
IF(N=1) 1, 2, 1
2 D(1)=1.0
RETURN
1 CONTINUE
LIB=NIN(N)+N*(I-1)
DC 85 JIB=1, N
INGRID=JIB+LIB
85 D(JIB)=DITTO(INGRID)
RETURN
END
SLBRGUNT AFUNCT (RH01, J)

THIS SUBROUTINE CALCULATES THE A-FUNCTIONS WITH INDICES OF 0 TO J
FOR THE GIVEN VALUE OF RH01.

ORIGINALLY WRITTEN BY R.M. STEVENS

DIMENSION A(100), B(100)
COMMON /CAD/ A, B
C = EXP(-RH01)
A(1) = C/RH01
DO 15 I = 2, J
 15 A(I) = (FLOAT(I-1)*A(I-1)+C)/RH01
RETURN
END
SUBROUTINE MOLPAB

THIS SUBROUTINE CALCULATES TWO-CENTER OVERLAP INTEGRALS.
THE INTEGRALS ARE CALCULATED BY TRANSFORMATION TO ELLIPSOIDAL
COORDINATES AND THEREBY EXPRESSED IN TERMS OF C-FUNCTIONS.
SEE J.C.P., 24, 201.
ORIGINALLY WRITTEN BY R.M. STEVENS

DIMENSION FACT(25)
COMMON /OAG/ L1, L2, N1, N2, SK1, SK2
COMMON /OAH/ R, VEST, M1, M2
COMMON /OAL/ FACT
VEST = 0.0
STRAD = 0.0
RHOA = R*SK1
RHOB = R*SK2
F1=FACT(2*N1+1)
F2=FACT(2*N2+1)
IF=L1-M1+1
F3=FACT(IF)
IF=L2-M2+1
F4=FACT(IF)
IF=L1+M1+1
F5=FACT(IF)
IF=L2+M2+1
F6=FACT(IF)
TERM = 2.**(N1+N2-L1-L2)*SQRT(FLOAT((2*L1+1)*(2*L2+1))*F3*F4/F1/F2/F5/F6*SK1**(2*N1+1)*SK2**(-2*N1-1))
JEND = l+((L1-M1)/2)
KEND = l+((L2-M2)/2)
DO 50 J=1,JEND
JU=J-1
IF=2*L1-2*JU+1
F11=FACT(IF)
IF=L1-M1-2*JU+1
F13=FACT(IF)
F15=FACT(JU+1)
IF=L1-JU+1
F17=FACT(IF)
DO 50 K=1,KEND
KU=K-1
IF=2*L2-2*KU+1
F12=FACT(IF)
IF=L2-M2-2*KU+1
F14=FACT(IF)
F16=FACT(KU+1)
IF=L2-KU+1
F18=FACT(IF)
CALL CFUNCT (N1-L1-JU,N2-L2-JU2*KU,L1-M1-JU,L2-M2-2*KU,M1,RHOA,
I RHOB,VALUE)
50 STRAD = STRAD+VALUE*F11*F12/F13/F14/F15/F16/F17/F18*(-1.)**(JU+KU)
VEST=TERM*STRAD
RETURN
END
SUBROUTINE GEORGE(M, MSIG, NSBSP)
DIMENSION M(7), MSIG(7)
M(1)=0
MSIG(1)=0
K=(NSBSP/2)+1
IF(K-1) 5,5,6
6 CONTINUE
CC 10 J=2,K
M(J)=J-1
MSIG(J)=C
L=K+J-1
M(L)=J-1
10 MSIG(L)=1
5 RETURN
ENC
SUBROUTINE CFUNCT (IA, IB, IC, ID, IE, RHQA, RHOB, SNAG)

THIS SUBROUTINE CALCULATES THE C-COEFFICIENTS OF ROOThAAN
FOR OVERLAP INTEGRALS ONLY THE C-FUNCTIONS WITH POSITIVE INDICES
ARE NECESSARY AND THESE MAY BE CONVENIENTLY CALCULATED BY
EXPANSION BY THE BINOMIAL THEOREM.

ORIGINALLY WRITTEN BY R.M. STEVENS

DIMENSION A(IOO), B(IOO)
CC**CN /CD/ A, B
25 CCUNT = C.O
VEST = TERM**STRAD
RETURN
ENC

IAE = IA+1
IBE = IB+1
ICE = IC+1
ICB = ID+1
IEE = IE+1

DC 91 I6=1, IEB
J6 = I6-1
CALL BINCECE (J6, IE, B6)

DC 91 I5 = I6, IEB
J5 = I5-1
CALL BINCECE (J5, IE, B5)

DC 90 14 = 1, IDC
J4 = I4-1
CALL BINCECE (J4, IC, B4)

DC 90 I3 = I4, IDC
J3 = I3-1
CALL BINCECE (J3, IC, B3)

DC 90 I2 = I3, IBB
J2 = I2-1
CALL BINCECE (J2, IB, B2)

DC 90 I1 = I2, IAB
J1 = I1-1
CALL BINCECE (J1, IA, B1)

TERM = B1*B2*B3*B4*B5*B6*(-1.)**(J2*J5+J6+J4*IE+ID)
IR = J1*J2+2*IE-2*J6+IC-J3+ID-J4+1
IP = IA-J1+IB-J2+2*IE-2*J5+IC-J3+ID-J4+1
CCUNT = CCUNT + A(IP)*B(IR)*TERM

90 CCUNTINUE
91 CCUNTINUE
SNAG = CCUNT*(RHOB/2.)**(IA+IB+IC+ID+2*IE+1)
92 RETURN
ENC
C SLBROTINE PEGLEG(A, N)
C MATRIX OUTPUT SLBROUTINE
C DIMENSION A(140,140)
18 FORMAT(I4,2X,11F10.6)
19 FORMAT(1H0/1H0,4X,11(6X,I2,2X)///)
KITE=0
20 LCW=KITE+1
 KITE=KITE+11
 KITE=MINC(KITE,N)
 WRITE (6 ,19)(I,I=LOW,KITE)
 CC 32 I=1,N
32 WRITE (6 ,18)I,(A(I,J),J=LOW,KITE)
 IF(N-KITE) 40,4C,20
40 RETURN
 END
SUBROUTINE CERESILQ, DITTO, SEP

This subroutine calculates the Euler angles of rotation and proceeds to call RTNMXN for the generations of the transformations of angular momentum functions

DIMENSION DITTO(84)
CCMCH /CAJ/ XI, X2, Y1, Y2, Z1, Z2
CCPMQ /RTN/ LMAX, CBETA, SBETA, CGAMMA, SGAMMA
20C FORMAT(*ERROR, POSSIBLY ROUNDOFF ERROR IN CALCULATION OF SEP*)
10C CITTO(1)=1.0
RETURN
C1 CONTINUE
LMAX=LQ
ZZ=Z2-Z1
IF(X2-X1) 20,5,2C
5 IF(Y2-Y1) 20,16,20
1C CGAMMA=1.C
SGAMMA=0.0
CBETA=SIGN(1.0,ZZ)
SBETA=C.C
GO TO 30
2C ARGU=SEP*SEP-ZZ*ZZ
IF(ARGU .GE. 0.0) GO TO 25
IF(ARGU .GE. -1.0E-6) GG TO 24
WRITE (6,200)
STCP
24 ARGU=0.0
25 SXY=SCRT(ARGU)
CBETA=ZZ/SEP
SBETA=SXY/SEP
CGAMMA=(X2-X1)/SXY
SGAMMA=(Y2-Y1)/SXY
30C CALL RTNMXN(DITTO)
RETURN
END
SLEROUTINE IGOR

COMMNTES H MATRIX FROM S WHICH IS ASSUMED TO BE IN CORE

ANALYSIS ROUTINES ARE CALLED

MK=1 BYPASSES POPULATION ANALYSIS

MK=0 USES ADITIVE WOLFSBERG-HELMHOLTZ FORMULA

MK=1 USES DIRECT PROPORTIONALITY \(M(I,J) = K \times S(I,J) \)

MK=2 USES GEOMETRIC MEAN WOLFSBERG HELMHOLTZ FORMULA

DIMENSION A(140,140)

DIMENSION IX(150)

DIMENSION ALPHA(150), LATER(150)

DIMENSION HDIAG(150), B(150)

DIMENSION IGCC(150)

DIMENSION IOCC(150)

DIMENSION CORE(50)

DIMENSION ICOUNT(50,2)

COMMON /CAA/ A

COMMON /CAB/ IX, ALPHA, B, N, NT

COMMON /CCE/ ICOUNT, LATER, HDIAG, CORE

COMMON /CCE/ IGCC, MS, MC, MMK, MOKB, MK, CON

COMMON /CAF/ MS, MC, MMK, MOKB, MK, CON

MK=MK+1

RE\% INC 4

1 FC\%MAT(150,50X,23A TOTAL OVERLAP MATRIX //)

WRITE (6 ,1)

CALL PEGLE\#(A,NT)

4 FC\%MAT(8FS-6)

1 IF(MS=1) 2,3,2

3 WRITE (7 ,4)((A(I,J),J=1,NT),I=1,NT)

2 GC TO (5,6,7),MK

5 DC B I=1,NT

DC S J=1,NT

9 B(J)=A(I,J)*CON*(HDIAG(I)+HDIAG(J))

B(I)=HDIAG(I)

8 WRITE (4)(B(J),J=1,NT)

GC TC 15

6 DC I=1,NT

CC 11 J=1,NT

11 B(I)=A(I,J)*CON

B(I)=HDIAG(I)

10 WRITE (4)(B(J),J=1,NT)

GC TC 15

7 DC I=1,NT

DC 12 J=1,NT

13 B(J)=A(I,J)*CON*SGRT(HDIAG(I)*HDIAG(J))

B(I)=HDIAG(I)

12 WRITE (4)(B(J),J=1,NT)

15 CONTINUE

RE\% INC 8

CC 19 I=1,NT

19 WRITE (8,A(I,J)=1,NT)

CALL SCREEN

1 IF(MC=1) 14,16,14

16 WRITE (7 ,4)((A(I,J),J=1,NT),I=1,NT)
14 IF(MMH-1) 17,18,17
17 CALL Melba
18 RETURN
ENC
SUBROUTINE MELBA

C POPULATION ANALYSIS SUBROUTINE
C ASSUMES S ON IS BY ROWS IN CORE
C DIMENSION A(140,140),IOCC(150),HDIAG(150),B(150),C(150)
C DIMENSION ICOUNT(50,2), LATER(150)
C DIMENSION CORE(50)
C
DIMENSION A(140,140), IOCC(150), HDIAG(150), B(150), C(150)
C
C COMM /CAA/ A
C COMM /CAB/ IOCC, HDIAG, C, N, NT
C COMM /DAE/ ICOUNT, LATER, B, CCRE
C COMM /CAF/ MS, MC, MMM, MORB, MK, CON
C
3 FORMAT(/340X,35H MULLIKEN OVERLAP POPULATIONS FOR I3,10H ELECTR
1CNSS//)
ISLM=0
CC 5 I=1,NT
5 ISLM=ISUM+IOCC(I)
WRITE (6 ,3)ISUM
REIND 3
DC 4 J=1,NT
4 WRITE (3)(A(I,J),J=1,NT)
IF(MORB) 6,6,7
DC 8 I=1,NT
8 HDIAG(I)=A(I,MORB)
6 CONTINUE
CALL CARLSD(IOCC,A,C,NT)
CALL PEGLEG(A,NT)
IF(MORB) 9,9,10
IC REWIND 4
WRITE (4)((A(I,J),J=1,NT),I=1,NT)
REIND 8
DC 11 I=1,NT
11 READ (5)(A(I,J),J=1,NT)
DC 12 I=1,NT
DC 12 J=1,NT
12 A(I,J)=2.0*A(I,J)-HDIAG(I)*HDIAG(J)
WRITE (6 ,13)MORB
13 FORMAT(1H0,20X,45H OVERLAP POPULATION FOR ELECTRON IN ORBITAL
113//)
CALL PEGLEG(A,NT)
CALL JENNY(ICOUNT,A, N, C)
REIND 4
READ (4)((A(I,J),J=1,NT),I=1,NT)
9 CONTINUE
CALL JENNY(ICOUNT,A, N, C)
CALL CALLAS(A, NT, C)
CC 18 I=1,NT
18 B(I)=0.0
CC 15 M=1,NT
RR=FLCAT(IOCC(M))/2.0
IF(RR) 15,15,17
17 DC 16 I=1,NT
16 B(I)=B(I)+RR*A(I,M)
15 CONTINUE
78 FORMAT(1HC,50X,20H ORBITAL CHARGES //)
WRITE (6 ,78)
15 FGRMAT(50X,I4,F10.6)
 WRITE (6 ,19)(I,B(I),I=1,NT)
 DC 20 I=1,N
 IN=ICOUNT(I,1)
 IFF=ICLNT(I,2)
 CI(I)=0.0
 CC 21 J=IN,IFF
21 C(I)=C(I)+B(J)
2C C(I)=CCRE(I)-C(I)
22 FGRMAT(1=0,50X,15H NET CHARGES //)
23 FGRMAT(50X,I4,F10.6)
 WRITE (6 ,22)
 WRITE (6 ,23)(I,C(I),I=1,N)
 TERT=0
 DC 24 I=1,N
24 TERT=TERT+C(I)
25 FGRMAT(1=0,20X,15HTOTAL CHARGE= F10.6//)
 WRITE (6 ,25)TERT
RETURN
END
SLEROLTINE CALLAS(A, NT, B)

COMPUTES TOTAL GROSS OVERLAP POPULATION MATRIX

DIMENSION A(140,140),B(150)

REWIND 3

CC 3 J=1,NT

READ (3)(A(I,J),I=1,NT)

CALL CCKI

CC 1 I=1,NT

READ (3)(B(J),J=1,NT)

CC 1 I=1,NT

1 A(I,M)=A(I,M)*B(I)*2.0

2 FCMAT(1H0,50X,50MCHARGE MATRIX FOR MO'S WITH TWO ELECTRONS IN EAC

WRITE (6,2)

CALL PEGLEG(A,NT)

RETURN

END

SUBROUTINE CUPID

DIAGONALIZATION OF A REAL SYMMETRIC MATRIX BY THE JACOBI METHOD.

THERE IS A FACTOR QMULT INSERTED WHICH ESSENTIALLY SETS THE
CONVERGENCE CRITERION FOR THE DIAGONALIZATION THIS WAS ORIGINALLY
BUT NOW HAS BEEN SET TO 100.0 WHICH SHOULD GIVE A TOTAL ENERGY
TWO TIMES THE ONE PART ON 10 TO THE 8

CLINATION H(140,140),IA(150),H0IAG(150),X(150),IQ(150),ARRAY(252)
COMMON /GAA/ H
COMMON /CAB/IA, H0IAG, X, NDIM, N
COMMON /CUD/ ARRAY, IPIV, JPIV, COSINE, SINE

THE SUBROUTINE OPERATES ONLY ON THE ELEMENTS OF H THAT ARE TO THE
RIGHT OF THE MAIN DIAGONAL. THUS, ONLY A TRIANGULAR SECTION NEED
EE STREC.

NR IS THE NUMBER OF ROTATIONS
LAFITE, MOUTON AND YCUEM ARE SUBROUTINES USED TO PACK WRITE AND R
THE VARIOUS QUANTITIES NEEDED TO COMPUTE THE EIGENVECTORS OUT ON
TAPE - THE ROUTINE CAN ONLY HOLD ONE MATRIX IN CORE AT A TIME

THE EIGENVALUES ARE PUT OUT IN THE VECTOR HDIAG

TAPE ITAPEU IS USED TO STORE IPIV, JPIV, COSINE, SINE FOR EACH
COMPUTATION, IN ORDER THAT THE EIGENVECTORS MAY BE COMPUTED AFTER
DIAGONALIZATION IS COMPLETE.

MCW=1
REWIND 2
995 FCFMAT(H=0,3HNR=,I5)
NR=0
IF (N-1) 1000,1000,17

SCAN FOR LARGEST OFF-DIAGONAL ELEMENT IN EACH ROW. X(I) CONTAINS
LARGEST ELEMENT IN THE ITH ROW, AND IQ(I) HOLDS SECOND SUBSCRIPT
DEFINING POSITION OF ELEMENT.

17 NP1=N-1
30 I=1,NP1
X(I)=0.
IPL1=I+1
30 J=IPL1,N
IF (X(I)-ABS(H(I,J))) 20,20,30
20 X(I)=ABS(H(I,J))
IC(I)=J
30 CONTINUE

SET INDICATOR FOR SHUT-OFF. RAF=2**-27.

RAF=.745058E-08
CMULT=100.0
RAF=RAF*QMULT
HTEST=1.0E38
FINC MAXIMUM OF X(I)'S FOR PIVOT ELEMENT, AND TEST FOR END OF
PROBLEM.

40 DC 70 I=1,NMII
45 IF (I-I) 60,60,45
46 XMAX=X(I)
60 IFIV=I
61 JPIV=IC(I)
70 CONTINUE

IF XMAX LESS THAN HDTEST, REVISE HDTEST.

IF (XMAX) 1000,1000,80
80 IF (HDTEST) 90,90,85
85 IF (XMAX-HDTEST) 90,90,148
90 HDMIN=ABS(H(I,I))
95 CONTINUE
100 HDTEST=HDIMIN*RAP
105 RETURN IF MAXIMUM H(I,J) LESS THAN (2**27)*ABS(H(K,K)-MIN)
148 IF(HDTEST-XMAX) 148,1000,1000
149 NR=NR+1

CCPUTE TANGENT, SINE, AND COSINE, H(I,I), H(J,J)

150 TANG=SIGN(2.0, (H(IPIV,IPIV)-H(JPIV,JPIV))*H(IPIV,JPIV)/(ABS(H(IPIV,IPIV)-H(JPIV,JPIV))*SQRT((H(IPIV,IPIV)-H(JPIV,JPIV))*2+4.0*H(IPIV,JPIV)**2))
151 CCSINE=1.0/SQRT(1.0+TANG**2)
152 SINE=TANG*CCSINE
154 H(JPIV,JPIV)=HTEMP

PSEUDO-RANK THE EIGENVALUES. ADJUST SIN AND COS FOR COMPUTATION

H(I,K).

IF (H(IPIV,IPIV)-H(JPIV,JPIV)) 152,153,153
152 HTEMP = H(IPIV,IPIV)
153 H(IPIV,IPIV)=H(JPIV,JPIV)
154 H(JPIV,JPIV)=HTEMP

RECCMPLTE SINE AND COS

HTEMP=SIGN(1.0,-SINE)*COSINE
CCSINE=ABS(SINE)
SINE=HTEMP
INSPECT THE IQ'S BETWEEN I+1 AND N-1 TO DETERMINE WHETHER A NEW MAXIMUM VALUE SHOULD BE COMPUTED, SINCE THE PRESENT MAXIMUM IS IN RCW I OR J.

CC 350 I=1,N
 IF (I-IPIV) 210,350,200
200 IF (I-JPIV) 210,350,210
210 IF (IQ(I)-IPIV) 230,240,230
230 IF (IQ(I)-JPIV) 350,240,350
24C K=IQ(I)
25C HTEMP=H(I,K)
 H(I,K)=0.
 IPL=I+1
 X(I)=0.

SEARCH IN DEPLETED ROW FOR NEW MAXIMUM.

CC 320 J=IPL1,N
 IF (X(I)-ABS(H(I,J))) 300,300,320
300 X(I)=ABS(H(I,J))
 IC(I)=J
 CONTINUE
32C H(I,K)=HTEMP
35C CCNTINUE
 X(IPIV)=0.
 X(JPIV)=0.

CHANGE THE OTHER ELEMENTS OF H.

CC 53C I=1,N
 IF (I-IPIV) 370,530,420
370 HTEMP=H(I,IPIV)
 H(I,IPIV)=COSINE*HTEMP+SINE*H(I,JPIV)
 IF (X(I)-ABS(H(I,IPIV))) 380,390,390
380 X(I)=ABS(H(I,IPIV))
 IC(I)=IPIV
39C H(I,JPIV)=-SINE*HTEMP*CCSINE*H(I,JPIV)
 IF (X(I)-ABS(H(I,JPIV))) 400,530,530
40C X(I)=ABS(H(I,JPIV))
 IQ(I)=JPIV
 GC TO 530
42C IF (I-JPIV) 430,530,480
43C HTEMP=H(IPIV,I)
 H(IPIV,I)=COSINE*HTEMP+SINE*H(I,JPIV)
 IF (X(IPIV)-ABS(H(IPIV,I))) 440,450,450
440 X(IPIV)=ABS(H(IPIV,I))
 IQ(IPIV)=I
45C H(I,JPIV)=-SINE*HTEMP*CCSINE*H(I,JPIV)
 IF (X(I)-ABS(H(I,JPIV))) 400,530,530
46C HTEMP=H(IPIV,I)
 H(IPIV,I)=COSINE*HTEMP+SINE*H(JPIV,I)
 IF (X(IPIV)-ABS(H(IPIV,I))) 490,500,500
490 X(IPIV)=ABS(H(IPIV,I))
IC(IPIV) = I
500 H(IPIV,I) = -SINE*HTEMP+CCSINE*H(IPIV,I)
 IF (X(IPIV)-ABS(H(IPIV,I)) ≦ 510,530,530
 X(IPIV) = ABS(H(IPIV,I))
 IC(IPIV) = I
530 CONTINUE
540 CALL LAFITE(MOM)
 GO TO 40
1000 WRITE (6,999) NR
2015 CALL MCUTCN
2014 MC=1
1002 DO 1004 J=1,N
1004 HDIAG(J) = H(J,J)
 DC 14 I=1,N
 CC 12 J=1,N
 H(I,J) = 0.
12 CONTINUE
14 CONTINUE
 IF (NR) = 1005,1005,1006
1006 CONTINUE
 REMIND 3
 NPV = I
1167 IF (NPV-NR) = 1168,1168,1100
1168 CONTINUE
 CALL YCUEM(MOM)
 DC 1101 I=1,N
 HTEMP = H(I,IPIV)
 BCB = CCSINE*HTEMP
 SCB = -SINE*HTEMP
 CCB = SINE*H(I,IPIV)
 T(I,IPIV) = BCB+CCB
 TCB = CCSINE*H(I,IPIV)
 H(I,IPIV) = SCB+TCB
1101 CONTINUE
 NPV = NPV+1
 GO TO 1167
1100 CONTINUE
1005 NP = N-1
 DC 742 J=1,NM
 JP=J+1
 DC 895 K=1,J
 IF (HCIAG(K)-HDIAG(JP)) = 841,895,895
841 HP=HDIAG(K)
 HDIAG(K) = HDIAG(JP)
 HDIAG(JP) = HP
 DC 1009 I=1,N
 HP=H(I,K)
 T(I,K)=T(I,JP)
 H(I,JP)=HH
1009 CONTINUE
895 CONTINUE
742 CONTINUE
RETURN
SUBROUTINE YQUEF(MCM)
C READS IN THE PACKED INDICES NEEDED FOR EIGENVECTOR COMPUTATION
C AND PUT ON TAPE PREVIOUSLY BY LAFITE AND MOUTON
C
COMMON /CUC/ ARRAY, IPIV, JPIV, COSINE, SINE
7 IF(MCM-1) 1,2,1
2 REAC (3) (ARRAY(I),I=1,252)
1 IF(MCM-252) 5,5,6
6 MCM=1
GC TO 7
5 IPIV=ARRAY(MCM)
JPIV=ARRAY(MCM+1)
COSINE=ARRAY(MCM+2)
SINE=ARRAY(MCM+3)
MCM=MCM+4
RETURN
ENC
SLBROUINE LAFITE(M)

C PACKS QUANTITIES NECESSARY FOR COMPUTATION OF EIGENVECTORS INTO
C MAXIMUM SIZE RECORDS AND WRITES THEM OUT ON TAPE
C DIMENSION ARRAY(252)
COMMON /CU/ ARRAY, IPIV, JPIV, COSINE, SINE
ARRAY(1)=IPIV
ARRAY(1+1)=JPIV
ARRAY(1+2)=COSINE
ARRAY(1+3)=SINE
N=N+4
IF(N-252) 2,3
3 CONTINUE
WRITE (3) (ARRAY(I),I=1,252)
N=1
2 RETURN
END
SUBROUTINE MOUTCN
C WRITES OUT ON TAPE ANY UNFINISHED RECORD RELATING TO EIGENVECTORS
C DIMENSION ARRAY(252)
COMMON /CUD/ ARRAY, IPIV, JPIV, COSINE, SINE
WRITE (3) (ARRAY(I), I=1, 252)
RETURN
END
SUBROUTINE CARUSD(IOCC, U, A, NT)
C COMPUTES TOTAL OVERLAP POPULATION MATRIX
C U IS IN CORE S ON TAPE IS
C DIMENSION U(14C,140),A(150),IOCC(150)
REWIND 3
REWIND 3
CC 2 I=1,NT
CC 2 J=1,NT
2 L(I,J)=C.C
CC 3 M=1,NT
READ (3)A(J),J=1,NT
RMW=2*IOCC(M)
IF(RMW)3,3,4
4 CC 5 I=1,NT
CC 5 J=1,NT
5 L(I,J)=L(I,J)+A(I)*A(J)*RMW
3 CONTINUE
CC 6 I=1,NT
READ (6)A(J),J=1,NT
CC 6 J=1,NT
6 L(I,J)=L(I,J)*A(J)
RETURN
END
SUBROUTINE SOREN
C THIS IS THE MATRIX EQUATION SOLVER WHICH REPLACES OLD EIGEN AND
C FUNCTIONS WITH ONLY ONE MATRIX IN CORE
C ASSUMES S IS IN CORE AND H ON TAPE ITAPEH
DIMENSION A(140,140),IOCC(150),HDIA(150),B(150),C(150)
COMMON /DAA/ A
COMMON /OBB/ IOCC, HDIA, B, NDIM, N
COMMON /OAN/ ER, SUM
REWIND 8
DC 222 I=1,N
222 WRITE (8) (A(I,J),J=1,N)
REWIND 8
DC 1988 NN=1,N
READ (8) (B(J),J=1,N)
IF(NN-1)2,3,2
3 A(NN,NN)=1.
GO TO 1988
2 NN=NN-1
DC 5988 I=1,NNN
A(NN,I)=0.
DO 5988 K=1,I
5988 A(NN,I)=A(NN,I)+A(K,I)*B(K)
DC 6988 L=1,NNN
A(L,NN)=0.
DO 6988 I=L,NNN
6988 A(L,NN)=A(L,NN)-A(NN,I)*A(L,I)
A(NN,NN)=1.
XNORM=0.
DO 4988 J=1,NN
4988 XNORM=XNORM+A(J,NN)*B(J)
XNORM=1./SQR T(XNORM)
DO 7988 L=1,NN
7988 A(L,NN)=A(L,NN)*XNORM
CONTINUE
DC 3111 I=2,N
ING=I-1
DO 3111 J=1,ING
3111 A(I,J)=0.
3112 A(2,1)=0.
3112 REWIND 9
CC 3211 I=1,N
3211 WRITE (9) (A(I,J),J=1,N)
REWIND 4
CC 10 I=1,N
10 READ (4) (A(I,J),J=1,N)
CALL BALDUR
REWIND 4
CC 6 J=1,N
6 WRITE (4) (A(I,J),I=1,N)
REWIND 5
CC 7 J=1,N
7 READ (9) (A(I,J),I=1,N)
REWIND 9
CC 960 J=1,N
560 WRITE (9) (A(I,J),I=1,N)
CALL BALL
CALL CUPID
WRITE (6 ,9)(I,HDIAG(I),IOCC(I),I=1,N)
SLM=0.0
DC 1965 I=1,N
1965 SUM=SUM+HDIAG(I)*FLOAT(IOCC(I))
CRLM=23.07*SUM
WRITE (6 ,1972)SUM,CRLM
ERLM=23.07*ER
WRITE (6,1973) ER,ERLM
SLP=SUM+ER
CRLM=23.07*SUM
WRITE (6 ,1974)SUM,CRLM
1972 FORMAT(/50X,4HSUM,F16.8,3H EV,20X,2H= ,F16.8,5H KCAL//)
1973 FORMAT(/41X,13HREPU ENERGY,F16.8,3H EV,20X,2H= ,F16.8,5H KCAL//)
1974 FORMAT(/41X,13HTOTAL ENERGY,F16.8,3H EV,20X,2H= ,F16.8,5H KCAL//)
8 FORMAT(1H0,51X,2HEIGENVECTORS ///)
1234 CALL LCKI
WRITE (6 ,9)
9 FORMAT(1H0,55X,14HEIGENVECTORS ///)
CALL PEGLEG(A,N)
RETURN
END
SLEROUTINE LOKI
CALCULATES A=BC WITH C IN CORE AND B ON TAPE ITAPEB STORED ROWWIS
RESULTANT MATRIX IN CORE
DIMENSION C(140,140),IX(150),A(150),B(150)
COMMON /CAA/ C
COMMON /CAB/IX, A, B, NDIM, N
REWIND 3
REWIND 9
CC 2 I=1,N
READ (9) (E(J), J=1,N)
CC 1 K=1,N
A(K)=0.0
CC 1 J=1,N
1 A(K)=A(K)+B(J)*C(J,K)
2 WRITE (3) (A(K), K=1,N)
REWIND 3
CC 3 I=1,N
3 READ (3) (C(I,J), J=1,N)
RETURN
END
SLECUTINE BALDLR
CALCULATES A=BC WITH B IN CORE, C ON ITAPEC STORED BY COLUMNS
CELERANT MATRIX IS IN CORE
DIMENSION B(140,140),IX(150),A(150),C(150)
COMMON /CAA/ B
COMMON /CAB/IX, A, C, NDIM, N
REWIND 3
REWIND 5
CC 2 I=1,N
READ (5) (C(J),J=1,N)
CC 1 K=1,N
A(K)=0.0
CC 1 J=1,N
1 A(K)=B(K)+B(K,J)*C(J)
2 WRITE (3) (A(K),K=1,N)
REWIND 3
DC 3 I=1,N
3 READ (3) (E(J,I),J=1,N)
RETURN
END
SUBROUTINE JENNY(ICOUNT, P, N, A)
C
REALIZATION OF OVERLAP POPULATION MATRIX TO ATOM-ATOM
DIMENSION P(140,140), ICCUNT(50,2), A(150)
REWIND 9
CC 1 I=1,N
IN=ICCLNT(I,1)
IFF=ICCLNT(I,2)
CC 2 J=1,N
A(J)=0.0
FIN=ICCLNT(J,1)
JF=ICCLNT(J,2)
CC 2 K=IN,IFF
CC 2 L=FIN,JF
A(J)=A(J)+P(K,L)
WRITE (S)(A(J),J=1,N)
REWIND 9
CC 2 I=1,N
READ (S)(P(I,J),J=1,N)
FORMAT(1-0,40X,50I) REDUCED OVERLAP POPULATION MATRIX ATOM BY ATOM
1
WRITE (6,4)
CALL PEGLEG(P,N)
RETURN
END
SUBROUTINE COKI
 CALCULATES A=BC WITH C IN CORE AND B ON TAPE ITAPE ON TAPE ITAPEB STORED ROWWISE
 RESULTANT MATRIX IN CORE
 DIMENSION C(140,140),IX(150),A(150),B(150)
 COMMON /GAAB/ C
 COMMON /CAB/IX, A, B, NDIM, N
 REWIND 4
 REWIND 8
 CC 2 I=1,N
 READ (8) (B(J),J=1,N)
 CC 1 K=1,N
 A(K)=C.C
 CC 1 J=1,N
 1 A(K)=A(K)+B(J)*C(J,K)
 2 WRITE (4) (A(K),K=1,N)
 REWIND 4
 CC 3 I=1,N
 3 READ (4) (C(I,J),J=1,N)
 RETURN
 ENC
SUBROUTINE BALL
C CALCULATES A = BC WITH B IN CORE, C IN TAPEC STORED BY COLUMNS
C RESULTANT MATRIX IS IN CCE
C
DIMENSION B(140,140),IX(150),A(150),C(150)
CCOMP /GAA/ B
CCMENA /CAB/IX, A, C, NDIM, N
REWIND 3
REWIND 4
CC 2 I=1,N
READ (4) C(J),J=1,N
CC 1 K=1,N
A(K)=0.0
CC 1 J=1,N
1 A(K)=A(K)+B(K,J)*C(J)
2 WRITE (3) A(K),K=1,N
REWIND 3
CC 3 I=1,N
3 READ (3) B(J,I),J=1,N
RETURN
END
SLBROUTINE IENNY(ICOUNT, P, N, A)

REDUCTION OF OVERLAP POPULATION MATRIX TO ATOM-ATOM

DIMENSION P(140,140), ICCUNT(50,2), A(150)

REWIND 4
CC 1 I = 1, N
IN = ICCLNT(I,1)
IFF = ICCLNT(I,2)
CC 2 J = 1, N
A(J) = 0
CC 3 I = 1, N
JIN = ICCLNT(J,1)
JF = ICCLNT(J,2)
CC 4 K = IN, IFF
CC 5 L = JIN, JF
CC 6 A(J) = A(J) + P(K,L)
CC 7 WRITE (4) (A(J), J = 1, N)
REWIND 4
CC 8 I = 1, N
3 READ (4) (P(I,J), J = 1, N)
4 FORMAT(1HO, 40X, 50H REDUCED OVERLAP POPULATION MATRIX ATOM BY ATOM
1 /)
WRITE (6,4)
CALL PEGLEG(P, N)
RETURN
END
This subroutine calculates an exponential repulsion energy. This energy depends on two empirically determined parameters.

Dimension S(140,140), IOCC(150), XX(150), YY(150), AR(150), AL(150)

Common /CAA/ S
Common /CAB/ IOCC, XX, YY, N, NDIM
Common /CAM/ AR, AL, MR
Common /CAN/ ER
ER=C

IF (MR) 4,4,2
K=N-1
CC 3 I=1,K
L=I+1
CC 3 J=L,N
ER=ER+SQRT(AR(I)*AR(J))*EXP(-S(I,J)/(AL(I)+AL(J)))
CONTINUE
RETURN
END