Prediction of turbulent jets and plumes in flowing ambients

Shinh-Sing Hwang
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
Part of the Mechanical Engineering Commons

Recommended Citation

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in “sectioning” the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from “photographs” if essential to the understanding of the dissertation. Silver prints of “photographs” may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

University Microfilms International
300 North Zeeb Road
Ann Arbor, Michigan 48106 USA
St. John's Road, Tyler's Green
High Wycombe, Bucks, England HP10 8HR
HWANG, SHIN-H-SING
PREDICTION OF TURBULENT JETS AND PLUMES IN FLOWING AMBIENTS.
IOWA STATE UNIVERSITY, PH.D., 1978
Prediction of turbulent jets and plumes in flowing ambients

by

Shinh-Sing Hwang

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY

Major: Mechanical Engineering

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University
Ames, Iowa

1978
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOMENCLATURE</td>
<td>viii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. BACKGROUND</td>
<td>7</td>
</tr>
<tr>
<td>A. General Information</td>
<td>7</td>
</tr>
<tr>
<td>B. Literature Survey</td>
<td>9</td>
</tr>
<tr>
<td>C. Scope of Investigation</td>
<td>12</td>
</tr>
<tr>
<td>D. Summary of Preliminary Studies</td>
<td>14</td>
</tr>
<tr>
<td>III. ANALYSIS FOR AXISYMMETRIC FLOWS</td>
<td>16</td>
</tr>
<tr>
<td>A. The Governing Equations</td>
<td>16</td>
</tr>
<tr>
<td>B. Turbulence Model</td>
<td>22</td>
</tr>
<tr>
<td>C. Nondimensional Forms</td>
<td>31</td>
</tr>
<tr>
<td>D. Finite-Difference Formulation</td>
<td>32</td>
</tr>
<tr>
<td>E. Solution Method</td>
<td>35</td>
</tr>
<tr>
<td>IV. THE AXISYMMETRIC JET IN A COFLOWING OR QUIESCENT AMBIENT</td>
<td>39</td>
</tr>
<tr>
<td>A. Buoyant Horizontal Jet in a Uniform Ambient</td>
<td>39</td>
</tr>
<tr>
<td>B. Buoyant Jet in a Stratified Ambient</td>
<td>50</td>
</tr>
<tr>
<td>C. Horizontal Buoyant Jet with Variable Properties</td>
<td>54</td>
</tr>
<tr>
<td>V. THE AXISYMMETRIC JET IN A CROSSFLOW</td>
<td>60</td>
</tr>
<tr>
<td>A. Nonbuoyant Jet in a Uniform Ambient</td>
<td>60</td>
</tr>
<tr>
<td>B. Buoyant Jet in a Uniform Ambient</td>
<td>63</td>
</tr>
<tr>
<td>C. Buoyant Vertical Jet in a Stratified Ambient</td>
<td>79</td>
</tr>
<tr>
<td>VI. THREE-DIMENSIONAL FLOW</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>85</td>
</tr>
<tr>
<td>B. Formulation</td>
<td>87</td>
</tr>
<tr>
<td>C. Solution Method</td>
<td>93</td>
</tr>
<tr>
<td>D. Results and Discussion</td>
<td>97</td>
</tr>
</tbody>
</table>

VII. CONCLUSIONS AND RECOMMENDATIONS	102
VIII. REFERENCES	104
IX. ACKNOWLEDGMENTS	111

<p>| X. APPENDIX A: FINITE DIFFERENCE FORMULATION FOR THE PRELIMINARY STUDIES | 112 |
| XI. APPENDIX B: DERIVATION OF NONDIMENSIONAL FORMS | 117 |
| XII. APPENDIX C: A COMPUTER PROGRAM FOR AXISYMMETRIC JET CASES | 121 |
| XIII. APPENDIX D: DERIVATION OF THE POISSON EQUATION FOR PRESSURE CORRECTION | 145 |
| XIV. APPENDIX E: A COMPUTER PROGRAM FOR THREE-DIMENSIONAL JET CASES | 148 |</p>
<table>
<thead>
<tr>
<th>Table 4.1. Maximum height of rise for vertical plumes discharged into stratified quiescent ambients</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Vertical jet from cooling towers or stacks</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Power plant site near a river</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Direct-cycle power plant</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Flow regimes for heated jets</td>
<td>8</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow configuration for a buoyant jet into a crossflow</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of the correction factors for three models</td>
<td>28</td>
</tr>
<tr>
<td>4.1</td>
<td>Finite-difference grid for a curved jet analysis</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Trajectory for buoyant jet with $Fr_o = 16$ discharged horizontally to a uniform ambient</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Decay of centerline temperature for buoyant jet with $Fr_o = 16$ discharged horizontally to a uniform ambient</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>Trajectory for buoyant jet with $Fr_o = 64$ discharged horizontally to a uniform ambient</td>
<td>44</td>
</tr>
<tr>
<td>4.5</td>
<td>Decay of centerline temperature for buoyant jet with $Fr_o = 64$ discharged horizontally to a uniform ambient</td>
<td>45</td>
</tr>
<tr>
<td>4.6</td>
<td>Trajectories for horizontal buoyant jets with $Fr_o = 225$ discharged into coflowing ambients</td>
<td>46</td>
</tr>
<tr>
<td>4.7</td>
<td>Centerline temperature decay for a horizontal buoyant jet with $Fr_o = 900$, $m = 10$ discharged into a coflowing ambient</td>
<td>47</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of Froude number on plume trajectory</td>
<td>48</td>
</tr>
<tr>
<td>4.9</td>
<td>Centerline temperature profiles for a horizontal buoyant jet in a coflowing ambient; $d_o = 0.01$ m, $Fr_o = 225$, $m = 6$</td>
<td>49</td>
</tr>
<tr>
<td>4.10</td>
<td>Trajectories for buoyant jets discharged horizontally to a stratified quiescent ambient</td>
<td>52</td>
</tr>
</tbody>
</table>
Predicted trajectory for buoyant jet with Fr_o = 16 discharged horizontally to a uniform ambient

Decay of centerline temperature for buoyant jet with Fr_o = 16 discharged horizontally to a uniform ambient

Predicted trajectory for buoyant jet with Fr_o = 64 discharged horizontally to a uniform ambient

Decay of centerline temperature for buoyant jet with Fr_o = 64 discharged horizontally to a uniform ambient

Trajectories for nonbuoyant jets discharged normal to a crossflow

Maximum velocity decay for nonbuoyant jets discharged to a crossflow

Trajectories for nonbuoyant jets discharged at various angles to the free stream with m = 8

Trajectories for nonbuoyant jets discharged at various angles to the free stream with m = 6

Trajectories for nonbuoyant jets discharged at various angles to the free stream with m = 4

Effect of curvature Richardson number on plume centerline velocity decay

Generation of jet trajectory

Skeleton flow chart for the general calculation method

Trajectories for buoyant jets discharged normal to a crossflow with Fr_o = 85

Centerline temperature (or concentration) decay for buoyant jets discharged to a crossflow with Fr_o = 85

Trajectories for buoyant jets discharged normal to a crossflow with Fr_o = 400
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12</td>
<td>Centerline temperature (or concentration) decay for buoyant jets discharged to a crossflow with (Fr_o = 400)</td>
<td>75</td>
</tr>
<tr>
<td>5.13</td>
<td>Trajectories for buoyant jets discharged normal to a crossflow with (Fr_o = 1600)</td>
<td>76</td>
</tr>
<tr>
<td>5.14</td>
<td>Centerline temperature (or concentration) decay for buoyant jets discharged to a crossflow with (Fr_o = 1600)</td>
<td>77</td>
</tr>
<tr>
<td>5.15</td>
<td>Velocity halfwidth for some buoyant jets discharged to a crossflow</td>
<td>78</td>
</tr>
<tr>
<td>5.16</td>
<td>Trajectory for buoyant jet discharged normal to a crossflow with stratified ambient, (Fr_o = 12.3, \overline{T} = 35500,) and (m = 1.869)</td>
<td>81</td>
</tr>
<tr>
<td>5.17</td>
<td>Trajectory for buoyant jet discharged normal to a crossflow with stratified ambient, (Fr_o = 11.35, \overline{T} = 2469,) and (m = 2.016)</td>
<td>82</td>
</tr>
<tr>
<td>5.18</td>
<td>Trajectory for buoyant jet discharged normal to a crossflow with stratified ambient, (Fr_o = 11.30, \overline{T} = 3559,) and (m = 2.058)</td>
<td>83</td>
</tr>
<tr>
<td>5.19</td>
<td>Trajectory for buoyant jet discharged normal to a crossflow with stratified ambient, (Fr_o = 11.45, \overline{T} = 1127) and (m = 2.028)</td>
<td>84</td>
</tr>
<tr>
<td>6.1</td>
<td>Flow configuration for a three-dimensional jet discharged from a rectangular orifice</td>
<td>91</td>
</tr>
<tr>
<td>6.2</td>
<td>Finite-difference grid points for three-dimensional calculations</td>
<td>94</td>
</tr>
<tr>
<td>6.3</td>
<td>Secondary flow pattern for a three-dimensional jet discharged from a square orifice at a cross section (x/y_o = 77) ((x^* = 0.042))</td>
<td>98</td>
</tr>
<tr>
<td>6.4</td>
<td>Growth of half-width of a three-dimensional laminar jet</td>
<td>99</td>
</tr>
<tr>
<td>6.5</td>
<td>Velocity profile for a three-dimensional laminar jet</td>
<td>100</td>
</tr>
</tbody>
</table>
Latin Symbols

\(C_D \) drag coefficient, equal to 2.4 for all calculations in this study

\(c_p \) specific heat at constant pressure

\(D_{\text{eff}} \) effective diameter of jet, equal to twice \(r_{1/2} \)

\(d_0 \) diameter of jet or plume at discharge

\(F \) velocity ratio function

\(Fr \) local Froude number, dimensionless

\(Fr_o \) discharge Froude number, \(u_o^2/[g_n d_0 (\rho_{\infty} - \rho_0)/\rho_0] \)

\(F_D \) drag force caused by crossflow

\(f(r) \) initial velocity distribution

\(g(r) \) initial temperature distribution

\(g_n \) acceleration of gravity, 9.80665 m/s\(^2\)

\(G \) curvature Richardson number function

\(H_B \) buoyancy Richardson number function

\(k \) Thermal conductivity

\(\ell \) mixing length

\(\ell_o \) unmodified mixing length

\(m \) ratio of the jet discharge velocity \(u_o \) to the crossflow velocity \(u_{\infty} \)

\(n \) total or effective kinematic viscosity

\(n_H \) total or effective thermal diffusivity

\(p \) corrected pressure

\(\bar{p} \) space-averaged pressure over a cross section
p^* estimated pressure

p' pressure correction

Pr Prandtl number, ν/α

q heat flux due to molecular and turbulent transport

R radius of curvature of jet centerline

Re_o Reynolds number at discharge, $u_0 d_o/v$, dimensionless

Ri gradient Richardson number

Ri_b gradient Richardson number of buoyancy, $\beta_{\text{th}} q n \frac{\partial t}{\partial r} (\frac{\partial u}{\partial r})^2$

Ri_c gradient Richardson number of curvature, $2(U/R)/(\partial u/3r)$

r_o radius of jet or plume at discharge

s distance along jet or plume axis

S nondimensional axial distance, or the source term in three-dimensional jet

S_M width of the mixing layer in the initial region

Δs step size in the s-direction

t temperature

T nondimensional temperature, $(t-t_\infty)/(t_\infty-t_\infty)$

\bar{T} stratification parameter, $(\rho_\infty-\rho_0)/[-r_0 (d\rho_\infty/dz)]$

u s-component of time mean velocity

v r-component of time mean velocity

u,v,w velocity components in x, y, and z-directions, respectively, in three-dimensional flow cases

\vec{V} velocity vector, $u \hat{i} + v \hat{j} + w \hat{k}$

x,y,z Cartesian coordinates

U,V,W nondimensional velocity components of u,v,w

X,Y,Z nondimensional distance in x, y, and z-directions respectively

ν_o half-width of jet or plume at discharge in y-direction
half-width of jet or plume at discharge in z-direction

zero momentum height or maximum height of plume rise

Greek Symbols

\(\alpha \) thermal diffusivity, \(k/\rho c_p \)

\(\beta_b, \beta_c \) constants in buoyancy and curvature effects

\(\beta_{th} \) isobaric volume expansivity, \(-\gamma p \frac{\partial \rho}{\partial t} \)

\(\gamma_f \) intermittency function, see Equation (3.31)

\(\delta \) mixing layer thickness

\(\nu \) viscosity

\(\nu \) kinematic viscosity, \(\mu/\rho \)

\(\rho \) density

\(\tau \) total or effective shear stress in s-momentum equation

\(\theta \) angle between \(\vec{i}_s \) and the horizontal

\(\lambda \) degree of ambient stratification, \(-\partial t_\omega /\partial z \)

Subscripts

\(c \) evaluated at jet centerline

\(p \) evaluated at constant pressure

\(e \) evaluated at outer edge of jet

\(1/2 \) evaluated at velocity half-width

max maximum value

min minimum value

\(o \) value at jet discharge

ref reference value

T turbulent flow quantity
∞ free stream or ambient value
+
used in special notation, \(\Delta S_+ = (S_{i+1} - S_i) \)

Superscripts

()' fluctuating quantities

() time mean quantities

(\(\rightarrow\)) vector quantities

(\(^{\prime\prime}\)) space averages over flow cross section
I. INTRODUCTION

The problem of the turbulent jet or plume issuing into a flowing ambient has received considerable attention in recent years. The problem of reducing the pollution of the environment, including water bodies and the atmosphere, is still a serious concern to scientists, engineers and government administrators. This problem is of significance in several areas of engineering, such as cooling water discharged from power plants, gaseous jets from cooling towers or stacks (see Figure 1.1) and exhaust gas from combustion systems of aircraft or spacecraft. In the case of spacecraft, the plume discharges from the nozzles may cause heating and contamination problems for the external instrumentation.

Modern steam electric power plants have thermal efficiencies of 40% or less. Therefore, they waste large amounts of heat which is most conveniently discharged into an adjacent environment, a water body or the atmosphere. The addition of such heated discharges to the environment can cause chemical, biological and physical effects on animals and vegetation in the vicinity of the discharge. Thus, site selection for a power plant is important. A schematic diagram [1] of the cooling process of a power plant using a river as a heat sink is shown in Figure 1.2. Cooling water enters the power plant at temperature t_{∞}, through an intake structure and passes through the condensers, then returns at a temperature t_0 to the receiving water. This is a typical open cycle system. The coolant stream undergoes a temperature rise of about 5° to 18° C depending on the amount of rejected heat and the flow rate of
Fig. 1.1. Vertical jet from cooling towers or stacks.
Fig. 1.2 Power plant site near a river.
cooling water.

Figure 1.3 shows a direct thermal cycle [2] of a working fluid, in this case water, in a power plant. The water receives heat from boiler and is converted into high-pressure steam which expands through the turbine to convert part of its thermal energy into electrical energy. The expanded steam from the turbine exhaust then goes through the condenser where it rejects heat to the cooling water and condenses into the liquid phase which is returned to the boiler. This forms a closed cycle. The cooling water receives heat in the condenser and then discharges into the receiving water body, such as a river or water pond.

There is general agreement that water temperature increases which are close to the sub-lethal range of impaired biological activity should be avoided. Indeed, the discharge of fluid wastes from submerged outlets as jets into the receiving fluid bodies is employed more and more commonly by industry as a technique to achieve the maximum amount of mixing or dilution within a minimum distance of travel. These temperature limits have a significant effect on power plant siting and discharge outfall design. If the ecological impact is not acceptable, either an alternative means such as cooling towers must be employed, or the site of the power plant must be changed.

In order to predict the ecological effects of such thermal additions on the environment, knowledge of the changes in physical conditions, such as the temperature and velocity fields caused by the thermal discharge, is required. Similarly, in order to control the pollution for
Fig. 1.3 Direct-cycle power plant.
ocean sewage outfalls, knowledge of the concentration and velocity fields caused by the discharge is required. Field studies and experimental work are other excellent ways to gain that knowledge, but mathematical modeling is also useful in making predictions for the discharge design process. It is believed that inexpensive analytical predictions of plume problems will be of great assistance in reducing the amount of expensive model testing that is often required for design and for satisfying environmental agency requirements. The present study deals with the prediction of these physical quantities through mathematical modeling [3].
II. BACKGROUND

A. General Information

Jet flows can be divided into several classes according to the trajectory of the jet centerline [4]: (a) straight line trajectories, (b) single plane trajectories, and (c) three-dimensional trajectories. Jet flows could also be classified as two-dimensional or three-dimensional according to the velocity components which are nonzero. A straight line jet discharging from a rectangular orifice will yield a three-dimensional flow even if the trajectory is straight.

The jet passes through several regimes as it moves from the outfall through the ambient. The three flow regimes commonly considered are shown in Figure 2.1.

(1) The initial region, or zone of flow establishment: In this region, the flow is dominated by the discharge conditions. A turbulent shear layer develops at the edge of the jet, and spreads both inward toward the jet centerline, and outward, causing the jet to grow. The axial distance from discharge to the point where mixing has reached the centerline is called starting length.

(2) Main region or zone of established flow: In this region the flow is fully turbulent. The jet is deflected and its motion is governed by its momentum and buoyancy and the free stream conditions, but not by the initial outfall conditions.
Fig. 2.1. Flow regimes for heated jets.
Field zone or far field region: The jet momentum is depleted and the jet fluid is convected and diffused by the ambient currents and ambient turbulence.

The present analysis is concerned with the near field flow region—the first two regimes, since the jet turbulent mixing and temperature excesses in this region are significant.

B. Literature Survey

For a long period in past years, the prediction of turbulent jet flows was most commonly done by integral methods which utilized assumed velocity and temperature (or concentration) profiles based on similarity assumptions and entrainment approximations. In integral methods, the partial differential equations are then integrated over the whole cross section of jet and converted into a set of simpler ordinary differential equations. Hirst [4] and Schatzmann [5] more recently presented integral methods for jet flows of a fairly general nature.

In recent years, differential methods have become the center of interest for most researchers with the advent of the more advanced and faster digital computers. In differential methods, the partial differential equations of the flow are solved directly using a finite-difference technique without the assumption of profile similarity. Madni and Fletcher [3,6] present more details about differential methods applied to several classes of jet flows. There is an indication of the shift in emphasis from integral toward differential methods. However, the methods most commonly used for plume prediction in waterways, oceans
and the atmosphere, still tend to be integral in nature [4,7,8].

Nonvertical buoyant jets discharged to a uniform quiescent ambient have been studied experimentally by Abraham [9], Frankel and Cumming [10], Anwar [11] and Fan [12], and analytically by Hirst [4] and Madni [6]. Nonbuoyant jets discharged to a crossflow have been investigated experimentally by Gordier [13], Keffer and Baines [14], Pratte and Baines [15], Platten and Keffer [16], and analytically by Hirst [4], Fink [17] and Schatzmann [5]. Buoyant jets discharged vertically into a horizontal crossflow have been extensively studied experimentally by Fan [12], Briggs [18], Hoult et al. [19,20], Fan and Brooks [21], and theoretically by Hirst [4] and Schatzmann [5]. Shirazi and Davis [22] presented a discussion of this classification of submerged discharges. According to [22], buoyant submerged jets are classified by the ambient conditions as: (a) discharge into stagnant, nonstratified water, (b) discharge into stagnant, stratified water, (c) discharge into moving, nonstratified water, (d) discharge into moving, stratified water, and (e) vertical discharge into nonstratified, stagnant, shallow water.

For the buoyant jet discharging into a flowing ambient, a few sample calculations for this flow configuration have been reported whereby the Reynolds-averaged Navier-Stokes equations have been solved by finite-difference [23] or finite-element [24] techniques using a simple algebraic turbulence model. These solutions require considerable computation time and understandably few comparisons have been made with experimental data to establish the validity of the turbulence models.
employed for buoyant flows. McGuirk and Spalding [25] have employed a three-dimensional parabolic finite-difference scheme for pressure coupled equations [26] to predict the dispersion of buoyant jets for the special case of discharges into an initially coflowing stream.

A study has been underway in the Department of Mechanical Engineering at Iowa State University for the past several years to develop better methods for predicting thermal diffusion in turbulent jet flows characteristic of those occurring in natural waterways [3,6,27,28,29]. The predictions of these methods which include the initial region where similarity assumptions are definitely not valid, compare favorably with measurements made both in water [30,31] and in the atmosphere [32,33].

In summary, the finite-difference predictions of Madni [3] can be classified in three categories: (a) nonbuoyant jets in a coflowing or quiescent ambient, (b) buoyant vertical jets in a uniform or stratified ambient, (these two cases include only straight line trajectories), (c) horizontal or inclined buoyant jet in a quiescent ambient, (this deals with the curved trajectory caused by the buoyancy force only).

In the present study, it is proposed to extend the finite-difference approach already developed for two-dimensional flows by Madni and Fletcher [3,6,27,34] to include jets and plumes with curved trajectories caused especially by a crossflowing ambient. In this flow, the curvature effect is expected to be important in turbulent mixing.
C. Scope of Investigation

This research contributes to knowledge in the general area of turbulent shear flows as well as contributing to the development of needed prediction methods for applied configurations. The objective of the present investigation is to develop better methods of predicting the development of jets and thermal plumes under conditions which closely simulate the flows found in power plant applications. In the present study, effort was mainly concentrated on the analysis of jets discharged into a uniform or stratified ambient with crossflow. A surprisingly simple mathematical model was found to adequately account for the effect of the crossflow in the r-momentum equation. The curvature effect due to a crossflow on the turbulent mixing was the major development in the present turbulence modeling. The recent work of Trent and Welty [35] suggests that turbulence modeling is the main bottleneck to progress in plume predictions for the more complex configurations and the present study tends to support this view. In addition to the crossflow studies, many test cases were computed for jets in coflowing or quiescent ambient to establish the validity of the turbulence model and to evaluate its range of applicability. These same test cases served to establish the capabilities of the finite-difference method.

The applications of interest in the present study include the thermal plumes from cooling towers and stacks and cooling water discharges into cooling ponds and waterways. The same solution method is applicable to atmospheric discharges also by using the same computer
program with a slight adjustment. Actually, the present analysis can only provide an approximate, but hopefully reasonable, solution to these flows since the ambient flow will be assumed uniform in velocity and temperature which is never quite true in the practical applications. All of the comparisons in the present study are with laboratory rather than field data, not by choice so much as due to the general lack of availability of the latter. However, it is believed that the analysis and calculation procedure in the present study can provide a useful approximation to the true jet and plume flows found in cooling tower and waterway applications.

The procedure followed in the present study is to solve the governing partial differential equations by a finite-difference method, using a turbulence model to calculate the turbulent diffusivities for heat and momentum. The governing equations are of boundary layer form [26], if we assume:

(a) there exists a predominant direction of flow,
(b) the diffusion of momentum, heat and mass is negligible in that direction,
(c) the downstream pressure field has little influence on the upstream flow conditions.

In Chapter III, the basic differential equations governing the development of an axisymmetric buoyant jet in a crossflow are derived in a curvilinear coordinate system which moves with the jet centerline. Approximate initial and boundary conditions are established. Then, the equations are nondimensionalized, and formulated in finite-difference
In Chapter IV the calculation procedure discussed in Chapter III is applied to axisymmetric jets in a coflowing or quiescent ambient. In Chapter V, it is applied to jets in a crossflow. Both chapters include cases of jets in uniform and stratified ambients. Comparisons are made with experimental data and other predictions.

In Chapter VI, the calculation is extended to solve three-dimensional jet problems by the alternating-direction implicit (ADI) finite-difference method. The solution procedure, based on the proposals by Patankar and Spalding [26] and Raithby [36], and modifications made by Zoby [37] and Briley [38], is presented in detail.

Chapter VII states conclusions and provides suggestions for future research.

Copies of computer programs and the printed results from the computer runs to be described in this study can be obtained through the Department of Mechanical Engineering at Iowa State University.

D. Summary of Preliminary Studies

Before an appropriate numerical method was chosen for the present investigation, several methods were tested to solve a simpler boundary layer flow problem. Comparisons were made regarding computer time, step size limitations, stability restrictions, accuracy of results, and convenience of programming. Those numerical methods considered were: the fully implicit method [39], Crank-Nicolson method [40], DuFort-Frankel method [41], alternating-direction explicit (ADE) method by
Saul'yev [42], ADE method by Barakat and Clark (including a modified version) [43] and an ADE method by Larkin [44].

Finally, the fully implicit method was chosen for the calculations of this study. The fully implicit method was not overwhelmingly superior to any of the others but seemed to offer a good compromise between accuracy and convenience. The explanation and finite-difference formulation of these methods are given in Appendix A.
III. ANALYSIS FOR AXISYMMETRIC FLOWS

Figure 3.1 shows the flow configuration and the curvilinear coordinate system used for the analysis of the turbulent jet discharging at an angle θ_0 to the horizontal. The ambient is assumed to be uniform in temperature or stratified as characterized by the stratification parameter \overline{T} and flowing with a uniform velocity u_∞ in the x-direction. Although the actual flow conditions do not require that the jet be precisely axisymmetric about the centerline, this assumption, which greatly simplifies the analysis, is used in the present study except as described in Chapter VI. This axisymmetric flow model was observed to be useful for the simpler case of the jet discharging to a quiescent ambient [6] and the merits of the model were thought worth exploring for the present flow configuration before turning to a fully three-dimensional analysis with the associated uncertainties concerning turbulence modeling and with a substantial increase in required computer time.

The flowing ambient will be assumed infinite in extent which precludes the prediction of interactions with a free surface.

A. The Governing Equations

The development of the jet or plume as it moves through the ambient is governed by equations which require the conservation of mass, momentum (one equation for each coordinate direction), energy and perhaps other scalar components (such as salt). These six equations are sufficient to solve for the six unknowns, pressure, three velocity components,
Fig. 3.1. Flow configuration for a buoyant jet into a crossflow.
temperature, and salinity (if considered).

In the present study, the pressure variation is assumed to be purely hydrostatic and will be considered negligible. The flow is assumed to be axisymmetric, and the governing equations can be reduced in accordance with boundary layer assumptions, so only four parameters, namely u, v, θ and t, are of interest along with four basic governing equations; these are s-momentum, r-momentum, continuity and energy equations.

Generally, the fluid was assumed incompressible with density variations accounted for only in the buoyancy force term (Boussinesq approximation). The only exception to this will occur in Chapter 4, Section C, where results of a variable property analysis will be presented.

Viscous dissipation is neglected in the energy equation and the thin shear layer (boundary layer) assumptions have been used to eliminate the second derivatives with respect to the s-direction (see Figure 3.1) from the s-momentum and energy equations. Viscous terms have been neglected entirely in the transverse direction because of the boundary layer assumptions. The resulting equation is a force balance on a stream tube being deflected by the resultant component in the transverse direction of the buoyancy force and the effective drag caused by the crossflowing stream.

This flow model is similar to that used in [6] except for the addition here of the effects of crossflow. More details on the derivation of the equations in the curvilinear coordinate system for the jets in a
coflowing or quiescent ambient can be found in [6] or in Appendix B of [3]. The effective drag force in the transverse direction results from a complex pressure distribution about and within the jet and is being modeled by analogy with a cylinder in crossflow using the component of the crossflow velocity in the r-direction to evaluate the drag force according to

$$F_D = C_D \rho \left(u_\infty \sin \theta \right)^2 \frac{2}{\pi D_{\text{eff}}}$$

(3.1)

where $C_D = 2.4$ and $D_{\text{eff}} = 2 r^{1/2}$.

With these assumptions, the conservation equations become:

Continuity:

$$\frac{\partial (rv)}{\partial s} + \frac{\partial (rv)}{\partial r} = 0$$

(3.2)

s-momentum:

$$u \frac{\partial u}{\partial s} + v \frac{\partial u}{\partial r} = \frac{1}{\rho_0} \frac{\partial}{\partial r} \left(r \frac{\partial s}{\partial t} \right) + \frac{\rho_\infty - \rho}{\rho_0} g_n \sin \theta$$

(3.3)

r-momentum:

$$u \frac{\partial \theta}{\partial s} = -C_D \left(u_\infty \sin \theta \right)^2 \frac{2}{\pi D_{\text{eff}}} \frac{\rho_\infty}{\rho_0} + \frac{\rho_\infty - \rho}{\rho_0} g_n \cos \theta$$

(3.4)

Energy:

$$u \frac{\partial r}{\partial s} + v \frac{\partial r}{\partial r} = \frac{1}{\rho_0} \frac{\partial}{\partial r} \left(-rq \right)$$

(3.5)

The terms \(\frac{\rho_\infty - \rho}{\rho_0} g_n \sin \theta \) and \(\frac{\rho_\infty - \rho}{\rho_0} g_n \cos \theta \) represent components of the buoyancy force which are generated due to density
differences with the ambient.

An equation for salinity (or concentration) is similar to Equation (3.5). In fact, in a suitable nondimensional form, the equations are identical such that for a uniform ambient (and assuming $Sc_T = 0.7$) a solution to Equation (3.5) can be used to predict the decay of nondimensional species concentration, also.

The shear stress τ_s in Equation (3.3) includes the viscous and the apparent turbulent contributions [45], thus,

$$\tau_s = \rho v \frac{\partial u}{\partial r} - \rho u'v'$$ \hspace{1cm} (3.6)

Similarly, the heat flux q in the energy equation is due to both molecular and turbulent action. So,

$$q = -k \frac{\partial T}{\partial r} + \rho c_p \overline{v't'}$$ \hspace{1cm} (3.7)

In turbulent flow, the number of unknowns usually exceeds the number of independent equations so an additional relationship is required to achieve closure of the mathematical formulation. A turbulence model is provided to play this role.

Assuming a linear equation of state for ρ, the buoyancy terms can be derived and related to the temperature of the fluid through

$$\frac{\rho_\infty - \rho}{\rho_0} = \beta_{th} (t - t_\infty)$$ \hspace{1cm} (3.8)

where β_{th}, the isobaric volume expansivity of the fluid, is defined as
Since Equations (3.2) through (3.5) give rise to a parabolic system, marching finite-difference techniques can be applied. The calculation starts at the discharge and is marched in the downstream direction of the jet.

These equations are first order in \(s \), so initial distributions of \(u \), \(t \) and \(\theta \) must be provided at a starting value of \(s \),

\[
u(s_0, r) = f(r), \ t(s_0, r) = g(r), \ \theta(s_0) = \theta_0 \quad (3.10)
\]

Appropriate boundary conditions for Equations (3.2) to (3.5) are

\[
\frac{\partial u}{\partial r}(s, o) = \frac{\partial t}{\partial r}(s, o) = 0
\]

\[v(s, o) = 0 \quad (3.11)\]

\[
\lim_{r \to \infty} u(s, r) = u_\infty \cos \theta \]

\[
\lim_{r \to \infty} t(s, r) = t_\infty
\]

Here, \(u \) and \(t \) each requires two boundary conditions, while only one is required for \(v \). The initial \(v \)'s can be computed from the continuity equation. For convenience, initial \(v \)'s were set equal to zero.
B. Turbulence Model

The Boussinesq concept of apparent turbulent viscosity is used to evaluate τ_s as

$$\tau_s = \rho (\nu + \nu_T) \frac{\partial u}{\partial r} = \rho n \frac{\partial u}{\partial r}$$

(3.12)

where ν_T is the turbulent viscosity, and n is the total of effective viscosity. It was assumed that the turbulent diffusivities for heat and momentum are related through

$$\alpha_T = \frac{\nu_T}{Pr_T}$$

(3.13)

by the Reynolds analysis where Pr_T is the turbulent Prandtl number which was set equal to a constant value of 0.7 for the calculations in this study, and α_T is the turbulent diffusivity for heat. The heat flux, q, can be expressed as

$$q = -\rho c \frac{(\alpha + \frac{\nu_T}{Pr_T}) \partial T}{\partial r} = -\rho c \frac{n_H \partial T}{\partial r}$$

(3.14)

where n_H is the effective thermal diffusivity.

Making use of Prandtl's mixing length hypothesis [46] for the turbulent exchange, the Reynolds' stress term in the momentum equation was evaluated as:

$$-\rho u'v' = \rho \ell^2 \frac{\partial u}{\partial r} \frac{\partial u}{\partial r} = \rho v_T \frac{\partial u}{\partial r}$$

(3.15)

where ℓ is the "mixing length", determined by the geometry of the flow system.
This simple mixing length model has some disadvantages [47]. One major shortcoming is the prediction of zero viscosity and thermal diffusivity whenever \(\partial u / \partial r = 0 \). This would suggest that \(u_T \) and \(k_T \) would be zero at the centerline of a pipe, in regions near the mixing of a wall jet with a main stream, and in flow through an annulus or between parallel plates where one wall is heated and the other cooled. Measurements indicate that \(u_T \) and \(k_T \) are not zero in these cases. However, for flow such as wall boundary layers in the absence of any unusual geometric or boundary conditions, the simple mixing length model will yield predictions as good as those from the one-equation model and with the use of less computer time. The turbulence model used for the present calculations was based on Equation (3.15), but included some modifications to compensate for the shortcomings of the simple mixing length model for buoyant flows following curved trajectories.

In the previous studies by Madni [6] on the prediction of heated jet discharged horizontally into a quiescent ambient, good predictions for the jet trajectory were noted using the same base-line turbulent model that worked well for nonbuoyant jets. However, the centerline temperature decay was somewhat underpredicted. The influence of buoyancy on mixing was then considered and the mixing length was modified to account for this effect. A good discussion of buoyancy effects on turbulent mixing was presented in [48] by Bradshaw.

The velocity and temperature distributions predicted by Madni were improved by employing the empirical Keyps [49] formula to augment the
effective mixing length due to the effects of buoyancy on the turbulent viscosity. A similar pattern has been observed in the present study with regards to the effects of streamline curvature caused by pressure forces on the effective viscosity in the absence of buoyancy. So, corrections to the effective viscosity are being suggested for the effects of curvature as well as buoyancy. Trajectories can be predicted reasonably accurately without considering the curvature corrections. However, with curvature corrections, the results were improved significantly for profile related parameters such as the decay of centerline temperature and velocity.

The present turbulence model includes both a buoyancy Richardson number function \(H_b \) and curvature effect \(G \) due to pressure force from crossflowing ambient. In the initial region, the turbulent viscosity \(\nu_T \) is calculated as

\[
\nu_T = \lambda_c \frac{2}{3} \frac{3u}{\| \partial_x \| H_b G}
\]

(3.16)

where \(\lambda_c = 0.0762 S_M \), and \(S_M \) is the width of the mixing layer in the initial region.

The effects of buoyancy on the turbulent viscosity are treated through a gradient Richardson number function which is of the same form as Madni [6] used:

\[
H_b = (1 - \beta_b Ri_b \cos \theta)^{0.5}
\]

(3.17)

where \(Ri_b \) is evaluated on a global basis:
where β_{th} is the volumetric expansion coefficient, g_n is the acceleration of gravity, with a value of 9.80665 m/s2.

To account for the effects of pressure induced curvature on the mixing, the following function was found to work well for jets discharging into a flowing ambient.

$$G = (1 - \beta R_c)$$ \hspace{1cm} (3.19)

Here G was assumed to be a simple linear function of the gradient curvature Richardson number, and β_c is a constant.

The curvature Richardson number in the present study was evaluated as

$$R_{i_c} = 2u_c S_M \frac{\partial \theta}{ds} (u_c - u_e)$$ \hspace{1cm} (3.20)

where $\partial \theta/ds$ can be recognized as the radius of curvature of the jet centerline and $(u_c - u_e)/S_M$ is a global representation for $\partial u/\partial r$. This equation was derived from

$$R_{i_c} = 2(U/R)/(\partial u/\partial r)$$ \hspace{1cm} (3.21)

which has been studied and discussed in [50,51].

From Equation (3.21), \bar{R}, the radius of curvature, is computed from

$$\frac{1}{\bar{R}} = \frac{d\theta}{ds}$$ \hspace{1cm} (3.22)
and
\[
\frac{\partial u}{\partial r} = \frac{u - u_e}{r - r_e} = \frac{u - u_e}{S/M}
\]
(3.23)

Combining Equations (3.22) and (3.23) into Equation (3.21), Equation (3.20) can be derived.

The values of the constants \(\beta_b \) and \(\beta_c \) used for the present calculations are as follows:

- \(\beta_b = 18 \) in all calculations
- \(\beta_c = 1.2 \) in initial region
- \(\beta_c = 8.0 \) in main region

The \(H_b \) and \(G \) functions represent the influence of buoyancy and pressure forces on the effective turbulent viscosity and thus would represent the influence on the square of the mixing length, i.e.,

\[
H_b G = \frac{l^2}{l_0^2}
\]
(3.24)

where \(l_0 \) is the mixing length without buoyancy and curvature effects and \(l \) is the modified mixing length.

The model for the curvature effect due to the crossflow used in the present analysis is one of the major features in this study. If \(H_b \) is set equal to one in Equation (3.24), then it follows that

\[
\frac{l^2}{l_0^2} = G
\]

or

\[
l = l_0 (G)^{0.5}
\]
(3.25)
The modified mixing length \(\ell \) is computed from the original mixing length \(\ell_0 \) by multiplying a correction factor (CF),

\[
\ell = \ell_0 \times (\text{CF})
\]

(3.26)

Comparing Equations (3.25) and (3.26), the correction factor is:

\[
\text{CF} = (\mathcal{C})^{0.5} = (1 - \beta_c \text{Ri})^{0.5}
\]

(3.27)

for the present analysis when neglecting the buoyancy effect \((H_b = 1) \).

Two other well-known empirical models are presented here for comparison. The Monin-Oboukhov formula for the modification of the apparent mixing length is given in [49] as

\[
\frac{\ell}{\ell_0} = (1 - \beta' \text{Ri})
\]

(3.28)

This gives \(\text{CF} = (1 - \beta' \text{Ri}) \). Where \(\beta' \) is a constant with values from 4.5 to 7 [50] depending on whether the flow conditions are stable or unstable. This formula is valid only for small Richardson numbers. For larger negative \(\text{Ri} \), particularly in the range \(-0.5 < \text{Ri} < 0\), the Keyps formula [49] is commonly used instead of the Monin-Oboukhov formula,

\[
\frac{\ell}{\ell_0} = (1 - 18 \text{Ri})^{0.25}
\]

(3.29)

In the present study, negative curvature Richardson numbers as large as 1.8 in magnitude were observed and the Keyps formula seemed to be inadequate for our calculations when \(\text{Ri} \) exceeded about 0.5 in magnitude. Figure 3.2 shows a comparison of the CF values for negative
Fig. 3.2. Comparison of the correction factors for three models.
Richardson numbers from 0 to -1.8 for these three models, i.e.,

(a) Monin-Oboukhov formula

$$CF = (1-8' Ri) \text{ using } 8' = 4.5 \text{ which gives the best results for this comparison,}$$

(b) Keyps model

$$CF = (1-18 Ri)^{0.25}$$

(c) Present model

$$CF = (1-8 Ri)^{0.5}$$

From Figure 3.2, it can be seen that the CF values computed from these three formulae are very close for very low Richardson number (for $|Ri| < 0.1$). For negative Ri values between 0.1 and 0.5 in magnitude, model (a) is no longer valid, while the present model, model (c), gives CF values from 4% to 25% higher than the Keyps model which is commonly used for Ri in this range. When negative Ri becomes larger in magnitude than 0.5, model (c) still works well. The present correlation formula, which gives corrections intermediate in magnitude to those of the Monin-Oboukhov and Keyps correlations, appears to provide the needed level of correction for Ri large in magnitude and yet reduces values in line with the accepted Monin-Oboukhov correlation for small negative Ri.

The H_b and G functions were used to modify algebraic turbulence models of the same type as used previously for nonbuoyant jets following straight-line trajectories [27,34]. In the initial mixing region, the turbulence model used was
\[\nu_T = \lambda_o^2 \left| \frac{3\nu}{r} \right| b G \]
(3.30)

where \(\lambda_o = 0.0762 \) S_M.

After mixing penetrated to the jet centerline, i.e., in the main region, the viscosity was evaluated as

\[\nu_T = \gamma_f F \frac{r}{r_{1/2}} (u_{max} - u_{min}) b G \]
(3.31)

where \(\gamma_f \) is the intermittency function given by Madni and Fletcher [30] as

\[\gamma_f = \begin{cases} 1.0 & 0 \leq \frac{r}{r_{1/2}} \leq 0.8 \\ (0.5)^c & \frac{r}{r_{1/2}} > 0.8 \end{cases} \]
(3.32)

This intermittency function was introduced to account for the fact that, from the measurements, the turbulent viscosity has an intermittent character near the outer edge of the mixing layer, rather than a constant value. \(F \) is the velocity ratio function [27] which was developed from the concept that the mixing of a jet with a flowing ambient must be influenced by the eddy motion characteristic of this ambient. It is assumed that, the greater the velocity ratio (the ratio of stream velocity to jet velocity), the more important this effect would be in the mixing. The following function was suggested [27],

\[F = 0.0246 (1 + 2.13/m^2) \]
(3.33)

The suitability of the \(h_b \) function has been demonstrated in
previous work for buoyant jet discharged to quiescent ambients [6].

C. Nondimensional Forms

By using the nondimensional parameters for the governing equations, the variables were nondimensionalized as follows:

\[U = \frac{u}{u_o}, \quad V = \frac{v}{u_o}, \quad T = \frac{t-t_{\infty,o}}{t_o-t_{\infty,o}} \]

\[S = \frac{su_o}{u}, \quad R = \frac{ru_o}{u} \]

Here, \(t_{\infty,o} = t_{\infty} \) except in stratified ambient where \(t_{\infty} \) is not a constant.

After nondimensionalizing, Equations (3.2) through (3.5) can be rewritten as follows:

Continuity:

\[\frac{\partial (UR)}{\partial S} + \frac{\partial (VR)}{\partial R} = 0 \quad (3.35) \]

s-momentum:

\[U \frac{\partial U}{\partial S} + V \frac{\partial U}{\partial R} = \frac{1}{R} \frac{\partial}{\partial R} (RN \frac{\partial U}{\partial R}) + \frac{\sin \theta}{Re_o Fr_o} (T-T_{\infty}) \quad (3.36) \]

r-momentum:

\[U \frac{2d\theta}{dS} = -C_D (U_\theta \sin \theta)^2 \frac{2}{\pi D_{eff}} [1 - \beta_{th} (T-T_o)(t_o-t_{\infty,o})] + \frac{\cos \theta}{Re_o Fr_o} (T-T_{\infty}) \quad (3.37) \]
Energy:

\[U \frac{\partial T}{\partial S} + V \frac{\partial T}{\partial R} = \frac{1}{R} \frac{\partial}{\partial R} (R N_R \frac{\partial T}{\partial R}) \]

(3.38)

where

\[Re_o = \frac{u_o d_o}{\nu} \]

and

\[Fr_o = \frac{u_o^2}{d_o g_n S_{th}(t_o-t_{\infty,0})} \]

Details on the derivation of these nondimensional forms are given in Appendix B. In Equation (3.37), \((t_o-t_{\infty,0})\) is a constant and \(S_{th}(t_o-t_{\infty,0})\) is a nondimensional parameter, for simplicity, it is not nondimensionalized individually.

In the stratified ambient cases,

\[T_{\infty} = \frac{-\lambda}{Re_o(t_o-t_{\infty,0})} Z \]

(3.39)

where \(\lambda = -\frac{d t_{\infty}}{dz}\), is the ambient temperature stratification, and \(Z\) is the nondimensional vertical height.

D. Finite-Difference Formulation

By applying a finite-difference method to the set of Equations (3.35) to (3.38), systems of algebraic equations for the unknowns at each discrete grid point were formulated. The systems of algebraic equations are suitable for high-speed computer solution.

Taylor series expansions were used to obtain finite-difference
approximations for the derivatives. For example, to obtain the finite-difference form for the derivative \(\frac{\partial u}{\partial s}_{i,j} \) as a forward difference, a Taylor series expansion for \(u(s_o + \Delta s, r_o) \) about \((s_o, r_o)\) should be employed,

\[
\begin{align*}
 u(s_o + \Delta s, r_o) &= u(s_o, r_o) + \left(\frac{\partial u}{\partial s} \right)_{s_o, r_o} \Delta s \\
 &+ \left(\frac{\partial^2 u}{\partial s^2} \right)_{s_o, r_o} \frac{(\Delta s)^2}{2!} + \left(\frac{\partial^3 u}{\partial s^3} \right)_{s_o, r_o} \frac{(\Delta s)^3}{3!} + \ldots
\end{align*}
\]

Thus, the forward difference is formed for

\[
\begin{align*}
 \left(\frac{\partial u}{\partial s} \right)_{s_o, r_o} &= \frac{u(s_o + \Delta s, r_o) - u(s_o, r_o)}{\Delta s} - \left(\frac{\partial^2 u}{\partial s^2} \right)_{s_o, r_o} \frac{\Delta s}{2!} \\
 &- \left(\frac{\partial^3 u}{\partial s^3} \right)_{s_o, r_o} \frac{(\Delta s)^2}{3!} - O[(\Delta s)^3]
\end{align*}
\]

Switching to the \((i,j)\) notation, and neglecting the higher order terms,

\[
\begin{align*}
 \left(\frac{\partial u}{\partial s} \right)_{i,j} &= \frac{u_{i+1,j} - u_{i,j}}{\Delta s} - O[\Delta s]
\end{align*}
\]

Here, \(O[\Delta s]\), the truncation error, is of the order of \(\Delta s\), using the \(O\) notation for brevity. In this example, the truncation error is first-order, so the finite-difference formulation in Equation (3.42) is said to be a first-order approximation. More details on truncation errors for finite-difference equations can be found in [52].

The fully implicit formulations of nondimensionalized Equations (3.35) to (3.38) are:
Here, the values at the previous step (i) were used to evaluate the viscosity N and the coefficients of the convective terms, u and v, in the momentum equation.

$$
\frac{(U_i^i)^2}{\Delta S^i} \left(\theta_{i+1}^i - \theta_i^i \right) = \frac{\cos \theta_i^i}{Re_c Fr_c} (T_j^i - T_{\infty}^i)
$$

$$
-C_D \left[u_i^i \sin \theta_i^i \right]^2 \frac{2}{\pi D_{\text{eff}}} \left[1 - \beta_j^i (T_{\infty}^i - T_0^i) T_{c_2}^i \right]
$$

where $T_{c_2} = t_0 - t_{\infty}^i$ before nondimensionalization, so, $\beta_j^i T_{c_2}^i$ is nondimensional.
\[
\frac{U^i_j}{\Delta s_j}(T^{i+1}_j - T^i_j) + \frac{V^i_j}{2\Delta R}(T^{i+1}_j - T^{i+1}_j) = \frac{1}{4R_j(\Delta R)^2}((R_{j+1} - R_j)(N_{H_{j+1}}^i + N_{H_{j+1}}^i)(T^{i+1}_j - T^{i+1}_j)
- (R_j - R_{j-1})(N_{H_j}^i + N_{H_{j-1}}^i)(T^{i+1}_j - T^{i+1}_j))
\]

E. Solution Method

A fully implicit finite difference scheme was used to solve the conservation equations which are parabolic in character, thus permitting the solution to be marched in the s-direction. The marching started with an initial distributions of velocity and temperature and an initial flow angle. The new streamwise step size \(\Delta s_+\) was first established. This step size was usually set as ten percent of the local width of the jet although steps as large as fifty percent of the local width appear possible according to tests to date. Most calculations were made by dividing the discharge radius into twenty increments although more increments were used for sample cases to verify convergence of the procedure.

The \(s\)-momentum equation was then solved to obtain the \(u\) velocity distribution at \(i+1\)st station. After each streamwise step, the \(r\)-momentum equation was solved for the new flow angle \(\theta_{i+1}\). Here the flow angle is the angle between the jet centerline and the horizontal. Then, the transverse velocity \(v_{i+1,j}\) and temperature distribution at new
station were calculated from the continuity and energy equations respectively. Finally, the viscosity and thermal diffusivity were computed by using the new data just calculated, such as \(u_{i+1,j} \) and \(\theta_{i+1} \).

Many implicit formulations of partial differential equations for initial value problems result in systems of simultaneous algebraic equations which have a tri-diagonal matrix of coefficients. The equations are of the form:

\[
\begin{align*}
\text{b}_{i-1}u_{i}^{n+1} + \text{d}_{i}u_{i}^{n+1} + \text{a}_{i+1}u_{i+1}^{n+1} &= \text{c} \\
\text{b}_{i-1}u_{i}^{n+1} + \text{d}_{i}u_{i}^{n+1} + \text{a}_{i+1}u_{i+1}^{n+1} &= \text{c}
\end{align*}
\]

(3.47)

Where \(b, d \) and \(a \) are coefficients, and \(c \) is a known source term.

Because of the boundary conditions, the first and the last equations each has two unknowns, while the others in the systems have three unknowns. All known \(u \)'s are merged into the \(c \) term. In a matrix form, the systems of equations look like

\[
\begin{bmatrix}
\text{d}_{1} & \text{a}_{1} & 0 & 0 & \ldots & 0 & 0 \\
\text{b}_{2} & \text{d}_{2} & \text{a}_{2} & 0 & \ldots & 0 & 0 \\
0 & \text{b}_{3} & \text{d}_{3} & \text{a}_{3} & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & \text{b}_{m} & \text{d}_{m}
\end{bmatrix}
\begin{bmatrix}
\text{u}_{1}^{n+1} \\
\text{u}_{2}^{n+1} \\
\text{u}_{3}^{n+1} \\
\vdots \\
\text{u}_{m}^{n+1}
\end{bmatrix}
=
\begin{bmatrix}
\text{c}_{1} \\
\text{c}_{2} \\
\text{c}_{3} \\
\vdots \\
\text{c}_{m}
\end{bmatrix}
\]

(3.48)
The Thomas algorithm [53] provides a very efficient procedure for evaluating the unknowns.

Referring to the tri-diagonal matrix algorithm (TDMA), the system is put into an upper triangular form [54] by computing the new d_i by

$$d'_i = d_i - \frac{b_i}{d_{i-1}}a_{i-1}, \quad i = 2, 3, \ldots, m$$

then,

$$c'_i = c_i - \frac{b_i}{d_{i-1}}c_{i-1}, \quad i = 2, 3, \ldots, m$$

then computing the unknowns from back substitution [52,55].

$$u_m = \frac{c'_m}{d'_m} \quad (3.50)$$

then

$$u_j = \frac{c'_j - a_j u_{j+1}}{d'_j}, \quad j = m-1, m-2, \ldots, 1 \quad (3.51)$$

Hirsch and Rudy [56] suggested that errors may grow in the use of the Thomas algorithm unless diagonal dominance is maintained in the system of equations. A sufficient condition for this diagonal dominance to be maintained is $|d| \geq |b| + |a|$, with ">" holding for one equation [57]. If this condition does not hold, even if the stability analysis, such as Von Neumann stability analysis, indicates that the difference scheme is stable, errors might grow in the Thomas algorithm. In terms of the present system of equations, this requires that:

$$\frac{\nu_j^i \Delta r}{\nu_j^i} \leq 2 \quad (3.52)$$

Physically, $\frac{\nu_j^i \Delta r}{\nu_j^i}$ can be viewed as a mesh Reynolds number. This is
equivalent to a stability constraint caused by the differencing of the convective derivative term, \(v \frac{\partial u}{\partial r} \). An alternative formulation for \(v \frac{\partial u}{\partial r} \) can be expressed as

\[
v^i_j \frac{(u^i_{j+1} - u^i_{j-1})}{\Delta r} \quad \text{when } v^i_j > 0
\] (3.53)

and

\[
v^i_j \frac{(u^i_{j+1} - u^i_{j-1})}{\Delta r} \quad \text{when } v^i_j < 0
\] (3.54)

These alternative forms to be used when \(v^i_j \Delta r/v^i_j > 2 \) are included in the present version of the computer program.

Most two-dimensional calculations reported in this study have required less than one minute and none more than two minutes of computation time on the IBM 360/65 computer.
IV. THE AXISYMMETRIC JET IN A COFLOWING OR QUIESCENT AMBIENT

The finite-difference method and calculation procedure described in Chapter III is applied in this chapter to the axisymmetric jet in a coflowing or quiescent ambient as a first step to verify the turbulence model and computational technique. The calculations include first non-buoyant and buoyant jets in a uniform ambient, then buoyant jets in a stratified ambient. Finally, two test cases are presented for the compressible buoyant jet in uniform ambient for a verification study of the "Boussinesq approximation" [58].

Figure 4.1 shows the jet configuration with finite-difference grid points superimposed on the flow field. The main flow direction, s, is the marching direction of the computational technique. The grid sizes Δs and Δr can be varied.

A. Buoyant Horizontal Jet in a Uniform Ambient

For the buoyant jet in a quiescent ambient, the turning of the jet is due to buoyancy force only, so the drag force term in the r-momentum equation, Equation (3.4), can be neglected. For the buoyant jet in a coflowing ambient, after the jet turns, the centerline of the jet makes an angle θ with the ambient flow direction, so there is still a drag force exerted on the jet flow by the ambient fluid. Both drag and buoyancy force terms must be considered in the r-momentum equation in this coflowing ambient case.
Fig. 4.1. Finite-difference grid for a curved jet analysis.
In Figures 4.2 to 4.5, the predicted trajectories and centerline temperature decay for buoyant jets discharged horizontally into a uniform, quiescent ambient at $Fr_o = 16$ and 64 are compared to the measurements of Ryskiewich and Hafetz [30], and the prediction of Madni [3], Hirst [4], Fan and Brooks [21], and Abraham [59]. The predictions of the present analysis appear to provide about the best agreement with the experimental data.

In Figure 4.6, trajectories predicted by the present two-dimensional analysis and the three-dimensional calculations of McGuirk and Spalding [25] using the k-ε turbulence model [60] are compared with the measurements of Ayoub [61] for "downward buoyant" jets, or dense jets, discharging horizontally into a coflowing ambient at three different velocity ratios, $m = 20, 10$ and 5, for $Fr_o = 225$. A similar comparison with Ayoub's measurements is shown in Figure 4.7 for the centerline temperature decay for a jet with $m = 10$ and $Fr_o = 900$. The predictions of the present two-dimensional analysis and algebraic turbulence model is seen to agree about as well with the experimental data as the more complex McGuirk-Spalding [25] three-dimensional predictions with the k-ε two-equation model of turbulence.

Figure 4.8 shows the effect of Froude number on plume trajectory by comparing the trajectory of the jets discharging at a velocity ratio $m = 20$ for three different Froude numbers, $Fr_o = 225, 900$ and 3600. Of course, the smaller Froude number is associated with larger relative buoyancy forces, and the trajectory turns faster. In Figure 4.9, predicted temperature profiles are compared with the measurements of
Fig. 4.2. Trajectory for buoyant jet with $Fr_0 = 16$ discharged horizontally to a uniform ambient.
Fig. 4.3. Decay of centerline temperature for buoyant jet with $Fr = 16$ discharged horizontally to a uniform ambient.
Fig. 4.4 Trajectory for buoyant jet with $Fr_o = 64$ discharged horizontally to a uniform ambient.
Fig. 4.5. Decay of centerline temperature for buoyant jet with $Fr_o = 64$ discharged horizontally to a uniform ambient.
Fig. 4.6. Trajectories for horizontal buoyant jets with $Fr_0 = 225$ discharged into coflowing ambients.
Fig. 4.7. Centerline temperature decay for a horizontal buoyant jet with $Fr_o = 900$, $m = 10$ discharged into a coflowing ambient.
Fig. 4.8. Effect of Froude number on plume trajectory.
Fig. 4.9. Centerline temperature profiles for a horizontal buoyant jet in a coflowing ambient; \(d_o = 0.01 \) m, \(Fr_o = 225 \), \(m = 6 \).
McGuirk [62] for the buoyant jet discharged into a coflowing ambient for \(Fr_o = 225 \) and \(m = 6 \) at two stations, \(x/d_o = 10 \) and \(x/d_o = 20 \). McGuirk's three-dimensional predictions using the k-\(\varepsilon \) model are also shown in the figure. These profile measurements and others by McGuirk [62] tend to support the view that for round buoyant discharges into coflowing streams, the flow remains nearly axisymmetric until distorted by interactions with the free surface. Prior to these interactions, the present two-dimensional analysis should provide a good approximation to the temperature distribution as well as the jet trajectory.

B. Buoyant Jet in a Stratified Ambient

The same turbulence model was used for the stratified ambient analysis as was used for the uniform ambient case. Again, because the ambient is at rest, the drag force term in the r-momentum was omitted. In this case, due to the stratification, the ambient temperature varied and provided a variable boundary condition for energy equation.

\[
T_\infty = \frac{-\lambda}{Re_o(t_o - T_{\infty},0)} Z \quad (4.1)
\]

where \(\lambda = -dt_\infty/dz \) has units °C/m, and \(Z \) is the nondimensional vertical height. \(\bar{T} \), a stratification parameter, which is nondimensional, is defined mathematically as

\[
\bar{T} = \frac{(\rho_o - \rho_\infty)}{\frac{d\rho_\infty}{dz}} \quad (4.2)
\]
From Appendix B, it is found that

\[
\frac{d\rho}{dz} = -\beta \rho_{\text{th}} \frac{d\rho}{dz} \tag{4.3}
\]

and

\[
(\rho_\infty - \rho_0) = \beta \rho_0 \left(t_0 - t_\infty, 0 \right) \tag{4.4}
\]

By inserting Equations (4.3) and (4.4) into Equation (4.2), the stratification parameter can be expressed in terms of temperature as a more practical form of Equation (4.2),

\[
\bar{T} = \frac{(t_0 - t_\infty, 0)}{\frac{dt_\infty}{dz}} \tag{4.5}
\]

where \(\frac{dt_\infty}{dz} = |\lambda| \), the degree of stratification.

Figure 4.10 shows the trajectories for buoyant jets discharged horizontally into a quiescent, stratified ambient with three cases: (1) \(Fr_\infty = 676, \bar{T} = 2454 \), (2) \(Fr_\infty = 1600, \bar{T} = 10997 \), and (3) \(Fr_\infty = 3600, \bar{T} = 1030 \). The results of present analysis are compared with the Hirst prediction [4] and the experimental data by Fan [12]. From this comparison, it can be seen that the present and the Hirst predictions agree fairly well, but neither one is in good agreement with the experimental results of Fan.

Table 4.1 lists the predicted results for maximum height of rise of plumes discharging vertically into stratified quiescent ambients. The predictions are compared to the experimental data of Abraham and Eysink (cited in [7]). The agreement of the present predictions is favorable. Some discussions on the discrepancy between the Fox theory [32,33], and
Fig. 4.10. Trajectories for buoyant jets discharged horizontally to a stratified quiescent ambient.
Table 4.1. Maximum height of rise for vertical plumes discharged into stratified quiescent ambients

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Discharge Froude Number, Fr_0</th>
<th>Stratification Parameter, T</th>
<th>(z_m/r_o) Measured by Abraham and Eysink</th>
<th>(z_m/r_o) Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60.5</td>
<td>134</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>63.0</td>
<td>94</td>
<td>64</td>
<td>62.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>
experimental results of Abraham and Eysink can be found in [3].

C. Horizontal Buoyant Jet with Variable Properties

For the variable property buoyant jet, the governing equations become:

Continuity:

\[\frac{\partial(\rho u)}{\partial s} + \frac{\partial(\rho v)}{\partial r} = 0 \] \hspace{1cm} (4.6)

s-momentum:

\[u \frac{\partial u}{\partial s} + v \frac{\partial u}{\partial r} = \frac{1}{\rho} \frac{\partial}{\partial r} (r T_s) + \frac{\rho_\infty - \rho}{\rho} g_n \sin \theta \] \hspace{1cm} (4.7)

r-momentum:

\[u^2 \frac{d\theta}{ds} = -C_D(u_\infty \sin \theta)^2 \frac{2}{\pi D_{\text{eff}}} \frac{\rho_\infty}{\rho} + \frac{\rho_\infty - \rho}{\rho} g_n \cos \theta \] \hspace{1cm} (4.8)

Energy:

\[u \frac{\partial t}{\partial s} + v \frac{\partial t}{\partial r} = \frac{1}{\rho c_p} \frac{\partial}{\partial r} (-rq) \] \hspace{1cm} (4.9)

Here \(\rho \) is a variable and changes with temperature. The viscosity \(\mu \), thermal diffusivity \(\alpha \), and thermal expansion coefficient \(\beta_{\text{th}} \) also varied with temperature. The temperature dependence functions of these properties presented by Hong [63] were used in this case.

Comparisons are made in Figures 4.11 through 4.14 for the trajectory and decay of centerline temperature for the buoyant horizontal jet with Fr = 16 and Fr = 64 discharged into a uniform ambient.

For these cases, \(t_\infty = 10^\circ C \) and \(t_o = 26.7^\circ C \). Over this temperature range,
Fig. 4.11. Predicted trajectory for buoyant jet with $Fr_o = 16$ discharged horizontally to a uniform ambient.
Fig. 4.12. Decay of centerline temperature for buoyant jet with \(Fr_0 = 16 \) discharged horizontally to a uniform ambient.
Fig. 4.13. Predicted trajectory for buoyant jet with Fr_o = 64 discharged horizontally to a uniform ambient.
Fig. 4.14. Decay of centerline temperature for buoyant jet with $Fr = 64$ discharged horizontally to a uniform ambient.
The density variation (water) was very small, only 0.4%, viscosity (μ) varied by 50% and thermal expansion coefficient (β_{th}) by 54%. By comparing the predictions with variable properties analysis to the predictions with constant properties analysis and to Madni's predictions [3] which made use of the Bossinesq approximation, it is seen that the predictions with variable properties compare somewhat more favorably with the experimental data of Ryskiewich and Hafetz. However, the improvement is not considered significant. On the other hand, the variable properties analysis requires more computer time so it should only be used when the effects of property variations are expected to be significant. Since property variations for all the cases in this study were no greater than the above test cases, the Boussinesq approximation was employed.
V. THE AXISYMMETRIC JET IN A CROSSFLOW

All of the flow configurations studied in Chapter IV involved discharges into an ambient either at rest or flowing in the same direction as the discharging plume. However, in applications, plume trajectories are often influenced by atmospheric cross winds or crossflows in waterways. In this chapter, all the calculations are for jets in a crossflow. So, the drag force term in the r-momentum equation is significant.

A. Nonbuoyant Jet in a Uniform Ambient

For the nonbuoyant jet, the buoyancy term in the momentum equations, Equations (3.3) and (3.4), can be neglected. The experiments of Gordier [13] and Platten and Keffer [16] with nonbuoyant jets discharging to a crossflow provide a test for the proposed mathematical modeling of the drag force term in the transverse momentum equation, Equation (3.4). Figure 5.1 compares the centerline trajectory predicted by the present method for the jet discharging normal to a crossflow for various values of velocity ratio m, with the measurements of Gordier [13] and the analytical predictions of Hirst [4]. Figure 5.2 compares the maximum velocity decay predicted for the nonbuoyant jet with the experimental results of Gordier [13] for $m = 4, 6$ and 8. The predictions of the present method are seen to agree fairly well with the experimental results.

The other comparisons of the centerline trajectories with the data of Platten and Keffer [16] are shown for jets discharged at various
Fig. 5.1. Trajectories for nonbuoyant jets discharged normal to a crossflow.
Fig. 5.2. Maximum velocity decay for nonbuoyant jets discharged to a crossflow.
angles to the free stream in Figure 5.3 for \(m = 8 \), in Figure 5.4 for
\(m = 6 \), and in Figure 5.5 for \(m = 4 \). The predictions of Hirst [4] are
also shown. The present analysis is seen to predict the trajectories quite well.

One additional comparison is shown in Figure 5.6 for the centerline velocity decay of the nonbuoyant jet discharged into a crossflow to illustrate the influence of the proposed curvature correction to the turbulence modeling. The correction is seen to provide noticeably better agreement with the measurements. On the other hand, the predicted trajectories were found not to be very sensitive to the curvature Richardson number.

B. Buoyant Jet in a Uniform Ambient

Some of the practical applications of this configuration are the submerged jet from the offshore outfalls of power plants into a flowing ambient, such as river or water pond, and the plume discharged from the cooling tower or stack into a cross wind in the atmosphere.

Theoretical analyses for the prediction of buoyant jet in a cross-flow can be found in Hirst [4], and more recently in Fink [17] and Schatzmann [5]. These approaches are integral in nature.

The governing equations will be the same as those presented in Chapter III. The \(r \)-momentum equation, including both drag force and buoyancy force, is repeated here to facilitate the explanation.
Fig. 5.3. Trajectories for nonbuoyant jets discharged at various angles to the free stream with m = 8.
Fig. 5.4. Trajectories for nonbuoyant jets discharged at various angles to the free stream with $m = 6$.

PRESENT METHOD
HIRST ANALYSIS
○○Δ■ EXPERIMENTAL RESULTS OF PLATTEN AND KEEFER
Fig. 5.5. Trajectories for nonbuoyant jets discharged at various angles to the free stream with $m = 4$.

PRESENT METHOD
HIRST ANALYSIS
● ● ● EXPERIMENTAL RESULTS OF
PLATTEN AND KEFFER

$\theta_0 = 135^\circ$ $\theta_0 = 105^\circ$
$\theta_0 = 75^\circ$
Fig. 5.6. Effect of curvature Richardson number on plume centerline velocity decay.
The left hand side of the equation is the normal component of acceleration of the jet, which balances the buoyancy force and the drag force from the crossflow.

Normal component of acceleration = \(\frac{u^2}{R} \) (5.2)

where \(R \), the radius of curvature of the centerline of the trajectory, is expressed as:

\[
\frac{1}{R} = \frac{d\theta}{ds} \tag{5.3}
\]

The sign of \(R \) is determined from Equation (5.3). \(D_{\text{eff}} \) is the effective diameter of the jet and equals twice the velocity half-width,

\[
D_{\text{eff}} = 2 r_{1/2} \tag{5.4}
\]

In order to calculate \(\theta \) at station \(i+1 \), the r-momentum equation is integrated numerically over the cross section while assuming that \(\theta \) is constant at each s-location.

\[
\frac{\theta_{i+1} - \theta_i}{\Delta s_{+}} = \int_{0}^{\delta_{i}} \frac{u_{i,j}^{2}}{u_{i,j} r_{j}} \, dr
\]

\[
= - \int_{0}^{\delta_{i}} C_D (u_{\infty} \sin \theta_i)^2 \frac{2}{\pi D_{\text{eff,i}}} \left[1 - \beta_{i,j} (T_{\infty,i} - T_{\infty,j}) T_{c2,j} \right] r_{j} \, dr
\]

\[
+ \frac{\cos \theta_i}{Re_o} \int_{0}^{\delta_{i}} \frac{(T_{i,j} - T_{\infty,i})}{Fr_o} \, r_{j} \, dr \tag{5.5}
\]
The numerical integration was performed using the trapezoidal rule. No profile assumptions are needed for \(u \) and \(t \). The values of \(u_{i,j} \) and \(t_{i,j} \) are obtained from the solutions of the \(s \)-momentum and energy equations at station \(i \).

Referring to Figure 5.7, \(\theta_{i+1} \) is calculated from the transverse momentum Equation (5.5), and then the coordinates of the trajectory are generated as follows:

\[
\begin{align*}
\Delta x_i &= \Delta s_i \cos \theta_i \\
\Delta z_i &= \Delta s_i \sin \theta_i \\
s_{i+1} &= s_i + \Delta s_i \\
x_{i+1} &= x_i + \Delta s_i \cos \theta_i \\
z_{i+1} &= z_i + \Delta s_i \sin \theta_i
\end{align*}
\] (5.6)

The same flow chart used by Madni [3] is shown in Figure 5.8 to illustrate briefly the solution procedure.

Figures 5.9 and 5.10 compare the predicted trajectories and centerline temperature decay with the experimental data of Fan [12] and the Hirst predictions [4] for buoyant jets discharging normal to a crossflow at two different velocity ratios, \(m = 4 \) and 8, for \(Fr_o = 85 \).

Similar comparisons are shown in Figures 5.11 and 5.12 for \(Fr_o = 400 \), \(m = 4 \) and 8, and in Figures 5.13 and 5.14 for \(Fr_o = 1600 \), \(m = 4 \) and 8.

In Figure 5.15, a comparison of some predicted and measured velocity half-widths for buoyant jets discharged normal to a crossflow with
Fig. 5.7. Generation of jet trajectory.
Fig. 5.8. Skeleton flow chart for the general calculation method.
Fig. 5.9. Trajectories for buoyant jets discharged normal to a crossflow with Fr_o = 85.
Fig. 5.10. Centerline temperature (or concentration) decay for buoyant jets discharged to a crossflow with $Fr_o = 85$
Fig. 5.11. Trajectories for buoyant jets discharged normal to a crossflow with \(Fr_c = 400 \).
Fig. 5.12. Centerline temperature (or concentration) decay for buoyant jets discharged to a crossflow with Fr_o = 400.
Fig. 5.13. Trajectories for buoyant jets discharged normal to a crossflow with $Fr_o = 1600$.
Fig. 5.14. Centerline temperature (or concentration) decay for buoyant jets discharged to a crossflow with Fr = 1600.
Fig. 5.15. Velocity halfwidth for some buoyant jets discharged to a crossflow.
Fr_o = 400 and m = 4, Fr_o = 1600 and m = 8, and Fr_o = 1600 and m = 15.87, are shown.

From Figures 5.9 through 5.15, the results for this configuration are encouraging. The general level of agreement between the predictions and the measurements is overall quite good, and the present prediction method appears to noticeably outperform the method of Hirst [4] which is based on an integral rather than a differential analysis.

C. Buoyant Vertical Jet in a Stratified Ambient

In the stratified ambient, the ambient temperature t_\infty varied as a function of the vertical height z.

\[T_{\infty, i} = \frac{-\lambda \frac{d_{o}}{\text{Re}_o (t_{o} - t_{\infty, 0})}}{Z_i} \] (5.7)

where Z_i is the nondimensional vertical height at ith station, and
\[\lambda = -\frac{d_t}{dz} \] is the ambient temperature stratification. This provides a variable boundary condition for the energy equation.

Before solving the \(s \)-momentum and \(r \)-momentum equations for the \(i+1 \) station, \(\theta_i \) is known. So, \(\Delta z_+ \) is calculated from \(\Delta z_+ = \Delta s_+ \sin \theta_i \), and the vertical height z can be found from \(z_{i+1} = z_i + \Delta z_+ \). The ambient temperature, \(t_{\infty, i+1} \) is then computed for the next calculation.

The predicted trajectories for the buoyant jet discharged normal to a crossflow with a stratified ambient are compared with the experimental data of Hewett, Fay and Hoult [64] and the predictions of Hirst [4] in
(a) Figure 5.16 for $\text{Fr}_o = 12.3$, $\overline{T} = 35500$, $m = 1.869$,
(b) Figure 5.17 for $\text{Fr}_o = 11.35$, $\overline{T} = 2469$, $m = 2.016$,
(c) Figure 5.18 for $\text{Fr}_o = 11.30$, $\overline{T} = 3559$, $m = 2.058$, and
(d) Figure 5.19 for $\text{Fr}_o = 11.45$, $\overline{T} = 1127$, $m = 2.028$.

The present predictions agree with the experimental data as well as the predictions of Hirst [4] but neither prediction is generally in very good agreement with the experimental data of Hewett, Fay and Hoult [64].
Fig. 5.16. Trajectory for buoyant jet discharged normal to a crossflow with stratified ambient, $Fr = 12.3$, $T = 35500$, and $m = 1.869$.
Fig. 5.17. Trajectory for buoyant jet discharged normal to a crossflow with stratified ambient, $Fr_o = 11.35$, $T = 2469$ and $m = 2.016$.
Fig. 5.18. Trajectory for buoyant jet discharged normal to a crossflow with stratified ambient, $Fr_0 = 11.50$, $T = 3559$, and $m = 2.058$.

- ○ DATA FROM HEWETT, FAY & HOULT
- --- HIRST PREDICTION
- --- PREDICTION OF PRESENT METHOD
Fig. 5.19. Trajectory for buoyant jet discharged normal to a crossflow with stratified ambient, \(\text{Fr}_0 = 11.45 \), \(T = 1127 \) and \(m = 2.028 \).
VI. THREE-DIMENSIONAL FLOW

A. Introduction

Over the years, most analytical studies involving jets have dealt with two-dimensional or axisymmetric configurations. For those flows, the flow variables are functions of two spatial coordinates only [4, 65, 66]. Chapters III through V described efforts mainly on the analysis and computation of the two-dimensional or axisymmetric jet. In true environmental applications, few flows will stay precisely axisymmetric especially for jets with curved trajectories. The flow of a jet from a rectangular orifice will be three dimensional even if the trajectory is straight. It is desirable to use the axisymmetric analysis for flows which deviate only slightly from two-dimensionality because of the significant savings in computer costs. However, it would appear that a fully three-dimensional analysis would be required for the more complex jet flows, such as jets involving interactions between adjacent cooling towers or from multiport diffusers, or jets involving surface or bottom effects.

Numerical approaches for solving three-dimensional flow problems have been studied extensively in the recent years by many researchers. Most of them worked on the flow in ducts or pipes [38, 67, 68], or boundary layer flows [69-71]. Little has been done for general three-dimensional jet flow problems. McGuirk and Rodi [72] calculated three-dimensional turbulent free jets issuing into coflowing surroundings by using a two-equation model, the k-ε model, which is relatively more complex.
Thompson [73], Aziz and Hellums [74] and Schetz et al. [23] solved three-dimensional jet problems by using vorticity as a dependent variable which makes the boundary conditions difficult to apply. Caretto et al. [75] predicted confined steady, laminar three-dimensional flows with recirculation by the SIVA (Simultaneous Variable Adjustment) and the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) methods. Generally speaking, three-dimensional calculations tend to employ primitive variables rather than vorticity and utilize a Poisson equation for pressure, or corrections to an assumed pressure. Patankar and Spalding [26] suggested a calculation procedure for three-dimensional internal flows whereby the longitudinal and lateral pressure gradients could be uncoupled permitting the use of a streamwise marching technique for the numerical solution. This concept can be adapted to free shear flows for conditions where the streamwise pressure gradient can be neglected or prescribed in advance. In this procedure, a pressure distribution is first assumed across the flow and the momentum equations solved for a streamwise marching step. These velocities will not generally satisfy the continuity equation giving rise to mass sources (or sinks) in the flow. The assumed pressure distribution is considered responsible for the mass sources and is corrected in a manner to result in the elimination of the sources. The various methods which have been used for this type of three-dimensional calculation [38,76] differ most noticeably in the approximations used in developing corrections for the pressure and velocities to satisfy the continuity equation.
In this chapter, initial work on a three-dimensional calculation procedure for jets is presented. A three-dimensional laminar jet flow is used as a test case to verify the method. Future work would likely involve the computation of turbulent flows. The experimental data of Sforza and Stasi [77] for the heated turbulent jet discharging from a rectangular orifice will provide a useful test case for future extensions of the present three-dimensional method to turbulent flows.

B. Formulation

Assuming that velocity derivatives in the main flow direction are much smaller than velocity derivatives across the jet permits the second streamwise derivative to be eliminated from the Navier-Stokes equations. Written in Cartesian coordinates, x, y, z, the governing equations for three-dimensional incompressible jet flows with constant properties are:

Continuity:

\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \]
(6.1)

x-momentum:

\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \nu(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}) - \frac{1}{\rho} \frac{dp}{dx} \]
(6.2)

y-momentum:

\[u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = \nu(\frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}) - \frac{1}{\rho} \frac{dp}{dy} \]
(6.3)
z-momentum:

\[u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = v \left(\frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) - \frac{1}{\rho} \frac{\partial p}{\partial z} \]

(6.4)

Energy:

\[u \frac{\partial t}{\partial x} + v \frac{\partial t}{\partial y} + w \frac{\partial t}{\partial z} = \alpha \left(\frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2} \right) \]

(6.5)

The symbol \(\bar{p} \) used for the pressure in the x-momentum equation, Equation (6.2), is different from \(p \) in the other two momentum equations. The pressure \(\bar{p} \) can be thought as a space-averaged pressure over a cross section. This uncoupling of the pressure will permit the solution to be marched in the streamwise direction if some basis exists for the determination of \(\bar{p}/dx \) in advance of each streamwise step. For the present laminar jet test case, \(\bar{p}/dx \) was assumed to be zero since this pressure gradient must be very nearly zero outside the shear layer for this problem. The assumption in the pressure decoupling procedure is that small pressure variations across the flow play an important role in the distribution of the small \(v \) and \(w \) components of velocity but would have a negligible effect if included in the streamwise momentum equations.

The initial conditions for Equations (6.1) to (6.5) are, at \(x = 0 \):
\[u(y, z) = u_0 \quad \text{for} \ y \leq y_o, \ z \leq z_o, \]
\[u(y, z) = 0 \quad \text{for} \ y > y_o, \ z > z_o, \]
\[v = w = 0, \]
\[t(y, z) = t_o \quad \text{for} \ y \leq y_o, \ z \leq z_o, \]
\[t(y, z) = t_\infty \quad \text{for} \ y > y_o, \ z > z_o, \]
\[p = p_0 \]

where \(y_o \) and \(z_o \) are half-widths of orifice in \(y \) and \(z \) directions respectively. The boundary conditions are complicated:

(1) at \(y = 0 \)

\[
\frac{\partial u}{\partial y} = v = \frac{\partial w}{\partial y} = 0 \quad (6.6)
\]
\[
\frac{\partial t}{\partial y} = 0, \quad \frac{\partial p}{\partial y} = \frac{\partial p'}{\partial y} = 0
\]

(2) at \(z = 0 \)

\[
\frac{\partial u}{\partial z} = \frac{\partial v}{\partial z} = w = 0, \]
\[
\frac{\partial t}{\partial z} = 0, \quad \frac{\partial p}{\partial z} = \frac{\partial p'}{\partial z} = 0 \quad (6.7)
\]
(3) at \(y \to \infty \)
\[
 u = u_\infty, \quad \frac{\partial v}{\partial y} = w = 0
\]
(6.8)
\[
 t = t_\infty, \quad p = p_\infty, \quad p' = 0
\]

(4) at \(z \to \infty \)
\[
 u = u_\infty, \quad v = \frac{\partial w}{\partial z} = 0
\]
\[
 t = t_\infty, \quad p = p_\infty, \quad p' = 0
\]
(6.9)

The flow configuration for three-dimensional jet discharging from a rectangular orifice is shown in Figure 6.1. The main flow direction is the \(x \)-direction. The rectangular orifice (or nozzle) has a dimension \(2y_0 \) by \(2z_0 \).

The pressure corrections and corresponding velocity corrections needed to satisfy the continuity equation must also satisfy the momentum equations, Equations (6.3) and (6.4). Utilizing all the terms in the momentum equations for this purpose results in an unwieldy algebraic formulation and approximations are usually made which need not cause serious errors as long as the full momentum equations are used at some point in the iterative procedure.

As an example, the Patankar-Spalding method neglects all but the pressure term and the streamwise derivative:
\[
 u \frac{\partial v'}{\partial x} = - \frac{1}{\rho} \frac{\partial p'}{\partial y}
\]
(6.10)
\[
 u \frac{\partial w'}{\partial x} = - \frac{1}{\rho} \frac{\partial p'}{\partial z}
\]
(6.11)
Fig. 6.1. Flow configuration for a three-dimensional jet discharged from a rectangular orifice.
For some flows this approximation causes difficulties. Briley [38], Raithby [36], and others have suggested alternative procedures. The present approach builds on a procedure suggested by Amsden and Harlow [78] for the driven cavity problem.

Near the edge of a jet developing in a quiescent ambient, there is no reason to expect $u\partial v'/\partial x$ to be more significant than the terms neglected in the momentum equation such as $v\partial v'/\partial y$. So in the present procedure, the correction step is thought of as an unsteady process whereby

$$\frac{\partial v}{\partial t} = \frac{v-v^*}{\Delta t} = -\frac{1}{\rho} \frac{\partial p'}{\partial y} \tag{6.12}$$

$$\frac{\partial w}{\partial t} = \frac{w-w^*}{\Delta t} = -\frac{1}{\rho} \frac{\partial p'}{\partial z} \tag{6.13}$$

Here, Δt can be thought as an imagined time step for marching, and for the iteration process to obtain v', w' and p' in steady state. From Equations (6.12) and (6.13), the corrected velocity components v and w can be evaluated from

$$v = v^* - \frac{1}{\rho} \frac{\Delta t}{\Delta y} (p'_{j,k} - p'_{j-1,k}) \tag{6.14}$$

$$w = w^* - \frac{1}{\rho} \frac{\Delta t}{\Delta z} (p'_{j,k} - p'_{j,k-1}) \tag{6.15}$$

This results in a Poisson equation for the pressure correction needed to annihilate the mass sources, taking Δt as unity,

$$\frac{1}{\rho} \left(\frac{\partial^2 p'}{\partial y^2} + \frac{\partial^2 p'}{\partial z^2} \right) = -S = -\frac{\partial u}{\partial x} + \frac{\partial v^*}{\partial y} + \frac{\partial w^*}{\partial z} \tag{6.16}$$

where S is a source term, v^* and w^* are velocity components calculated
from the momentum equations based on the estimated pressure p^*, and p' is the pressure correction to correct p^* by

$$p = p^* + p'$$ (6.17)

where p^* is the uncorrected pressure, or initial estimate of pressure p.

The details of the derivation of the Poisson equation of p' and the corrections to velocity components v and w are shown in Appendix D.

C. Solution Method

The numerical scheme in the present study is similar to the three-dimensional parabolic procedure originated by Patankar and Spalding [26]. The velocity field is stored only two-dimensionally and the whole field is marched in the streamwise direction. This approach is much more economical of computer storage than would be a method requiring fully three-dimensional storage. The present solution method is based on the SMAC method [78] and the Patankar-Spalding method [26], and the modifications suggested by Briley [38] and Raithby [36].

Figure 6.2 shows the finite-difference grid points at two levels. It is supposed that all the variables are known at the ith level. They are marched to the $i+1$ level in the calculation procedure shown in summary as follows:

(1) A pressure field, p^*, is assumed.

(2) The three momentum equations are solved using the guessed pressure p^* to get u, v^* and w^* at $i+1$ level.
Fig. 6.2. Finite-difference grid points for three-dimensional calculations.

1: (j, k)
2: (j, k-1)
3: (j, k+1)
4: (j-1, k)
5: (j+1, k)
This is known to be incorrect, since in general \(u, v^* \) and \(w^* \)
will not satisfy the continuity equation. So the pressure

correction equation is solved for \(p' \). Several iterations

using the Gauss-Seidel procedure are needed to obtain
convergence.

Corrected \(v' \)'s and \(w' \)'s are computed by solving the \(y \) and \(z \)
momentum equations again using the corrected pressure. This

procedure was used in the present test case. A faster but

more approximate corrected velocity can be obtained from
Equations (6.14) and (6.15). The \(u' \)'s do not need correction

because the guessed pressure was not used in the \(x \)-momentum

equation.

The predicted \(u \) and the corrected \(v \) and \(w \) are checked to
see if they satisfy the continuity equation. If not,

iteration is needed through steps (3) to (5) until \(\nabla \cdot \vec{V} \)
approaches an acceptable number \(\varepsilon \).

The energy equation is solved to obtain the temperature.

The finite-difference form of governing equations [Equations

(6.2) to (6.5) and Equation (6.16)] will all contain five unknowns at

\(i+1 \) level. Generally, the ADI method can be used for all of them.

The grid is swept line by line using a tri-diagonal matrix algorithm
(see [76]). The first sweep is in \(y \)-direction assuming that terms at

\((j,k+1) \) and \((j,k-1) \) in the finite difference equation are temporarily

fixed using values at \(i \)th level. The second sweep is in \(z \)-direction

using values from the first sweep for terms at \((j+1,k) \) and \((j-1,k) \).
For each sweep, only three unknowns are to be determined, so TDMA can be applied.

For the jets discharged from a rectangular orifice, in general, the above mentioned ADI technique can be employed for any aspect ratios y_o/z_o. Only one quadrant (one-fourth of the cross section) of the jet is needed for the computation domain. Two of the boundaries consist of the symmetry planes at the centerlines. All variables have a zero normal gradient boundary conditions along these symmetry planes except the lateral velocity perpendicular to the plane. The test case used in the present study consists of a square orifice (aspect ratio equals 1). From the boundary conditions, it can be shown that a jet of this type has additional symmetry. In a quadrant, u, t, p and p' in the upper triangle are symmetrical about the diagonal line connected from the jet center point to an outer corner to those values in the lower triangle. The solution for u, t, p and p' can be obtained from calculations within just one-eighth of the jet cross section. Variables in the whole cross section can be determined from this triangle through symmetry. A full quadrant is needed for the calculation of v and w which are not symmetrical to the diagonal line. However, a solution is only needed for one of these variables, say v, because the other variable, w, can be set equal to v according to $w(k,j) = v(j,k)$ which is required by symmetry. For calculations in the triangular domain, Gauss-Seidel iteration scheme was used for the x-momentum, energy and pressure correction equations instead of the ADI method because of the additional
difficulties the triangular geometry imposed on treatment of boundary conditions in the tri-diagonal matrix procedure. The reason for using a triangular domain for a square orifice was to assure a symmetry about diagonal line. A full quadrant can be used also, but the symmetry relations will not be exactly achieved. The use of the smaller triangular domain also reduced the computer costs for the calculation.

D. Results and Discussion

For three-dimensional laminar jet flows, no experimental data are available for comparison. Pai and Hsieh [79] predicted numerically the three-dimensional laminar jet without free stream for velocity and half-widths in an approximate analysis which neglected the crossflow velocity components in the x-momentum equation and which neglected the y and z momentum equations entirely. Figure 6.3 shows a secondary flow pattern for a three-dimensional laminar jet discharged from a square orifice at a cross section x/y_o = 7.7. The secondary flows formed a pair of "vortices" symmetrical to the diagonal line. Figure 6.4 shows the growth of the half-width of the same three-dimensional laminar jet. It can be seen that the jet cross section tends to approach a round contour downstream. Eventually, the jet cross section will adjust to an axisymmetrical form no matter whether the initial shape is square or rectangular. A comparison of the velocity profiles at center planes computed by the present method with the prediction of Pai and Hsieh [79] was shown in Figure 6.5. The comparison shows an acceptable agreement between these two predictions.
Fig. 6.3. Secondary flow pattern for a three-dimensional jet discharged from a square orifice at a cross section \(x/y_0 = 77 \) \((x^* = 0.042) \).
Fig. 6.4. Growth of half-width of a three-dimensional laminar jet.

\[x^* = \frac{v x}{u_0 y_0^2} \]
Fig. 6.5. Velocity profile for a three-dimensional laminar jet.
Some comments related to the development of the three-dimensional calculation scheme are as follows:

(1) Often the pressure correction \(p' \) changed sign after each iteration through the momentum equations. An under-relaxation parameter was needed to maintain convergence.

(2) The calculation procedure is very sensitive to the boundary location. Care has been taken on the determination of the boundary location and the way to apply boundary conditions.

(3) The source term \(S \) can not be exactly zero even after pressure correction. It is acceptable when \(S \) is less than a very small number, \(\epsilon \).

(4) The boundary layer model, i.e., neglecting \(\frac{\partial^2}{\partial x^2} \) terms, is a good approximation for the three-dimensional free jet problem provided that the Reynolds number at the discharge (nozzle exit) is not too low.

(5) Although no experimental data are available for the three-dimensional jet, based on the results of axisymmetric jets and the comparison with the predictions of Pai and Hsieh, it is felt that the numerical solutions of the three-dimensional jet presented here are reasonably accurate.
VII. CONCLUSIONS AND RECOMMENDATIONS

The principal conclusions of the present investigation are:

1. The finite-difference prediction method which is based on an axisymmetric flow model is seen to work quite well for the analysis of turbulent jets following curved trajectories in flowing ambients and offers the potential of a significant savings in computation time over fully three-dimensional predictions methods for flows of the type considered in the present study. Special emphasis has been placed on the thermal discharge from power plants and other sources into adjacent water bodies or the atmosphere. It is hoped that some of the prediction procedures will be of assistance in the discharge design process.

2. The lumped parameter treatment of the transverse momentum equation appears to be adequate for the cases considered and was seen to yield good predictions of jet trajectories over a wide range of discharge angles into a crossflow.

3. The proposed curvature correction factor for mixing length appears to improve predictions for the decay of centerline temperatures and velocity. It is interesting to note that the prediction of trajectories themselves seemed relatively insensitive to the effects of curvature and buoyancy on the turbulent viscosity.
The present axisymmetric model worked well for a wide range of applications, including buoyant and nonbuoyant jets discharged at various angles to quiescent, coflowing or crossflowing ambients.

For the jets in stratified ambients, the predictions were not as good as those in uniform ambients when compared to the experimental data.

The three-dimensional calculation procedure developed here for three-dimensional laminar flows appears to give reasonable predictions and shows promise for extension to three-dimensional turbulent flows.

Much larger computer time was required for the evaluation of the three-dimensional flows than for the axisymmetric flows.

The following areas of study are recommended as extensions of the present work:

1. Further development of the numerical scheme to include turbulent jets and a turbulence model for the three-dimensional flows.

2. Prediction of three-dimensional turbulent jet flows with a curved trajectory such as jets in crossflowing ambients.

3. Prediction of flows having three-dimensional trajectories and involving complex interactions such as those between adjacent cooling towers or from multiport diffusers.
VIII. REFERENCES

IX. ACKNOWLEDGMENTS

This work was partially supported by the Iowa State University Power Affiliate Research Program and by the Engineering Research Institute through funds provided by the National Science Foundation under Grant ENG 74-22193.

The author wishes to express his sincere appreciation to:

- Dr. Richard H. Pletcher for his supervision, encouragement and assistance throughout the course of this work, and his editorial comments and recommendations for the reporting of this work.

- Dr. Arthur E. Bergles, Dr. William J. Cook, Dr. John C. Tannehill and Dr. Donald F. Young for their helpful suggestions and comments during the Ph.D. program.

- Mr. Henry McDonald of Scientific Research Associates, Incorporation for his helpful suggestions regarding the pressure correction procedure.

- His wife, Mei-Ping, for her continuous encouragement.
X. APPENDIX A: FINITE DIFFERENCE FORMULATION
FOR THE PRELIMINARY STUDIES

In the preliminary studies, several finite-difference methods, including two implicit methods and five explicit methods, were tested to solve a simpler boundary layer flow problem in order to choose an appropriate method for the present calculations.

The governing partial differential equation for the boundary layer flow problem is of the form

\[u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2} \]

(10.1)

where \(\nu \), the viscosity, is assumed constant in this evaluation for simplicity. Naturally the continuity equation is needed to complete the problem formulation but is being omitted here since the same standard difference form [Equation (3.43)] was used in all cases shown below. The finite-difference formulation for Equation (10.1) by these seven schemes are presented as follows:

1. Fully implicit method:

\[u^i_j \frac{(u^i_{j+1} - u^i_j)}{\Delta x} + v^i_j \frac{(u^i_{j+1} - u^i_{j-1})}{2\Delta y} = \nu \frac{(u^i_{j+1} - 2u^i_j + u^i_{j-1})}{(\Delta y)^2} \]

(10.2)

Here, the coefficients of convective terms, \(u^i_j \) and \(v^i_j \), took the values from previous step, i.e., ith station. This procedure linearized the equation and reduced the time required for the computation.
2. Crank-Nicolson method:

The implicit Crank-Nicolson method used the average values at the \(i \)th and \(i+1 \)st stations for the \(y \)-derivative terms. Linearization was again employed for the coefficients.

\[
\frac{u^i_{j+1} - u^i_j}{\Delta x_+} + \frac{v^i_j}{2} \left[\frac{(u^i_{j+1} - u^i_{j-1})}{2\Delta y} + \frac{(u^i_{j+1} - u^i_{j-1})}{2\Delta y} \right]
\]

\[
= v \frac{(\delta^2 u)^i_j + (\delta^2 u)^i_{j+1}}{2(\Delta y)^2}
\]

(10.3)

where

\[
(\delta^2 u)^i_j = u^i_{j+1} - 2u^i_j + u^i_{j-1}
\]

(10.4)

3. DuFort-Frankel method:

This is an explicit procedure proposed by DuFort and Frankel [41]. In the second derivative term, \((2u^i_j)\) was replaced by \((u^i_{j+1} + u^i_{j-1})\).

\[
\frac{u^i_j}{u^i_j (\Delta x_+ + \Delta x_-)} + \frac{v^i_j}{2\Delta y} (u^i_{j+1} - u^i_{j-1})
\]

\[
= v \frac{(u^i_{j+1} - u^i_j - u^i_{j-1} + u^i_{j-1})}{(\Delta y)^2}
\]

(10.5)

4. ADE method by Saul'yev:

This is the original ADE scheme suggested by Saul'yev [42]. The calculation procedure of the alternating-direction-explicit method marches in the opposite directions, positive \(y \) and negative \(y \),
alternatively from step to step.

1st step in positive y-direction:

\[
\begin{align*}
&\frac{u_{i+1}^i - u_j^i}{\Delta x_j} + \frac{v_{j+1}^i - v_{j+1}^i}{2\Delta y} \\
&\quad = v \frac{(u_{j+1}^i - u_j^i) - (u_{j-1}^i - u_{j+1}^i)}{(\Delta y)^2}
\end{align*}
\]

(10.6)

2nd step in negative y-direction:

\[
\begin{align*}
&\frac{u_{j+1}^{i+1} - u_j^{i+1}}{\Delta x_{j+1}} + \frac{v_{j+1}^{i+1} - v_{j+1}^{i+1}}{2\Delta y} \\
&\quad = v \frac{(u_{j+1}^{i+1} - u_j^{i+1}) - (u_{j-1}^{i+1} - u_{j+1}^{i+1})}{(\Delta y)^2}
\end{align*}
\]

(10.7)

5. ADE method by Larkin:

Larkin [44], based on the work of Saul'yev, suggested that both sweeps in the different direction can be done at the same marching step and then averaged to obtain the new values.

1st sweep:

\[
\begin{align*}
&\frac{u_j^i (p_{j+1}^i - u_j^i)}{\Delta x_j} + \frac{v_j^i (u_{j+1}^i - u_j^i)}{2\Delta y} \\
&\quad = v \frac{(p_{j+1}^i - u_j^i) + (u_{j+1}^i - u_{j+1}^i)}{(\Delta y)^2}
\end{align*}
\]

(10.8)
2nd sweep:

\[
\begin{align*}
& \frac{u_j}{\Delta x} (q_{j+1}^i - u_j^i) + \frac{v_j}{2\Delta y} (u_{j+1}^i - u_{j-1}^i) \\
& = v \frac{(u_{j+1}^i - u_j^i - q_j^i + q_{j+1}^i)}{(\Delta y)^2}
\end{align*}
\]

(10.9)

and finally, taking the average

\[
\frac{u_j^{i+1}}{\Delta x} = \frac{1}{2}(p_j^{i+1} + q_j^{i+1})
\]

(10.10)

6. **ADE method by Barakat and Clark:**

The Barakat and Clark method differs from the averaged Larkin method only through the use of the provisional functions \(p \) and \(q \) everywhere in the difference equations.

1st sweep:

\[
\begin{align*}
& \frac{u_j}{\Delta x} (p_{j+1}^i - p_j^i) + \frac{v_j}{2\Delta y} (p_{j+1}^i - p_{j-1}^i) \\
& = v \frac{(p_{j+1}^i - p_j^i - p_j^i + p_{j+1}^i)}{(\Delta y)^2}
\end{align*}
\]

(10.11)

2nd sweep:

\[
\begin{align*}
& \frac{u_j}{\Delta x} (q_{j+1}^i - q_j^i) + \frac{v_j}{2\Delta y} (q_{j+1}^i - q_{j-1}^i) \\
& = v \frac{(q_{j+1}^i - q_j^i - q_j^i + q_{j+1}^i)}{(\Delta y)^2}
\end{align*}
\]

(10.12)
then averaging

\[u_{i+1}^j = \frac{1}{2}(p_{i+1}^j + q_{i+1}^j) \]

(10.13)

7. **ADE method modified by Pletcher:**

Pletcher (in an unpublished report) observed that the accuracy of the Barakat and Clark procedure could generally be improved by using \(u_i^j \) instead of \(p_i^j \) and \(q_i^j \) for the \(\frac{\partial u}{\partial x} \) term in Equations (10.11) and (10.12).

1st sweep:

\[
\begin{align*}
&u_i^j \frac{(p_{i+1}^j - u_i^j)}{\Delta x^+} + v_j^i \frac{(p_{i+1}^j - p_{i-1}^j)}{2\Delta y} \\
&= v \frac{(p_{i-1}^j - p_i^j - p_i^j + p_{i+1}^j)}{(\Delta y)^2}
\end{align*}
\]

(10.14)

2nd sweep:

\[
\begin{align*}
&u_i^j \frac{(q_{i+1}^j - u_i^j)}{\Delta x^+} + v_j^i \frac{(q_{i+1}^j - q_{i-1}^j)}{2\Delta y} \\
&= v \frac{(q_{i-1}^j - q_i^j - q_i^j + q_{i+1}^j)}{(\Delta y)^2}
\end{align*}
\]

(10.15)

then

\[u_{i+1}^j = \frac{1}{2}(p_{i+1}^j + q_{i+1}^j) \]

(10.16)
XI. APPENDIX B: DERIVATION OF NONDIMENSIONAL FORMS

The governing equations, Equations (3.2) to (3.5), are nondimensionalized by introducing the nondimensional parameters as follows:

\[U = \frac{u}{u_0}, \quad V = \frac{v}{u_0}, \quad R = \frac{ru_0}{v} \]

\[T = \frac{t-t_\infty}{t_0-t_\infty}, \quad S = \frac{su_0}{v} \]
\[N = \frac{n}{v}, \quad \frac{N_r}{u} = \frac{n}{v} \]

Combining the s-momentum equation [Equation (3.3)] and shear stress equation [Equation (3.12)], and using the Boussinesq assumption, the s-momentum equation takes the following form:

\[\frac{u}{v} \frac{\partial u}{\partial s} + \nu \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{(\rho_\infty - \rho)}{\rho_0} g_n \sin \theta \]

Substituting the nondimensional parameters of Equation (11.1) into Equation (11.2) yields

\[\frac{u_0^3}{v} \left(u \frac{\partial U}{\partial S} + V \frac{\partial U}{\partial R} \right) = \frac{u_0^3}{v} \frac{1}{R} \frac{\partial}{\partial R} \left(RN \frac{\partial U}{\partial R} \right) + \frac{(\rho_\infty - \rho)}{\rho_0} g_n \sin \theta \]

which can be simplified to

\[U \frac{\partial U}{\partial S} + V \frac{\partial U}{\partial R} = \frac{1}{R} \frac{\partial}{\partial R} \left(RN \frac{\partial U}{\partial R} \right) + \frac{\nu}{u_0^3} \frac{(\rho_\infty - \rho)}{\rho_0} g_n \sin \theta \]

By expanding \(\rho(t) \) in a Taylor series about the reference density
\(\rho_{\text{ref}} \), one can obtain:

\[
\rho(t) = \rho_{\text{ref}} + \left(\frac{\partial \rho}{\partial t} \right)_{p, \text{ref}} (t-t_{\text{ref}}) + \ldots
\tag{11.5}
\]

Neglecting the higher order terms:

\[
\rho = \rho_{\text{ref}} + \left(\frac{\partial \rho}{\partial t} \right)_{p, \text{ref}} (t-t_{\text{ref}})
\tag{11.6}
\]

From the definition of the isobaric volume expansivity:

\[
\beta_{\text{th}} = - \frac{1}{\rho_{\text{ref}}} \frac{\partial \rho}{\partial t}
\tag{11.7}
\]

Inserting Equation (11.7) into Equation (11.6), a linear equation of state for \(\rho \) can be derived:

\[
\rho = \rho_{\text{ref}} \left[1 - \beta_{\text{th}} (t-t_{\text{ref}}) \right]
\tag{11.8}
\]

or

\[
\frac{\rho - \rho_{\text{ref}}}{\rho_{\text{ref}}} = 1 - \beta_{\text{th}} (t-t_{\text{ref}})
\tag{11.9}
\]

\(\rho \) is density at any point, and \(\rho_{\text{ref}} \) refers to the value of density at a reference point which has a temperature \(t_{\text{ref}} \).

By choosing a reference point at \(t_0 \) and \(\rho_0 \), Equation (11.9) becomes

\[
\frac{\rho - \rho_0}{\rho_0} = 1 - \beta_{\text{th}} (t-t_0)
\tag{11.10}
\]

and

\[
\frac{\rho_{\infty} - \rho_0}{\rho_0} = 1 - \beta_{\text{th}} (t_{\infty}-t_0)
\tag{11.11}
\]
Subtracting Equation (11.10) from Equation (11.11) yields

\[
\frac{(\rho_\infty - \rho)}{\rho_0} = \beta_{th}(t-t_\infty) \tag{11.12}
\]

In the same way,

\[
\frac{(\rho_{\infty,0} - \rho)}{\rho_0} = \beta_{th}(t_0-t_{\infty,0}) \tag{11.13}
\]

The discharge Froude number is defined as

\[
Fr_0 = \frac{u_0^2}{d_og_n} \frac{\rho}{(\rho_{\infty,0} - \rho)} \tag{11.14}
\]

Introducing Equation (11.13) into (11.14),

\[
Fr_0 = \frac{u_0^2}{d_og_n} \beta_{th}(t_0-t_{\infty,0}) \tag{11.15}
\]

Now, considering the buoyancy term in Equation (11.4), which can be expressed as

\[
\frac{\sqrt{d_0}}{u_0} \frac{(\rho_\infty - \rho)}{\rho_0} g_n \sin \theta = \frac{\sqrt{d_0}}{u_0} \beta_{th}(t-t_\infty) g_n \sin \theta
\]

\[
= \frac{\sqrt{d_0}}{u_0} \frac{d_0}{u_0} \beta_{th} \left[(T(t_0-t_{\infty,0}) + t_{\infty,0}) - (T_{\infty}(t_0-t_{\infty,0}) + t_{\infty,0}) \right] \times g_n \sin \theta \tag{11.16}
\]
i.e.,

$$\frac{1}{\text{Re}_0} \frac{d}{u_0} \beta \text{th} (T-T_\infty)(t_o-t_\infty,0) g_n \sin \theta$$

or

$$\frac{1}{\text{Re}_0} \frac{(T-T_\infty) \sin \theta}{u_o^2/[d_o g_n \beta \text{th} (t_o-t_\infty,0)]}$$

which finally gives

$$\frac{\nu}{3} \frac{\rho_o}{\rho_\infty} g_n \sin \theta = \frac{(T-T_\infty)}{\text{Re}_0 \text{Fr}_0} \sin \theta \quad (11.17)$$

The s-momentum equation, Equation (11.4), finally can be written in

nondimensional form as

$$U \frac{\partial U}{\partial S} + V \frac{\partial U}{\partial R} = \frac{1}{R} \frac{\partial}{\partial R} \left(\frac{\partial U}{\partial R} \right) + \frac{(T-T_\infty) \sin \theta}{\text{Re}_0 \text{Fr}_0} \quad (11.18)$$

Equation (3.37), r-momentum equation, Equation (3.35), continuity

equation, and Equation (3.38), energy equation are derived in a similar

procedure.
XII. APPENDIX C: A COMPUTER PROGRAM FOR
AXISYMMETRIC JET CASES

In this appendix, a listing of the computer program used to solve
the governing equations for the buoyant jet discharged into a crossflow
is presented for the readers' convenience. This general program, with
different input data, can also be used for a nonbuoyant jet in a cross-
flowing or quiescent ambient, a buoyant jet in a quiescent ambient, a jet
at arbitrary angles to the horizontal. The ambient can be uniform or
stratified.

The computer code includes a main program and eight subroutines.
The main program coordinates the overall computational procedure. It
reads in the input data, initializes all necessary parameters, calls the
subroutines as needed and calculates new values for the parameters. It
also resets the grid points in transverse direction when the number
of grid points in that direction exceeds the assigned storage location.

The subroutines called in main program are described in order as
follows:

- SDELX
- THETA
- UVEL
- TRIDIA
- VVEL
- TEMP
- EFVISC
- OUTPUT
The subroutine SDELX calculates the streamwise step size for each station. The step size is varied with the growth of the jet radius.

The subroutine UVEL calculates the axial velocity components \(u_{i+1,j} \) for each station by solving the finite-difference form of the s-momentum equation and determines the jet growth in terms of half-width and plume boundary. The subroutine VVEL solves the continuity equation for velocity components \(v_{i+1,j+1} \).

Subroutine THETA determines the new angle \(\theta_{i+1} \) between the jet centerline and the horizontal by solving the \(r \)-momentum equation. This determines the jet trajectory. Subroutine TRIDIA is used to solve the system of algebraic equations having the tri-diagonal matrix form.

Subroutine TEMP calculates the temperature distribution \(t_{i+1,j} \) in the plume by solving the energy equation. The temperature half-width and thermal boundary are determined here.

Subroutine EFVISC computes the effective viscosities and thermal diffusivities needed in the s-momentum and energy equations through the turbulence model proposed in the present analysis.

Finally, the subroutine OUTPUT prints out all the important numerical results.

The main program and eight subroutines are listed as they appeared in the present version of the program.
XII. APPENDIX C: A COMPUTER PROGRAM FOR AXISYMMETRIC JET CASES
THE PARAMETERS USED IN THIS PROGRAM ARE EXPLAINED BELOW:

ICASE : NUMBER OF CASES TO BE RUN AT THE SAME TIME
LORT : .GT. 0 FOR TURBULENT JET FLOW CASES
 .LE. 0 FOR AMBIENT JET FLOW CASES
LAMDA : DEGREE OF AMBIENT STRATIFICATION
BETA : ISOBARIC VOLUME EXPANSIVITY OF FLUID
I : THE ITH STATION ALONG STREAMWISE DIRECTION
IEND : MAXIMUM NUMBER OF I STEPS TO BE COMPUTED IN A RUN, THE CALCULATION WILL STOP AFTER I = IEND
IOUT : NUMBER OF I STEPS BETWEEN OUTPUTS
NYI : NUMBER OF GRID SPACES OVER NOZZLE RADIUS
CGNST1: CONSTANT IN TURBULENCE MODEL FOR INITIAL REGION
CGNST2: CONSTANT IN TURBULENCE MODEL FOR MAIN REGION
DENS : DENSITY OF FLUID AT DISCHARGE
ANJ : KINEMATIC VISCOSITY OF FLUID
USTART : JET VELOCITY AT DISCHARGE
TSTART : JET TEMPERATURE AT DISCHARGE
RAD : RADIUS OF DISCHARGED PIPE
VAXIS : TRANSVERSE VELOCITY AT JET CENTERLINE
PR1 : TURBULENT PRANDTL NUMBER
UF : FREE STREAM (AMBIENT) VELOCITY
UE : VELOCITY AT EDGE OF JET
TF : AMBIENT TEMPERATURE
TE : TEMPERATURE AT EDGE OF JET
TFD : AMBIENT TEMPERATURE AT DISCHARGE FOR STRATIFIED AMBIENT
TFR : DIMENSIONAL AMBIENT TEMPERATURE
YUHALF : VELOCITY HALF-WIDTH
YTHHALF: TEMPERATURE HALF-WIDTH
CP : SPECIFIC HEAT AT CONSTANT PRESSURE
HTK : THERMAL CONDUCTIVITY
THEP : ANGLE BETWEEN JET CENTERLINE AND HORIZONTAL, AT ITH STATION
THEP : ANGLE BETWEEN JET CENTERLINE AND HORIZONTAL, AT I+1ST STATION
DXF : A PARAMETER TO RESET THE Y-GRID POINT
M : A PARAMETER TO CONTROL THE OUTPUT
FRQ : FREQUENCY NUMBER OF BUOYANT JETS
RCOE : IN CASE OF QUIESCENT AMBIENT, THE MINIMUM
PERCENTAGE OF JET VELOCITY USED AS EDGE VELOCITY
BUC : E = 1.0 FOR BUOYANT JET FLOW CASES
E = 0.0 FOR NON-BUOYANT JET FLOW CASES
SCOE : COEFFICIENT TO GET STREAMWISE STEP SIZE
DELXP = RCOE * DELTA
DELTA : JET RADIUS COMPUTED FROM VELOCITY BOUNDARY
RD : JET RADIUS COMPUTED FROM TEMPERATURE BOUNDARY
CD : DRAG COEFFICIENT, FOR QUIESCENT AMBIENT CD = 0.0
UP,U,M : STREAMWISE VELOCITIES AT I+1,I,I-1 STATIONS
VP,V,VM : TRANSVERSE VELOCITIES AT I+1,I,I-1 STATIONS
TP,T,TM : TEMPERATURE AT I+1,I,I-1 STATIONS
UTEST : A PARAMETER TO CALCULATE THE BOUNDARY LOCATION
FROM VELOCITY PROFILE,
TTEST : A PARAMETER TO COMPUTE THE BOUNDARY LOCATION
FROM TEMPERATURE PROFILE
EV(J) : VISCOSITY AT (I,J)
EK(J) : THERMAL DIFFUSIVITY AT (I,J)
AL1 : EQUALS TO EV(J)+EV(J+1)
AL2 : EQUALS TO EV(J)+EV(J-1)
BL1 : EQUALS TO EK(J)+EK(J+1)
BL2 : EQUALS TO EK(J)+EK(J-1)
EVPM, EVM : VISCOSITY AT I+1 AND I-1 STATIONS
EKPM, EKM : THERMAL DIFFUSIVITY AT I+1 AND I-1 STATIONS
UVIN : A COEFFICIENT TO COMPUTE MIXING LENGTH FOR
TURBULENCE MODEL
UFIN : A COEFFICIENT TO COMPUTE JET RADIUS BY VELOCITY
PROFILE, A STANDARD VALUE FOR UFIN IS 0.9995
TFIN : A COEFFICIENT TO COMPUTE JET RADIUS BY
TEMPERATURE PROFILE, A STANDARD VALUE FOR TFIN IS 0.999
STRAT : STRATIFICATION PARAMETER
MAIN PROGRAM###

USING FULLY IMPLICIT FINITE-DIFFERENCE METHOD,
WITH LAGGING FOR COEFFICIENTS.

REAL LAMDA
COMMON/AREA1/U(200),VP(200),UM(200),V(200),VP(200),VM(200),T(200),TP(200),TM(200),U*TEST,UF,TTEST,TE,TF,VAXIS, 2LORT,USTART,AL1,AL2,BL1,BL2 COMMON/AREA2/DELP,X,DELP,X,DELP,X COMMON/AREA3/YHALF,THALF,YMAX COMMON/AREA8/TC1,TC2 COMMON/AREA9/JCORE,JJ COMMON/AREA10/THE,THEP,THEM,HX,VZ COMMON/AREA11/PRO,REO COMMON/AREA12/EVP(200),EK(200),EVM(200),EKM(200),SMUP(1200),SMUPP(200),SKMP(200),SKCPP(200) COMMON/AREA13/UVIN,CK4,CKI,BK4,BKI COMMON/AREA15/STRAT,LAMDA COMMON/AREA16/BETA COMMON/AREA17/UVIN,TFIN COMMON/AREA18/CK4,CKI,BK4,BKI COMMON/AREA19/CD,BUC COMMON/AREA20/SCOE

READING IN THE INPUT

READ(5,8) ICASE

8 FORMAT(16)
DO 600 IND=1,ICASE
READ(5,2) LAMDA,BETA
2 FORMAT(2F12.5)
WRITE(6,3) LAMDA,BETA
3 FORMAT(2X,'LAMDA =',F12.5,5X,'BETA =',F12.5)
READ(5,8) LORT
READ(5,10) IEND,IOUT,NYI,IPUNCH
10 FORMAT(16)
WRITE(6,11) IEND,IOUT,NYI,IPUNCH
COMPUTE THE EDGE VELOCITY OF JET

\[\text{UE}_1 = UF \times \cos(\text{THE}) \]
\[\text{UE}_2 = \text{JSTART} \times \text{RCOE} \]
\[\text{UE} = \text{AMAX1} \times (\text{UE}_1, \text{UE}_2) \]
RED=USTART*2.0*RAD/ANU

R=UE/USTART

NJN-DIMENSIONALIZING

CONVERSION FACTORS

XCONV=ANU/USTART
ECONV=ANU
UCONV=USTART
TC=TE
TC2=TSTART-TE
STRAT=(-LAMDA*2.0*RAD)/(RED*TC2)

VARIABLES

TE1=(TE-TE)/TC2
TF1=(TF-TE)/TC2
TSTART1=(TSTART-TE)/(TSTART-TE)
TE=TE1
TF=TF1
TSTART=TSTART1
RAD=RAD/XCONV

Y-GRID SPACING

DELY=RAD/NYI
UE=UE/UCONV
UF=UF/UCONV
JSTART=USTART/UCONV

ASSUMED UNIFORM PROFILE

I=0
X=0.0
HX=0.0
VZ=0.0
NNYI=NYI+1
DO 25 J=1,NNYI
Y(J)=(J-1)*DELY
U(J)=1.0
V(J)=0.0
T(J)=1.0
EV(J)=1.0
EK(J)=ALPHA
25 CONTINUE
NNYI=NNYI+1
DO 40 J=NNYI,200
 Y(J)=(J-1)*DELY
 U(J)=UE
 UP(J)=UE
 V(J)=0.0
 T(J)=TE
 TP(J)=TE
 EV(J)=1.0
 EK(J)=ALPHA
40 CONTINUE
DELTA=RAD
DELMIX=0.0
IF(LORT,GT,0.0) GO TO 54
C LAMINAR JET FLOW CASE
C
C WRITE (6,58)
56 FORMAT (1X,'LAMINAR JET CASE')
 AL1=2.0
 AL2=2.0
 BL1=2.0*ALPHA
 BL2=2.0*ALPHA
C TURBULENT JET FLOW CASE
C
C 54 WRITE (6,56)
56 FORMAT (6X,'TURBULENT JET CASE')
C
C BEGINNING OF COMPUTATION LOOP
C
NY=NNYI
NYT=NNYI
LT=0.0
N=1
K=1
67 IF(U(1),LT,USTART) GO TO 63
 GO TO 61
63 IF(K,EQ,1) GO TO 77
 GO TO 61
77 DIST=X*XCONV
 WRITE (6,62) DIST
62 FORMAT(3X,'PREDICTED STARTING LENGTH =',G14.8)
 K=K+1
61 CALL SDELX
 X=X+DELXP
 CALL THETA
C C UPDATING THE HORIZONTAL AND VERTICAL DISTANCE
C

HX=HX+DELXP*COS(THEP)
VZ=VZ+DELXP*SIN(THEP)
TF=STRAT*VZ
TE=TF
TFR=TF*TC2+TC1
WRITE(6,4) TFR
4 FORMAT(2X,'TF =',F12.5)
UE1=UF*COS(THEP)
UE2=UF*RCCE
UE=AMAX1(UE1,UE2)
R=UE/USTART
I=I+1
IF(I .GT. 1) GO TO 141
DELM = DELXP

141 DELXT=DELM+DELXP
CALL UVEL
112 CALL VVEL
CALL TEMP

C
C UPDATING VALUES
C

DO 60 J=1,200
UM(J)=U(J)
U(J)=UP(J)
VM(J)=V(J)
V(J)=VP(J)
TM(J)=T(J)
60 T(J)=TP(J)
REDELX=DELXP*XCONV
WRITE (6,111) REDELX
111 FORMAT (5X,'DELXP =',G14.7)

IF(LORI .GT. 0.0) CALL EFVISC
THEM=THE
THE=THEP
DELM=DELXP
IF(I .GT. 10) GO TO 55
CALL OUTPUT
GO TO 65

55 II=IOUT*M
IF(I .EQ. II) GO TO 22
GO TO 65

22 CALL OUTPUT
M=M+1
LT=1.0

C
C WHEN NUMBER OF Y-GRID POINTS GREATER THAN 200, RESET THE
C SYSTEMS BY USING BIGGER STEP SIZE IN Y-DIRECTION,
C NEW DELY = 2.0*DELY
65 IF((NY LE. 180) .AND. (NYT LE. 180)) GO TO 501
IF(DXF NE. 1.0) GO TO 500
IM=0
DO 505 J=1,200,2
IM=IM+1
U(IM)=U(J)
UP(IM)=UP(J)
UM(IM)=UM(J)
T(IM)=T(J)
TP(IM)=TP(J)
TM(IM)=TM(J)
V(IM)=V(J)
Y(IM)=Y(J)
EV(IM)=EV(J)
505 EK(IM)=EK(J)
DELY=DELY*2.0
NY=NY/2.+1
NYT=NYT/2.+1
NY3=NY+5
DO 506 J=NY3,200
Y(J)=(J-1)*DELY
U(J)=UE
UP(J)=UE
UM(J)=UE
TP(J)=TE
TM(J)=TE
V(J)=0.0
EV(J)=1.0
VP(J)=0.0
EK(J)=ALPHA
506 T(J)=TE
DXF=DXF+1.0
500 IF((NY GT. 195) .OR. (NYT GT. 195)) GO TO 600
501 IF(I LT. IEND) GO TO 67
600 CONTINUE
STOP
END
SUBROUTINE UVEL
COMMON/AREA1/U(200),UP(200),UM(200),V(200),VP(200),VM(200),T(200),TP(200),TM(200),UTEST,UE,UF,TTEST,TE,TF,VAXIS,2LORT,USTART,AL1,AL2,BL1,BL2
COMMON/AREA2/DELXP,DELXM,DELXT,DEL,Y,DDELTA,TDELTA,Y(200),II,NS,NY,NYT,EV(200),EK(200),ECONV,UCONV,XCONV,TCONV,N,2DELMIX
COMMON/AREA3/SMUP(200),SMUM(200),SKCP(200),SKCM(200)
COMMON/AREA4/XL,ANU,PRT,HTK,DENS,CP,ALPHA
COMMON/AREA5/X,XO,RAD,LT
COMMON/AREA7/YUHALF,YTHALF,YMAX
COMMON/AREA9/JCORE,JJ
COMMON/AREA10/THET,THEP,THEM,HX,VZ
COMMON/AREA11/REO,FRO
COMMON/AREA12/EVP(200),EKP(200),EVM(200),EKM(200),SMUMP(200),SMUPP(200),SKCP(200),SKCM(200)
COMMON/AREA17/UFIN,UVIN,TFIN

THETA : PARAMETER IN U & T SUBROUTINES TO DECIDE THE FINITE DIFFERENCE METHOD TO BE USED
THETA = 0.0 FULLY EXPLICIT METHOD
THETA = 1.0 FULLY IMPLICIT METHOD

FULLY IMPLICIT METHOD

DIMENSION A(200),B(200),C(200),D(200)
IF(I .NE. 1) GO TO 5
READ(5,6) THETA
6 FORMAT(F10.5)
5 L=1
K=1
M=1
JT=NY+5
SMUP(1)=EV(1)+EV(2)
SMUPP(1)=SMUP(1)
H1=U(1)/DELXP
H2=2.0*THETA*SMUPP(1)/(DDEL*DELY)
H3=2.0*(1.0-THETA)*SMUP(1)/(DELY*DELY)
D(1)=H1+H2
A(1)=-H2
C(1)=H3*(U(2)-U(1))+H1*U(1)*SIN(THEP)*(T(1)-TE)/(REG*FRO)
DO 26 J=2,JT
YJ=Y(J)
UJ=U(J)
UJP=U(J+1)
UJM=U(J-1)
UMJ=U(J)
IF(LORT .LE. 0.0) GO TO 25
SMUP(J)=EV(J)+EV(J+1)
26 CONTINUE
Calculating YUHALF

```plaintext
YUHALF = \((y_{w} + \text{DELY}) 
+ (y_{w} - \text{DELY})\) / 2 

IF (y_{w} > L) 
  y_{w} = L 
ELSE IF (y_{w} < 0) 
  y_{w} = 0 
ELSE 
  y_{w} = y_{w}
```

Grid Related MUST

```plaintext
IF (y = 0.0) 
  y = 0.0 
ELSE 
  y = y
```

Check Stability by Using Grid Related Number

```plaintext
IF (y = 0.0) 
  y = 0.0 
ELSE 
  y = y
```
33 \(K = K + 1 \)
 IF(\(K < 3 \)) GO TO 21
 IF(\(UP(1) < U_{\text{START}} \)) GO TO 23

C
C*** CALCULATING YCORE ***
C
21 IF(L > 1) GO TO 22
 IF(\(UPJ < U_{\text{START}} \)) GO TO 24
 GO TO 22
24 YCORE = (J-1)*DELY
 JCORE = J
 L = L + 1
 GO TO 22
23 YCORE = 0.0
 JCORE = 1
22 IF(\(K < 3 \)) GO TO 54
 UTEST = (UP(1)-UPJ)/(UP(1)-UE)
 IF(UTEST >= UFIN) GO TO 27
54 CONTINUE
27 \(\Delta \) = (J-1)*DELY
 NY = J
 NNY = J + 1
 DO 11 J = 2, 199
 UTEST = (UP(1)-UP(J))/(UP(1)-UE)
 IF(UTEST >= UFIN) GO TO 12
11 CONTINUE
12 VDELTA = (J-1)*DELY
 DELMIX = VDELTA - YCORE
 DO 28 J = NY, 200
28 UP(J) = UE

C
C***BOUNDARY CONDITIONS ***
C
VP(1) = VAXIS
RETURN
END
SUBROUTINE TEMP
COMMON/AREA1/U(200),UP(200),UM(200),V(200),VP(200),VM(200),T(200),TP(200),TM(200),UTEST,UE,UF,TTEST,TE,TF,VAXIS,
2LORT,USTART,AL1,AL2,BL1,BL2
COMMON/AREA2/DLXP,DELXM,DELXT,DELY,DELTAT,DELTAY(200),11,NS,NSY,NYT,EV(200),EK(200),ECOV,UCOV,XCOV,TCONV,N,
2DELMIX
COMMON/AREA3/SMUP(200),SMUM(200),SKCP(200),SKCM(200)
COMMON/AREA4/XL,ANU,PRT,HTK,DENS,CP,ALPHA
COMMON/AREAS/X*X0,RAD,LT
COMMON/AREA7/YUHALF,YTHALF,YMAX
COMMON/AREA8/TX,TX0
COMMON/AREA9/JCORE,J
COMMON/AREA10/THE,THEP,THEM,HX,VZ
COMMON/AREA11/FR0,RED
COMMON/AREA12/EVP(200),EKP(200),EKM(200),SMUMP(200),SMUPP(200),SKCP(200),SKCM(200)
COMMON/AREA17/UFIN,UVIN,TFIN

DIMENSION A(200),B(200),C(200),D(200)
IF(I .NE. 1) GO TO 5
READ(5,6) THETA
READ(5,6) TFIN
6 FORMAT(F10.5)
5 K=1
M=1
SKCP(1)=EK(1)+EK(2)
SKCPP(1)=SKCP(1)
H1=U(1)/DLXP
H2=2.0*THETA*SKCPP(1)/(DELY*DELY)
H3=2.0*(1.0-THETA)*SKCP(1)/(DELY*DELY)
D(1)=H1+H2
A(1)=-H2
C(J)=H3*(T(J+2)-T(J))+H1*T(J)
JT=NYT+4
DO 26 J=2,JT
YJ=Y(J)
TJ=T(J)
TJP=T(J+1)
TJM=T(J-1)
TMJ=TM(J)
IF(LORT .LE. 0.0) GO TO 25
SKCP(J)=EK(J)+EK(J+1)
SKCM(J)=EK(J)+EK(J-1)
BL1=SKCP(J)
BL2=SKCM(J)
BLP1=BL1
BLP2=BL2
25 TA=U(J)/DLXP
TB1=4.0*Y(J)*DELY*DELY
TB = THETA * (Y(J+1) + Y(J)) * BLP1 / TB1
TC = THETA * (Y(J) + Y(J-1)) * BLP2 / TB1
TD = V(J) * THETA / (2.0 * DELY)
TH = V(J) * (1.0 - THETA) / (2.0 * DELY)
B(J) = -TD - TC
D(J) = TA + TB + TC
A(J) = TD - TE

C(J) = TA * T(J) - TH * (T(J+1) - T(J-1)) + (1.0 - THETA) * ((Y(J+1) + Y(J))
 1) * BLP1 * (T(J+1) - T(J)) - (Y(J) + Y(J-1)) * BLP2 * (T(J) - T(J-1)) / TB1
C(JT) = C(JT) - A(JT) * TE
A(JT) = 0.
CALL TRIDIA (A, B, C, D, JT)
DO 52 J = 1, JT
52 TP(J) = C(J)

CALCULATING YTHALF

DO 54 J = 2, 199
TPJ = TP(J)
IFT(K.EQ.1) GO TO 33
IFT(M.GT.1) GO TO 33
TPMEAN = (TP(1) + TE) / 2.0
IFT(TPJ.LE.TPMEAN) GO TO 42
GO TO 33
42 JJ = J
JM = J - 1
YTHALF = Y(JM) + DELY * (TPMEAN - TP(JM)) / (TP(JJ) - TP(JM))
M = M + 1
33 K = K + 1
IFT(K.LT.3) GO TO 54
TTEST = (TP(1) - TPJ) / (TP(1) - TE)
IFT(TTEST.GE.TFIN) GO TO 27
CONTINUE
27 TDELTA = (J - 1) * DELY
NYT = J
NNYT = NYT + 1
DO 59 J = NYT, 200
59 TP(J) = TE
29 RETURN
END
SUBROUTINE THETA
COMMON/AREA1/U(200),V(200),VM(200),VP(200),TP(200),TM(200),UTEST,UE,UF,TTTEST,TE,TF,VAXIS,
2LORT, USTART, AL1, AL2, BL1, BL2
COMMON/AREA2/DELXP, DELXM, DELXT, DELY, DELTA, TDELTA, Y(200),
1I, NS, NY, NYT, EY(200), EK(200), ECONV, UCONV, XCONV, TCONV, N,
2DELMIX
COMMON/AREAS/X, XO, RAD, LT
COMMON/AREA6/CONST1, CONST2
COMMON/AREA7/YUHALF, YTHALF, YMAX
COMMON/AREA10/THE, THEP, THEM, HX, VZ
COMMON/AREA11/FRO, REQ
COMMON/AREA19/CD, BUC

CALCULATING THE ANGLE BETWEEN THE CENTERLINE AND THE
HORIZONTAL DIRECTION

IF (I . EQ. 0) YUHALF = RAD + 0.5*DELY
NY1 = NY - 1
BUOY = 0.0
DRAG = 0.0
IF (CD . EQ. 0.0) GO TO 30
SUM1 = U(1) * U(1) * Y(1) + U(NY) * U(NY) * Y(NY)
DO 10 J = 2, NY1
SUM1 = SUM1 + U(J) * U(J) * Y(J)
10 CONTINUE
ARE = DELTA * DELTA / 2.0
UINT = DELY * SUM1 / 2.0
A = UE * SIN(THE)
DRAG = CD * A * A * ARE / (3.1415926 * YUHALF)
30 IF (BUC . EQ. 0.0) GO TO 40
SUM2 = (T(1) - TE) * Y(1) + (T(NY) - TE) * Y(NY)
DO 50 J = 2, NY1
SUM2 = SUM2 + T(J) * T(J) * Y(J)
50 CONTINUE
TINT = DELY * SUM2 / 2.0
BUOY = CGS(THE) * TINT / (REQ * FRO)
SLOP = (BUOY - DRAG) / UINT
THEP = THE + DELXP * SLOP
RETURN
END
SUBROUTINE SDELX

CALCULATE THE STREAMWISE STEP SIZE DELXP

COMMON/AREA1/U(200),UP(200),UM(200),V(200),VP(200),VM(200),T(200),TP(200),TM(200),UTEST,UE,UF,TTEST,TE,TF,VAXIS,
2LORT,USTART,AL1,AL2,BL1,BL2
COMMON/AREA2/DELXP,OELXM,DELXT,DELY,DELTA,TDELTA,Y(200),
II,NS,NY,NYT,EV(200),EK(200),ECOV,UCOV,XCOV,TCOV,N,
2DELMIX
COMMON/AREA5/X,X0,RAD,LT
COMMON/AREA20/SCOE

DELXP=SCOE*DELTA
RETURN
END
SUBROUTINE EFVISC

CALCULATE THE EFFECTIVE VISCOSITY AND THERMAL DIFFUSIVITY

COMMON/AREA1/U(200),UP(200),UM(200),V(200),VP(200),VM(20
10),T(200),TP(200),TM(200),UTEST,UE,UF,TTEST,TE,TF,VAXIS,
2LORT,USTART,AL1,AL2,BL1,BL2
COMMON/AREA2/DELXP,DELXM,DELXT,DELY,DELTA,TDELTA,Y(200),
11,NS,NY,NYT,EV(200),EK(200),ECONV,UCONV,XCONV,TCONV,N,
2DELMIX
COMMON/AREA4/XL,ANU,PRT,HTK,DENS,CP,ALPHA
COMMON/AREA5/X,XO,RAD,LT
COMMON/AREA6/CONST1,CONST2
COMMON/AREA7/YUHALF,YTHALF,YMAX
COMMON/AREA8/TC1,TC2
COMMON/AREA9/JCORE, JJ
COMMON/AREA10/TH, THEP, THEM, HX, VZ
COMMON/AREA11/FRO, RED
COMMON/AREA16/BETA
COMMON/AREA18/CK4, CKI, BK4, SKI

JC=JCORE
G=32.2
FRI=G*ANU*TC2*BETA/(UCONV*UCONV*UCONV)
RIB=FRI*DELTA*(TE-T(1))/((UE-U(1))*(UE-U(1)))
IF(NY.GT. NYT) GO TO 5
NYJ=NYT
GO TO 6
5 NYJ=NY
6 R=UF/USTART
RCREP=(THEP-THE)/DELXP
RIC=2.0*U(1)*DELTA*RCREP/(U(1)-UE)
WRITE(6,56) RIC,RIB
56 FORMAT(5X,'CURVATURE RICH NO =',F12.5)
89 PRG=RCREP/XCONV
FBUDI=(1.0-BKI*RIB*COS(THEP))**0.5
FBUDY=(1.0-BK4*RIB*COS(THEP))**0.5
IF(U(1) .LT. USTART) GO TO 100
XL=CONST1*DELMIX
40 DO 45 J=2,NYJ
EV(J)=1.0+(XL*XL)*ABS((U(J+1)-U(J-1))/(2.0*DELY))
1+(1.0+CKI*ABS(RIC))**FBUDI
EVJ=EV(J)
EK(J)=ALPHA+(EVJ-1.0)/PRT
45 CONTINUE
GO TO 200
100 DO 10 J=1,NYJ
YY=Y(J)/YUHALF
IF(YY .LT. 0.8) GO TO 15
GM=1.0
GO TO 20
15 ZZ=(YY-0.8)**2.5
 GM=(0.5)**ZZ
20 CONSK=0.0246*(1.0+2.13*R*R)*GM
 EV(J)=CONSK*YUHALF*(U(1)-UE)*(1.0+CK4*ABS(RIC))*FBUOY
10 EK(J)=EV(J)/PRT
200 RETURN
END
SUBROUTINE TRIDIA (A,B,C,D,N)

C
C THIS SUBROUTINE COMPUTES THE VALUES OF TEMPERATURE IN THE
C EQUATIONS
C THE RESULTS ARE STORED IN THE C VECTOR.
C IN THE MAIN PROGRAM NEED TO REASSIGN C AS THE NEW VALUE
C OF TEMPERATURE.
C
C DIMENSION A(1),B(1),C(1),D(1)
DO 10 I=2,N
 P=B(I)/D(I-1)
 D(I)= D(I)-P*A(I-1)
10 C(I)=C(I)-P*C(I-1)
C BACK SUBSTITUTION
C(N)=C(N)/D(N)
DO 20 I=2,N
 J=N-I+1
20 C(J)=(C(J)-A(J)*C(J+1))/D(J)
RETURN
END
SUBROUTINE VVEL
COMMON/AREA1/U(200),UP(200),UM(200),V(200),VP(200),VM(200),T(200),TP(200),TM(200),UTEST,UE,UF,TTEST,TE,TF,VAXIS,2LORT,USTART,AL1,AL2,BL1,BL2
COMMON/AREA2/DELXP,DELXM,DELXT,DELY,DELTAT,DDELTA,T(200),11,NS,NY,NYT,Ev(200),Ek(200),ECGNV,UCGNV,XCNV,TCNV,N,2DELMIX

C TRANSVERSE VELOCITY COMPONENT

VP(1)=0.
DO 60 J=2,NY
VA1=DELY*(Y(J)+Y(J-1))/(4.*DELXP)
VA2=Y(J-1)*VP(J-1)
VA3=VA1*(UP(J)-U(J)+UP(J-1)-U(J-1))
60 VP(J)=(VA2-VA3)/Y(J)
RETURN
END
SUBROUTINE OUTPUT

COMMON/AREA1/U(200),UP(200),UM(200),V(200),VP(200),VM(200),T(200),TP(200),TM(200),TEST,UE,UF,TV,TF,VAXIS,
2L0RT,USTART,AL1,AL2,BL1,BL2
COMMON/AREA2/DDELXP,DELXM,DELXT,DELY,DELT,TDelta,Y(200),
1,N,NV,NYT,Ev(200),EK(200),ECONV,UCONV,XCONV,TCONV,N,
2DELMIX
COMMON/AREA5/X,X0,RAD,LT
COMMON/AREA7/YUHALF,YTHALF,YMAX
COMMON/AREA8/TC1,TC2
COMMON/AREA10/THE,THEP,THEM,HX,VZ

C

N=N+1
NNY=NY+1
NNYT=NYT+1
IF (NNY .GE. NNYT) GO TO 22
GO TO 23
22 NNJ=NNY
GO TO 24
23 NNJ=NNYT
24 WRITE(6,10)
10 FORMAT(*0*)
RHX=HX/2.0/RAD
RVZ=VZ/2.0/RAD
RTHE=THE*180.0/3.14159
DIST=X*XCONV
dDEL=DELTA*XCONV
dTDEL=TDelta*XCONV
XBAR=X/RAD
PRT1=(YUHALF*YUHALF)/(YTHALF*YTHALF)
RUHALF=YUHALF/RAD
RTHALF=YTHALF/RAD
UCL1=(U(1)-UF)/(USTART-UF)
TCL=T(1)
WRITE(6,15) I,DIST,DDEL,DDEL,PRT1,RHX,RVZ,RTHE
15 FORMAT(*5X,'I=',I4,5X,'DISTANCE=',G12.5,'HALF-WIDTH
1=',G12.5,5X,'THERMAL HALF-WIDTH=',G12.5,5X,'PRT1=',G12.5
2=',2X,'HORIZONTAL =',G12.5,5X,'VERTICAL Z =',G12.5,'THETA ='
3,G10.5)
UCL2=(U(1)-UF)/(USTART-UF)
WRITE (6,80) UCL2
80 FORMAT(*2X,'UCL2 =',F12.5)
WRITE(6,16) UCL2
16 FORMAT(*2X,'UXBAR=',G12.5,3X,'RUHALF=',G12.5,3X,
1*RTHALF =',G12.5,3X,'UCL =',G12.5,3X,'TCL =',G12.5)
WRITE (6,10)
IF (I .GT. 5) GO TO 41
WRITE(6,21)
21 FORMAT(*7X,'J=',5X,'Y DISTANCE=',7X,'U VELO=',8X,'V VELO='
1.9X,'VISCOSITY',6X,'JET TEMP',7X,'CONDUCTIVITY')
DO 40 J=1,NNJ
DUJ=U(J)*UCONV
DVJ=V(J)*UCONV
DTJ=T(J)*TC2+TC1
DEVJ=EV(J)*ECONV
DEKJ=EK(J)*ECONV
YDIST=Y(J)*XCONV
WRITE (6,26) J,YDIST,DUJ,DVJ,DEVJ,DTJ,DEKJ
40 CONTINUE
41 RETURN
END
XIII. APPENDIX D: DERIVATION OF THE POISSON EQUATION FOR PRESSURE CORRECTION

In order to obtain values of u, v and w which satisfy the continuity equation, a correction to these estimated values is necessary, assuming

\[p = p^* + p' \]
\[v = v^* + v' \]
\[w = w^* + w' \] \hspace{1cm} (13.1)

The superscript (*) stands for the estimated values or computed values based on \(p^* \); superscript (') indicates the corrections.

Using approximate forms of the momentum equations for the imaginary time over which the correction occurs:

\[\frac{\partial v}{\partial t} = \frac{v - v^*}{\Delta t} = -\frac{1}{\rho} \frac{\partial p'}{\partial y} \] \hspace{1cm} (13.2)

\[\frac{\partial w}{\partial t} = \frac{w - w^*}{\Delta t} = -\frac{1}{\rho} \frac{\partial p'}{\partial z} \] \hspace{1cm} (13.3)

Using the relations in Equation (13.1), Equations (13.2) and (13.3) become:

\[\frac{v'}{\Delta t} = -\frac{1}{\rho} \frac{\partial p'}{\partial y} \] \hspace{1cm} (13.4)

\[\frac{w'}{\Delta t} = -\frac{1}{\rho} \frac{\partial p'}{\partial z} \] \hspace{1cm} (13.5)

Since \(v' \) and \(w' \) are zero before the velocity correction, \(v'/\Delta t \) and \(w'/\Delta t \)
are approximations to $\partial v'/\partial t$ and $\partial w'/\partial t$. Equations (13.4) and (13.5) then yield:

\[
\frac{\partial v'}{\partial t} = -\frac{1}{\rho} \frac{\partial p'}{\partial y} \quad (13.6)
\]

\[
\frac{\partial w'}{\partial t} = -\frac{1}{\rho} \frac{\partial p'}{\partial z} \quad (13.7)
\]

Now, from the continuity equation,

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0 \quad (13.8)
\]

Substituting Equation (13.1) into Equation (13.8),

\[
\frac{\partial u}{\partial x} + \frac{\partial}{\partial y}(v^*+v') + \frac{\partial}{\partial z}(w^*+w') = 0
\]

or

\[
\frac{\partial v'}{\partial y} + \frac{\partial w'}{\partial z} = -S = -\left(\frac{\partial u}{\partial x} + \frac{\partial v^*}{\partial y} + \frac{\partial w^*}{\partial z}\right) \quad (13.9)
\]

Differentiating Equation (13.9) with respect to t yields

\[
\frac{\partial}{\partial t} \frac{\partial v'}{\partial y} + \frac{\partial}{\partial t} \frac{\partial w'}{\partial z} = \frac{\partial}{\partial t}(-S)
\]

or

\[
\frac{\partial}{\partial y} \left(\frac{\partial v'}{\partial t}\right) + \frac{\partial}{\partial z} \left(\frac{\partial w'}{\partial t}\right) = \frac{\partial}{\partial t}(-S) \quad (13.10)
\]

Substituting Equation (13.6) and (13.7) into Equation (13.10),

\[
-\frac{1}{\rho^*} \frac{\partial^2 p'}{\partial y^2} + \frac{\partial^2 p'}{\partial z^2} = -\frac{S}{\Delta t} - S
\]
Where S_o is the source term after the mass sources have been eliminated. Theoretically, S_o should be zero after the pressure correction, so Equation (13.11) becomes:

$$\frac{1}{\rho} \left(\frac{\partial^2 p'}{\partial y^2} + \frac{\partial^2 p'}{\partial z^2} \right) = - \frac{\text{Div} \, \vec{v}^*}{\Delta t}$$

(13.12)

Where \vec{v}^* is the vector form of velocity. Equation (13.12) is the Poisson equation for pressure correction used in the present study.

The velocity corrections themselves can be seen to be independent of the choice of Δt (taken as unity in the present calculation). Further analysis reveals that the present scheme for velocity and pressure corrections is equivalent to assuming that the correction flow is irrotational being driven by a potential function equal to $-p'/\rho$ in such a manner as to remove the mass sources.
In this appendix, a computer program used to solve the three-dimensional laminar jet discharged from a rectangular or square orifice into a quiescent ambient is listed. The computer code in this case includes a main program and eleven subroutines. The subroutines called in main program are listed in order as it appeared in the main program:

- SDELX
- UVEL
- VVELY
- VVELZ
- WVEL
- PRESS
- TEMP
- TRIDIA
- TRID2
- OUTPUT
- PROFIL

The calculation procedure and functions of the subprograms are mostly similar to those in axisymmetric jet cases as described in Appendix C. Some additional subroutines and different procedures which were used for three-dimensional characteristics are described below.

Subroutine UVEL calculates the axial velocity component $u_{i+1,j,k}$ for each station by solving the x-momentum equation in a triangular
domain (this is one-eighth of the jet cross section). For a square orifice, because of symmetry, the variables interested such as \(u, v, w, t \) and \(p \), can be determined for the whole cross section from this one-eighth triangle. For a rectangular orifice, one quadrant of the jet (one-fourth of the cross section) is needed for calculation.

Subroutines WELY and WELZ compute the \(y \)-component of velocities \(v_{i+1,j,k} \) for a quadrant section. The alternating-direction-implicit method was used in this subroutine. Subroutine WVEL gives numerical values to \(w \)'s according to the symmetrical location of \(v \)'s through

\[
\tilde{w}_{i+1,j,k} = v_{i+1,k,j}
\]

Subroutine PRESS calculates the pressure correction \(p'_{i+1,j,k} \) for each station such that after correction, the velocity components \(u, v \) and \(w \) satisfy the continuity equation.

TRIDIA and TRID2 are used to solve the system of algebraic equations having tri-diagonal matrix form, TRIDIA for \(j = 1 \) to \(n \), and TRID2 for \(j = 2 \) to \(n \).

After the pressure correction, the \(y \) and \(z \) momentum equations are calculated again using the corrected pressure. Then new pressure correction \(p' \) is calculated from new \(v \)'s and \(w \)'s. This is done for five iterations by using a under-relaxation parameter \(\omega < 1 \).

Finally, OUTPUT prints out the parameters, or calls PROFIL for printing \(u, v, w, t \) and \(p \) profiles.
C
C **
C *
C PROGRAM II
C *
C *
C **
C *
C THREE-DIMENSIONAL PROGRAM TO SOLVE THE 3-D JETS
C AND PLUME PROBLEMS
C *
C *
C **
C
C ADISC : .EQ. 1.0 READ INPUT FROM DISC
C .EQ. 0.0 READ INPUT FROM CARD
C RY : HALF-WIDTH IN Y-DIRECTION
C RZ : HALF-WIDTH IN Z-DIRECTION
C VO : Y-COMPONENT VELOCITY
C VE : Y VELOCITY AT EDGE
C WE : W VELOCITY AT EDGE
C LORT : .GT. 0.0 FOR TURBULENT JET FLOW CASES
 .LE. 0.0 FOR LAMINAR JET FLOW CASES
C IEND : MAXIMUM NUMBER OF I STEPS TO BE COMPUTED IN
 A RUN, THE CALCULATION WILL STOP AFTER I=IEND
C ICUT : NUMBER OF I STEPS BETWEEN OUTPUTS
C NYI : NUMBER OF GRID SPACES IN Y-DIRECTION INITIALLY
C NZI : NUMBER OF GRID SPACES IN Z-DIRECTION INITIALLY
C DENO : DENSITY OF FLUID AT DISCHARGE
C DELTAY : JET HALF-WIDTH IN Y-DIRECTION AT I STATION
C DELTAZ : JET HALF-WIDTH IN Z-DIRECTION AT I STATION
C ANU : KINEMATIC VISCOSITY OF FLUID
C M : A PARAMETER TO CONTROL THE OUTPUT
C SCOE : COEFFICIENT TO GET STREAMWISE STEP SIZE
C
C MAIN PROGRAM
C
COMMON/A1/U(20,20), UP(20,20), V(20,20), VP(20,20), W(20,20),
1, WP(20,20), T(20,20), TP(20,20), PPL(20,20), P(20,20), UE, UF,
2, TE, TF, VE, WE, LORT, USTART, AL1, AL2, BL1, BL2
COMMON/A2/DELXP, DELY, DELZ, RY, RZ, DELTAY, DELTAZ, NJY, NKZ,
1, NYI, NIZ, NJY1, NKZ1, INDP, TC1, TC2, JCORE, RCOE, XCONV, UCONV,
2, ECONV, PCONV
COMMON/A3/ANU, PRT, HTK, DENO, CP, ALPHA, X, XO, YUHALF
COMMON/A4/A(25), B(25), C(25), D(25), UVIN, I
COMMON/A5/NY, NZ
COMMON/A6/NZK, NYJ
COMMON/A7/SCOE

C READING IN THE INPUT DATA
C
C
READ(5, 1000) ADISC
1000 FORMAT(F10.4)
READ (5, 1) LORT, IEND, IOUT, NYI, NZI, NJY, NKZ
1 FORMAT(7I6)
WRITE (6, 2) IEND, IOUT, NYI, NZI, NJY, NKZ
2 FORMAT (2X, 'IEND = ', I4, 5X, 'IOUT = ', I3, 5X, 'NYI = ', I3, 5X,
1 'NZI = ', I3, 5X, 'NJY = ', I3, 5X, 'NKZ = ', I3)
READ(5, 151) UVIN, OMEGA, ITEND
151 FORMAT(2F10.5, I5)
WRITE(6, 21) UVIN, OMEGA, ITEND
21 FORMAT(3X, 'UVIN = ', F10.5, 5X, 'ITEND = ', I5, 5X, 'OMEGA = ',
1F10.5)
READ (5, 1051) SCOE
1051 FORMAT(F10.5)
WRITE(6, 1052) SCOE
1052 FORMAT(4X, 'COEFFICIENT FOR STEP SIZE DELXP = ', F10.5)
READ (5, 15) M
15 FORMAT(IS)
WRITE (6, 16) M
16 FORMAT(2X, 'M = ', I5)
IF(ADISC .GE. 1.0) GO TO 2000
READ(5, 11) DENO, ANU, USTART, RY, RZ, TSTART, VO, PRT, UE, UF, TE,
1 TF, CP, HTK, VE, WE
11 FORMAT(6G12.5)
WRITE(6, 12) DENO, ANU, USTART, RY, RZ, TSTART, VO, PRT, UE, UF,
1 TE, TF, CP, HTK, VE, WE
1 F12.5, 5X, 'RY = ', F12.5, 5X, 'RZ = ', F12.5/3X, 'TSTART = ',
2 F12.5, 5X, 'VO = ', F12.5, 5X, 'PRT = ', F12.5, 5X, 'UE = ', F12.5,
READ(5,17) RCOE
17 FORMAT(F12.6)
WRITE(6,18) RCOE
18 FORMAT(2X,'RCOE =*',F12.6)
UE=USTART*RCOE

128 R=UE/USTART
C
C NON-DIMENSIONALIZING
C
C CONVERSION FACTORS
C
29 XCONV=ANU/USTART
ECONV=ANU
UCONV=USTART
TC1=TE
TC2=TSTART-TE
GC1=32.174*144.0
PCONV=USTART*USTART*DENO
C
C VARIABLES
C
TE1=(TE-TE)/TC2
TF1=(TF-TE)/TC2
TSTART=(TSTART-TE)/TC2
TE=TEi
TF=TF1
RY=RY/XCONV
RZ=RZ/XCONV
NY=NYI+1
NZ=NZI+1
C
C Y-GRID AND Z-GRID SPACING
C
DELY=RY/NYI
DELZ=RZ/NZI
UE=UE/UCONV
UF=UF/UCONV
USTART=USTART/UCONV
ANU=ANU/ECONV
ALPHA=(HTK/DENO/CP)/ECONV
C
C STARTING PROFILES
C
C ASSUMED UNIFORM PROFILE
C
I=0.0
X=0.0
C
DO 25 J=1,NJY
DO 25 K=1,NKZ
 P(J,K)=0.0
 PPL(J,K)=0.0
 U(J,K)=UE
 UP(J,K)=UE
 V(J,K)=0.0
 VP(J,K)=0.0
 W(J,K)=0.0
 WP(J,K)=0.0
 T(J,K)=TE
 TP(J,K)=TE
25 CONTINUE
DO 26 J=1,NY
 DO 26 K=1,NZ
 U(J,K)=1.0
 UP(J,K)=1.0
 T(J,K)=1.0
 TP(J,K)=1.0
26 CONTINUE
DELTAY=RY
DELTAZ=RZ
DELMIX=0.0
IF(LORT .GT. 0.0) GO TO 54
WRITE(6,58)
58 FORMAT(/,10X,'LAMINAR JET CASE')
 AL1=2.0
 AL2=2.0
 BL1=2.0*ALPHA
 BL2=8*1
 GO TO 57
C
C BEGINNING OF COMPUTATION LOOP
C
54 WRITE(6,56)
56 FORMAT(6X,'TURBULENT JET CASE')
57 N=1
 KK=1
 IF(I .EQ. 0) YUHALF=DELTAY
 GO TO 67
C
C READ IN INPUT DATA FROM DISC
C
2000 CONTINUE
 READ(10) U,UP,V,VP,W,WP,T,TP,NY,NZ,X0,PPL,P,UE,UF,TE,TF,
 1VE,WE,LORT,USTART,AL1,AL2,BL1,BL2,DELXP,DELY,DELZ,RY,RZ,
 2DELTAY,DELTAZ,NJY,NKZ,NYI,NZI,NJYI,NKZI,INDP,TC1,TC2,KK,
 3JCORE,RCOE,XCONV,UCONV,ECONV,PCONV,ANU,PRT,HTK,DENO,CP,
 4ALPHA,X,YUHALF,UVIN,I,NZK,NYJ,GCI,OMEGA,M
 CALL OUTPUT
67 IF(U(1,1) .LT. USTART) GO TO 63
GO TO 61
63 IF(KK .EQ. 0.1) GO TO 77
GO TO 61
77 DIST=X*X*CONV
WRITE(6,62) DIST
62 FORMAT(3X,'PREDICTED STARTING LENGTH =',G14.8)
KK=KK+1
61 CALL SDELX
X=X+DELXP
I=I+1
IF(I .GT. 1) GO TO 141
DELXM=DELXP
NJY1=NJY-1
NKZ1=NKZ-1
141 CALL UVEL
IF(I .EQ. 1) YUHALF=DELTAY
C
ITER=0
CALL VVELY
CALL VVELZ
CALL WVEL
C
C PRESSURE CORRECTION--MAKE THE CORRECTION BEFORE PROCEEDING
TO THE NEXT STEP
C
C
505 ITER=ITER+1
DO 310 J=1,NJY
DO 310 K=1,NKZ
310 PPL(J,K)=0.0
CALL PRESS
DO 125 J=1,NYJ
DO 125 K=1,NZK
P(J,K)=P(J,K)+PPL(J,K)*OMEGA
125 CONTINUE
CALL VVELY
CALL VVELZ
CALL WVEL
DO 162 K=1,NKZ
DO 162 J=NYJ,NJY
162 VP(J,K)=VP(NY,K)
DO 164 J=1,NJY
DO 164 K=NZK,NKZ
164 WP(J,K)=WP(J,NZ)
IF(UP(NY-1,NZ-1) .NE. UE) GO TO 1166
VP(NY-1,NZ-1)=VP(NY,NZ-1)
WP(NY-1,NZ-1)=WP(NY-1,NZ)
1166 CONTINUE
IF(ITER .LT. ITEND) GO TO 505
C RESET THE BOUNDARY CONDITIONS FOR V AND W
C
DO 160 J=1,NJY1
 VP(1,J)=0.0
160 WP(J,1)=0.0
C
C SOLVE TEMPERATURES
C
CALL TEMP
DO 60 J=1,NJY
DO 60 K=1,NKZ
 U(J,K)=UP(J,K)
 V(J,K)=VP(J,K)
 W(J,K)=WP(J,K)
60 T(J,K)=TP(J,K)
REDELX=DELXP*XCONV
WRITE(6,111) REDELX
111 FORMAT('DELXP = ',G14.7)
IF(I .GT. 5J) GO TO 55
CALL OUTPUT
GO TO 65
55 II=IOUT*M
IF(I .EQ. II) GO TO 122
DIST=X*XCONV
XBAR=X/RY/RY
UCL=(U(1,1)-UE)/(USTART-UE)
TCL=T(1,1)
DDEY=DELTAY*XCONV
RUHALF=YUHALF/RY
WRITE (6,5200) I, DIST, XBAR, UCL, TCL, DDEY, RUHALF
5200 FORMAT('X DISTANCE = ',G12.5,5X,'UCL = ',G12.5,5X,'X VARIABLE = ',G12.5,5X,'TCL = ',G12.5,5X,'DELTAY = ',G12.5,5X,'RUHALF = ',G12.5)
GO TO 68
122 CALL OUTPUT
M=M+1
68 IF(NY .LE. 18) GO TO 65
IN=0
DO 5005 K=1,20,2
 IN=IN+1
5005 IM=0
 DO 5005 J=1,20,2
 IM=IM+1
5005 UP(IM,IN)=UP(J,K)
 U(IM,IN)=U(J,K)
 VP(IM,IN)=VP(J,K)
 V(IM,IN)=V(J,K)
 WP(IM,IN)=WP(J,K)
 W(IM,IN)=W(J,K)
P(IM, IN) = P(J, K)
TP(IM, IN) = TP(J, K)
T(IM, IN) = T(J, K)

5005 CONTINUE
DELY = DELY * 2.0
DELZ = DELZ * 2.0
NY = NY / 2.0 + 1
NZ = NZ / 2.0 + 1
NY2 = NY + 2
NZ2 = NZ + 2
NZ3 = NZ + 3
DO 5006 K = 1, NZ2
DO 5006 J = NY2, NJY
U(J, K) = UE
UP(J, K) = UE
V(J, K) = 0.
VP(J, K) = 0.
W(J, K) = 0.
WP(J, K) = 0.
P(J, K) = 0.
T(J, K) = TE
TP(J, K) = TE

5006 CONTINUE
DO 5007 K = NZ3, NKZ
DO 5007 J = 1, NJY
U(J, K) = UE
UP(J, K) = UE
V(J, K) = 0.
VP(J, K) = 0.
W(J, K) = 0.
WP(J, K) = 0.
P(J, K) = 0.
T(J, K) = TE
TP(J, K) = TE

5007 CONTINUE
65 IF (I < TEND) GO TO 67
WRITE (11) U, UP, V, VP, W, WP, T, TP, NY, NZ, X0, PPL, P, UE, UF, TE, TF,
1 VE, WE, LORT, USTART, AL1, AL2, BL1, BL2, DELXP, DELY, DELZ, RX, RY, RZ,
2 DELTA, DELT, NKX, NKY, NKL1, NKL2, NKZ, NKL3, NKZ1, INDP, TC1, TC2, KK,
3 JCORE, RCOE, XCONV, UCONV, ECONV, PCONV, ANU, PRT, HTK, DENO, CP,
4 ALPHA, X, Y, Z, XHALF, UVIN, I, NZK, NYJ, GCI, OMEGA, M
STOP
END
SUBROUTINE SDELX
COMMON/A2/DELP, DELY, DELZ, RY, RZ, DELTAY, DELTAZ, NJY, NKZ,
NY1, N1, N2, NK1, IND, TC1, TC2, JCORE, RCOE, XCONV, UCONV,
ECONV, PCONV
COMMON/A7/SCOE

CALCULATE THE STREAMWISE STEP SIZE

DELP = SCOE * DELTAY
RETURN
END
SUBROUTINE UVEL
COMMON/A1/U(20,20),UP(20,20),V(20,20),VP(20,20),W(20,20)
1,WP(20,20),T(20,20),TP(20,20),PPL(20,20),P(20,20),UE,UF,
2TE,TF,VE,WE,LORT,USTART,AL1,AL2,BL1,BL2
COMMON/A2/DELXP,DELY,DELZ,RY,RZ,DELTAY,DELTAZ,NJY,NKZ,
1NYI,NZI,NJYI,NKZI,INDP,TC1,TC2,JCORE,RCOE,XCDNV,UCONV,
2ECNV,PCNV
COMMON/A3/ANU,PRT,HTK,DENO,CP,ALPHA,X,XO,YUHALF
COMMON/A4/A(25),B(25),C(25),D(25),UVIN,I
COMMON/A5/NY,NZ
COMMON/A6/NZK,NYJ
IU=6C
IU=0
NYJ=NY+2
NZK=NZ+2
UD=AL1/(2.0*DELY*DELY)
UUE=AL1/(2.0*DELZ*DELZ)
DO 210 K=1,NZK
DO 210 J=KJ,NYJ
UA=U(J,K)/DELXP
UB=V(J,K)/(2.0*DELY)
UC=W(J,K)/(2.0*DELZ)
CA=UA+2.0*UD+2.0*UUE
C1=(UD-UB)/CA
C2=(UD+UB)/CA
C3=(UUE-UC)/CA
C4=(UUE+UC)/CA
C5=UA*U(J,K)/CA
IF(K.EQ.1) GO TO 282
IF(J.NE.KJ) GO TO 260
UP(J-1,K)=UP(J,K-1)
260 UP(J,K)=C1*UP(J+1,K)+C2*UP(J-1,K)+C3*UP(J,K+1)+C4*UP(J,
1K-1)+C5
GO TO 210
IF(J.EQ.1) GO TO 235
UP(J,K)=C1*UP(J+1,K)+C2*UP(J-1,K)+(C3+C4)*UP(J,2)+C5
GO TO 210
235 UP(1,1)=(C1+C2+C3+C4)*UP(2,1)+C5
210 CONTINUE
UX=UP(NY,NZ)
IF(IU.LT.5) GO TO 280
IF(IU.GT.IIU) GO TO 110
IF(UX.EQ.0.0) GO TO 300
IF(ABS((UEND-UX)/UX) LE. 0.0001) GO TO 110
280 UEND=UP(NY,NZ)
GO TO 300
110 WRITE(6,216) IU
159

216 FORMAT(3X, 'IU =', I4)
 DO 310 K=2, NZK
 KJ=K-1
 DO 310 J=1, KJ
 UP(J, K)=UP(K, J)
 310 CONTINUE

C CALCULATE YUHALF
 UPMEAN=(UP(1, 1)+UE)/2.0
 DO 360 J=1, NJY
 IF(UP(J, 1) .LE. UPMEAN) GO TO 42
 360 CONTINUE
 JJ=J
 JM=J-1
 YUHALF=JM*DLY+DLY*(UPMEAN-UP(JM, 1))/(UP(JJ, 1)-UP(JM, 1))
 DO 361 J=1, NJY
 IF(UP(J, 1) .LT. USTART) GO TO 24
 361 CONTINUE
 24 YCORE=(J-1)*DLY
 JCORE=J

C CALCULATING JET HALF-WIDTH
 DO 90 J=1, NJY
 UTEST=(UP(1, 1)-UP(J, 1))/(UP(1, 1)-UE)
 IF(UTEST .GE. UVIN) GO TO 27
 90 CONTINUE
 27 DELTAY=(J-1)*DLY
 NY=J
 NZ=J

C RESET THE BOUNDARY CONDITIONS AT THE EDGE
 DO 601 K=1, NZK
 IF(UP(1, K) .LE. UE) GO TO 601
 DO 602 J=1, NYJ
 UTEST=(UP(1, K)-UP(J, K))/(UP(1, K)-UE)
 IF(UTEST .GE. UVIN) GO TO 627
 602 CCNTINUE
 627 JB=J
 DO 605 J=JB, NYJ
 605 UP(J, K)=UE
 601 CCNTINUE
 DO 608 K=2, NZK
 KJ=K-1
 DO 608 J=1, KJ
 UP(J, K)=UP(K, J)
 608 CCNTINUE
 140 RETURN

END
SUBROUTINE VVELY
COMMON/A1/U(20,20),V(20,20),VP(20,20),W(20,20)
1,W(20,20),T(20,20),TP(20,20),PPL(20,20),P(20,20),VP,UE,UF,
2TE,TF,VE,WE,LORT,USTART,AL1,AL2,BL1,BL2
COMMON/A2/DELXP,DELY,DELZ,RY,RZ,DELTAY,DELTAZ,NJY,NKZ,
1NYI,NZI,NJI,NKJ,INDP,TC1,TC2,JCORE,RCOE,CONDV,UCNV,
2ECNV,PCONV
COMMON/A3/ANU,PRT,HTK,DENO,CP,ALPHA,X,XO,YUHALF
COMMON/A4/A(25),B(25),C(25),D(25),UVIN,I
COMMON/A5/NY,NZ
COMMON/A6/NZK,NJY
NY=NY
NZK=NZ
DO 15 K=1,NZK
DO 5 J=2,NYJ
IF(UP(J,K) EQ. USTART) GO TO 55
2 5 UA=UP(J,K)/DELXP
UB1=2.0*DELY*DELY
UB=AL1/UB1
UC=AL2/UB1
UD=VP(J,K)/(2.0*DELY)
B(J)=-UD-UC
D(J)=UA+UB+UC
A(J)=UA-X
DPDY=(P(J,K)-P(J-1,K))/DELY
STAB=ABS(VP(J,K)*DELY/ANU)
IF(STAB LT. 2.0) GO TO 86
IF(VP(J,K) GT. 0.0) GO TO 84
B(J)=-UC
D(J)=UA+UB+UC-2.0*UD
A(J)=2.0*UD-UB
GO TO 86
84 B(J)=-2.0*UD-UC
D(J)=UA+UB+UC+2.0*UD
A(J)=-UB
86 CONTINUE
IF(K NE. 1) GO TO 70
C(J)=UA*V(J,1)-DPDY+AL1*(VP(J,2)-VP(J,1))/DELZ/DELZ
GO TO 5
70 C(J)=UA*V(J,K)-WP(J,K)*(VP(J,K+1)-VP(J,K-1))/(2.0*DELZ)
1+(AL1*(VP(J,K+1)-VP(J,K))-AL2*(VP(J,K)-VP(J,K-1)))/(2.*
2DELZ*DELZ)-DPDY
GO TO 5
55 B(J)=0.0
D(J)=1.0
A(J)=0.0
C(J)=0.0
5 CONTINUE
B(NYJ)=-UB-UC
D(NYJ)=UP(NYJ,K)/DELXP+UB+UC
CALL TRID2(A,B,C,D,NYJ)
DO 52 J=2,NYJ
52 VP(J,K)=C(J)
15 CONTINUE
DO 80 K=1,NKZ
VP(K,NZ)=0.0
VP(K,NZ+1)=0.0
DO 80 J=NY,NJY
80 VP(J,K)=VP(NY,K)
RETURN
END
SUBROUTINE VVELZ

COMMON/A1/U(20,20),UP(20,20),V(20,20),VP(20,20),W(20,20)
T(20,20),TP(20,20),P(20,20),UE,UF,
2TE,TF,VE,WE,ORT,USTART,AL1,AL2,BL1,BL2
COMMON/A2/DELXP,DELY,DELZ,RY,RZ,DELTAZ,NJY,NKZ,
1NYI,NZI,NJYI,NKZ1,INDP,TC1,TC2,JCORE,RCOE,XCONV,UCONV,
2ECNV,PCONV
COMMON/A3/ANU,PRT,HTK,DENO,CP,ALPHA,X,XO,YUHALF
COMMON/A4/A(25),B(25),C(25),D(25),UWIN,I
COMMON/A5/NY,NZ
COMMON/A6/NZK,NYJ
DO 15 J=2,NYJ
DO 5 K=1,NZK
IF(UP(J,K) .EQ. USTART) GO TO 56

25 UA=UP(J,K)/DELXP
UBZ=2.0*DELZ*DELZ
UB=AL1/UBZ
UC=AL2/UBZ
UD=WP(J,K)/(2.0*DELZ)
B(K)=-UD-UC
D(K)=UA+UB+UC
A(K)=UD-UB
DPDY=(P(J,K)-P(J-1,K))/DELY
STAB=ABS(WP(J,K)*DELZ/ANU)
IF(STAB .LT. 2.0) GO TO 86
IF(WP(J,K) .GT. 0.0) GO TO 84
B(K)=-UC
D(K)=UA+UB+UC-2.0*UD
A(K)=2.0*UD-UB
GO TO 86
84 B(K)=-2.0*UD-UC
D(K)=UA+UB+UC+2.0*UD
A(K)=-UB
GO TO 86
86 CONTINUE
IF(J .GE. NYJ) GO TO 55
C(K)=UA*(J,K)-VP(J,K)*(VP(J+1,K)-VP(J-1,K))/(2.0*DELY)+
1(AL1*(VP(J+1,K)-VP(J,K))-AL2*(VP(J,K)-VP(J-1,K)))/(2.0*
2DELY*DELY)-DPDY
GO TO 5
55 C(K)=UA*V(J,K)-DPDY
GO TO 5
56 B(K)=0.0
D(K)=1.0
A(K)=0.0
C(K)=0.0
CONTINUE
IF(UP(J,1) .EQ. USTART) GO TO 60
A(1)=-UB-UC
D(1)=UP(J,1)/DELXP+UB+UC
B(1)=0.0
CONTINUE
CALL TRIDIA(A,B,C,D,NZK)
DO 52 K=1,NZK
52 VP(J,K)=C(K)
CONTINUE
DO 80 K=1,NKZ
VP(K,NZ)=0.0
VP(K,NZ+1)=0.0
DO 80 J=NY,NJY
80 VP(J,K)=VP(NY,K)
RETURN
END
SUBROUTINE MVEL
COMMON/A1/U(20,20),VP(20,20),V(20,20),VP(20,20),W(20,20)
1,WP(20,20),T(20,20),TP(20,20),PPL(20,20),P(20,20),UE,UF,
2TE,TF,VE,WE,LORT,USTART,AL1,AL2,BL1,BL2
COMMON/A2/DELXP,DELY,DELZ,RY,RZ,DELTAY,DELTAZ,NJY,NKZ,
1NYI,NZI,NJY1,NKZ1,INDP,TC1,TC2,JCORE,RCOE,XCONV,JCONV,
2ECNV,PCNV
COMMON/A3/ANU,PRT,HTK,DENO,CP,ALPHA,X,XO,YUHALF
COMMON/A4/A(25),B(25),C(25),D(25),UVIN,1
COMMON/A5/NY,NZ
COMMON/A6/NZK,NYJ
DO 100 K=1,NZK
DO 100 J=1,NYJ
WP(J,K)=VP(K,J)
100 CONTINUE
RETURN
END
SUBROUTINE PRESS
COMMON/A1/U(20,20),UP(20,20),V(20,20),VP(20,20),W(20,20)
1,WP(20,20),T(20,20),TP(20,20),P(20,20),UE,UF,
2TE,TE,WR,WL,ORT,USTART,AL1,AL2,BL1,BL2
COMMON/A2/DELXP,DELY,DELZ,RZ,RY,DELTA,DELTAZ,NJY,NKZ,
1NYI,NZI,NY1,NKZ1,INDP,TC1,TC2,JCORE,RCOE,XCONV,UCONV,
2ECONV,PCONV
COMMON/A3/ANU,PRT,HTK,DENO,CP,ALPHA,X,XO,YUHALF
COMMON/A4/A(25),B(25),C(25),D(25),UVIN/I
COMMON/A5/NY,NZ
COMMON/A6/NZK,NYJ
C
C PRESSURE CORRECTION
C
IIP=150
IP=0
C1=1.0/DELY/DELY
C2=1.0/DELZ/DELZ
C3=2.0*(C1+C2)
PC1=C1/C3
PC2=C2/C3
NY1=NY-1
NZ1=NZ-1
PB1=C1+2.0*C2
100 IP=IP+1
DO 15 K=1,NZ1
IPC2=1
KJ=K
DO 10 J=KJ,NY1
IF(UP(J,K) .EQ. USTART) GO TO 10
CN=-((UP(J,K)-U(J,K))/DELXP+(VP(J+1,K)-VP(J,K))/DELY+
1(WP(J,K+1)-WP(J,K))/DELZ)*XCONV/UCONV
IF(UP(K,J,K) .LT. USTART) GO TO 25
IF(IPC2 .GT. 1) GO TO 25
IPC=J
IPC2=2
25 IF(J .EQ. IPC) GO TO 38
IF(K .EQ. 1) GO TO 82
IF(J .NE. KJ) GO TO 111
PPL(J,K+1)=PPL(J+1,K)
PPL(J-1,K)=PPL(J,K-1)
111 CONTINUE
PPL(J,K)=PC1*(PPL(J+1,K)+PPL(J-1,K))+PC2*(PPL(J,K+1)+PPL
1(J,K-1)) +CON/C3
GO TO 10
82 PPL(J,1)=PC1*(PPL(J+1,1)+PPL(J-1,1))+2.0*PC2*PPL(J,2)+
1*CON/C3
GO TO 10
38 IF(K .EQ. 1) GO TO 30
IF(KJ .EQ. IPC) GO TO 85
PPL(J,K) = C1/PB1*PPL(J+1,K) + C2/PB1*(PPL(J,K+1)+PPL(J,K-1)) + CON/PB1
GO TO 10
30 PPL(J,1) = C1/PB1*PPL(J+1,1) + 2.0*C2/PB1*PPL(J,2) + CON/PB1
GO TO 10
85 PPL(J,K) = (PPL(J+1,K)+PPL(J,K-1))/2.0+CON/C3
10 CONTINUE
IF(U(J,K) .LT. USTART) GO TO 15
IPC1=IPC-1
DO 310 J=KJ,IPC1
310 PPL(J,K) = PPL(IPC,K)
15 CONTINUE
PX=PPL(NY1,NZ1)
IF(IP .EQ. 1) GO TO 60
IF(IP .GT. IIP) GO TO 110
IF(PX .EQ. 0.0) GO TO 100
IF(ABS((PEND-PX)/PX) .LE. 0.0001) GO TO 110
60 PEND=PX
GO TO 100
110 WRITE(6,16) IP,PX
16 FORMAT(3X,ITERATION NO = ' ,IS,5X,PPL(NY1,NZ1) = ',G15.5)
DO 320 K=2,NZ1
KJ=K-1
DO 320 J=1,KJ
320 PPL(J,K) = PPL(K,J)
RETURN
END
SUBROUTINE TRIDIA (A,B,C,D,N)
DIMENSION A(1),B(1),C(1),D(1)

DO 10 I=2,N
P=B(I)/D(I-1)
D(I)= D(I)-P*A(I-1)
10 C(I)=C(I)-P*C(I-1)

C BACK SUBSTITUTION
C(N)=C(N)/D(N)

DO 20 I=2,N
J=N-I+1
20 C(J)=(C(J)-A(J)*C(J+1))/D(J)
RETURN
END
SUBROUTINE TRID2 (A, B, C, D, N)
DIMENSION A(1), B(1), C(1), D(1)
DO 10 I=3,N
 P=B(I)/D(I-1)
 D(I)=D(I)-P*A(I-1)
10 C(I)=C(I)-P*C(I-1)
C BACK SUBSTITUTION
C(N)=C(N)/D(N)
N1=N-1
DO 20 I=2,N1
 J=N-I+1
20 C(J)=(C(J)-A(J)*C(J+1))/D(J)
RETURN
END
SUBROUTINE TEMP
COMMON/A1/U(20,20),V(20,20),W(20,20)
1,WP(20,20),T(20,20),TP(20,20),PPL(20,20),P(20,20),UE,UF,
2TE,TF,VE,WE,LORT,USTART,AL1,AL2,BL1,EL2
COMMON/A2/DELXP,DELY,DELZ,RX,RZ,DELTAY,DELTAZ,NJY,NKZ,
NYI,NZI,NJY1,NKZ1,INDP,TC1,TC2,JCORE,RCOE,XCONV,UCONV,
2ECNV,PCNV
COMMON/A3/ANU,PRV,HTK,DENQ,CP,ALPHA,X,XO,YUHALF
COMMON/A4/A(25),B(25),C(25),D(25),UVIN,I
COMMON/A5/NY,NZ
COMMON/A6/NKZ,NJY
IIIT=60
IT=0
TD=BL1/(2.0*DELY*DELY)
TEE=BL1/(2.0*DELZ*DELZ)
300 IT=IT+1
DC 210 K=1,NZK
KJ=K
DO 210 J=KJ,NYJ
TA=U(J,K)/DELXP
TB=V(J,K)/(2.0*DELY)
TC=W(J,K)/(2.0*DELZ)
CA=TA+2.0*TD+2.0*TEE
C1=(TD-TB)/CA
C2=(TD+TB)/CA
C3=(TEE-TC)/CA
C4=TA*TB/CA
IF(K.NE.1) GO TO 282
IF(J.NE.KJ) GO TO 260
TP(J,K+1)=TP(J-1,K)
TP(J-1,K)=TP(J,K-1)
260 TP(J,K)=(C1*TP(J+1,K)+C2*TP(J-1,K)+(C3+C4)*TP(J,K)+C5
1K-1)+C5
GO TO 210
282 IF(J.EQ.1) GO TO 235
TP(J,K)=C1*TP(J+1,K)+C2*TP(J-1,K)+(C3+C4)*TP(J,2)+C5
GO TO 210
235 TP(1,1)=(C1+C2+C3+C4)*TP(2,1)+C5
210 CONTINUE
TX=TP(NY,NZ)
IF(IT.LT.5) GO TO 280
IF(IT.GT.IIT) GO TO 110
IF(TX.EQ.0.0) GO TO 300
IF(ABS((TEND-TX)/TX).LE.0.0001) GO TO 110
280 TEND=TP(NY,NZ)
GO TO 300
110 WRITE(6,216) IT
216 FORMAT(3X,'IT =',I4)
DO 310 K=2,NZK
KJ = K - 1
DO 310 J = 1, KJ
TP(J, K) = TP(K, J)
310 CONTINUE
DO 601 K = 1, NZK
IF (TP(1, K) .LE. TE) GO TO 601
DO 602 J = 1, NYJ
TTEST = (TP(1, K) - TP(J, K)) / (TP(1, K) - TE)
IF (TTEST .GE. UVIN) GO TO 627
602 CONTINUE
627 JB = J
DO 605 J = JB, NYJ
605 TP(J, K) = TE
601 CONTINUE
DO 608 K = 2, NZK
KJ = K - 1
DO 608 J = 1, KJ
TP(J, K) = TP(K, J)
608 CONTINUE
RETURN
END
SUBROUTINE OUTPUT
COMMON/A1/U(20,20),UP(20,20),V(20,20),VP(20,20),W(20,20)
1,WP(20,20),T(20,20),TP(20,20),PPL(20,20),P(20,20),UE,UF,
2TE,TF,VE,WE,LORT,USTART,AL1,AL2,BL1,BL2
COMMON/A2/DELX,DELY,DELZ,RX,RZ,DLETAY,DELTAZ,NJY,NKZ,
INY,NZI,NJY1,NKZ1,INDP,TC1,TC2,JCORE,RCDE,ECDES,UCGCV
2ECNV,PCNV
COMMON/A3/ANU,PRT,HTK,OENO,CP,ALPHA,X,XO,YUHALF
COMMON/A4/A(25),B(25),C(25),D(25),UVIN,I
COMMON/A5/NY,NZ
COMMON/A6/NKZ,NJ
DIMENSION CO(25)
WRITE (6,10)
10 FORMAT('O')
DIST=X*XCONV
XBAR=X/RY/RY
UCL=(U(1,1)-UE)/(USTART-UE)
TCL=T(1,1)
DDEY=DLETAY*XCONV
DDEZ=DELTAZ*XCONV
RUHALF=YUHALF/RY
WRITE (6,5200) I,DIST,XBAR,UCL,TCL,DDEY,RUHALF
5200 FORMAT(5X,I4.5X,'DISTANCE =',G12.5,5X,'UCL =',G12.5,5X,'TCL =',G12.5,5X,'RUHALF =',G12.5)
INPR0=1
WRITE (6,25)
25 FORMAT(///,2X,'U VELOCITY',3X,'(FT/SEC)*,/')
CALL PROFIL(UP,INPRO)
WRITE (6,26)
26 FORMAT(///,2X,'V VELOCITY',3X,'(FT/SEC)*,/')
CALL PROFIL(VP,INPRO)
WRITE (6,27)
27 FORMAT(///,2X,'W VELOCITY',3X,'(FT/SEC)*,/')
CALL PROFIL(WP,INPRO)
INPR0=2
WRITE (6,28)
28 FORMAT(///,2X,'TEMPERATURE',3X,'(DEGREE F)*,/')
CALL PROFIL(TP,INPRO)
INPR0=3
WRITE(6,29)
29 FORMAT(///,2X,'PRESSURE',3X,'(PSI)*,/')
CALL PROFIL(P,INPRO)
WRITE(6,30)
30 FORMAT(///,2X,'SOURCE TERM ')
DO 176 J=1,NYJ
C0(J) = ((UP(J,K)-U(J,K))/DELXP + (VP(J+1,K)-VP(J,K))/DELY
 1+ (WP(J,K+1)-WP(J,K))/DELZ)*UCONV/XCONV
176 CONTINUE
178 WRITE(6,167) (C0(J), J=1,NYJ)
167 FORMAT(10(1X,G11.4))
RETURN
END
SUBROUTINE PROFIL (DXX, INPRO)
COMMON/A1/U(20,20),VP(20,20),P(20,20),W(20,20)
1,WP(20,20),T(20,20),PPL(20,20),UE,UF,
2TE,TF,VE,WE,LORT,DELTAS,Al,A2,AL1,AL2,AL3,AL4,
COMMON/A2/DELXP,DELY,DELZ,RY,RZ,DELTAY,DELTAZ,NJY,NKZ,
1NYI,NZI,NJY1,NKZ1,INDP,TC1,TC2,JCORE,RCOE,XCONV,UCONV,
2ECOV,PCONV
COMMON/A3/ANU,PRT,HTK,DENO,CP,ALPHA,X,XO,YUHALF
COMMON/A4/A(2S),B(25),C(25),D(25),UVIN,I
COMMON/A5/NY,NZ
COMMON/A6/NZK,NYI
DIMENSION DX(20,20),DXX(20,20)
IF(INPRO .EQ. 2) GO TO 10
IF(INPRO .EQ. 3) GO TO 20
DO 40 K=1,NZK
DO 40 J=1,NYJ
40 DX(J,K)=DXX(J,K)*UCONV
GO TO 100
DO 45 K=1,NZK
DO 45 J=1,NYJ
45 DX(J,K)=DXX(J,K)*PCONV/32.174/144.0
GO TO 100
DO 50 K=1,NZK
DO 50 J=1,NYJ
50 DX(J,K)=DXX(J,K)*TC2+TC1
100 DO 60 K=1,NZK
KR=NZK-K+1
60 WRITE(6,30) (DX(J,KR),J=1,NYJ)
FORMAT(10(I11,4))
RETURN
END