A molecular Debye-Hückel theory and its applications to electrolyte solutions: The size asymmetric case

Thumbnail Image
Date
2017-03-28
Authors
Xiao, Tiejen
Song, Xueyu
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

A molecular Debye-Hückel theory for electrolyte solutions with size asymmetry is developed, where the dielectric response of an electrolyte solution is described by a linear combination of Debye-Hückel-like response modes. As the size asymmetry of an electrolyte solution leads to a charge imbalanced border zone around a solute, the dielectric response to the solute is characterized by two types of charge sources, namely, a bare solute charge and a charge distribution due to size asymmetry. These two kinds of charge sources are screened by the solvent differently, our theory presents a method to calculate the mean electric potential as well as the electrostatic contributions to thermodynamic properties. The theory has been successfully applied to binary as well as multi-component primitive models of electrolyte solutions.

Comments

This article is published as Xiao, Tiejun, and Xueyu Song. "A molecular Debye-Hückel theory and its applications to electrolyte solutions: The size asymmetric case." The Journal of Chemical Physics 146, no. 12 (2017): 124118. doi: 10.1063/1.4978895. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections