Influence of Valence Electron Concentration on Laves Phases: Structures and Phase Stability of Pseudo‐Binary MgZn2–xPdx

Thumbnail Image
Date
2015-07-01
Authors
Thimmaiah, Srinivasa
Miller, Gordon
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Miller, Gordon
University Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

A series of pseudo‐binary compounds MgZn2–xPdx (0.15 ≤ x ≤ 1.0) were synthesized and structurally characterized to understand the role of valence electron concentration (vec) on the prototype Laves phase MgZn2 with Pd‐substitution. Three distinctive phase regions were observed with respect to Pd content, all exhibiting fundamental Laves phase structures: 0.1 ≤ x ≤ 0.3 (MgNi2‐type, hP24; MgZn1.80Pd0.20(2)), 0.4 ≤ x ≤ 0.6 (MgCu2‐type, cF24; MgZn1.59Pd0.41(2)), and 0.62 ≤ x ≤ 0.8 (MgZn2‐type, hP12: MgZn1.37Pd0.63(2)). Refinements from single‐crystal X‐ray diffraction indicated nearly statistical distributions of Pd and Zn atoms among the majority atom sites in these structures. Interestingly, the MgZn2‐type structure re‐emerges in MgZn2–xPdx at x ≈ 0.7 with the refined composition MgZn1.37(2)Pd0.63 and a c/a ratio of 1.59 compared to 1.64 for binary MgZn2. Electronic structure calculations on a model “MgZn1.25Pd0.75” yielded a density of states (DOS) curve showing enhancement of a pseudogap at the Fermi level as a result of electronic stabilization due to the Pd addition. Moreover, integrated crystal orbital Hamilton population (ICOHP) values show significant increases of orbital interactions for (Zn,Pd)–(Zn,Pd) atom pairs within the majority atom substructure, i.e., within the Kagomé nets as well as between a Kagomé net and an apical site, from binary MgZn2 to the ternary “MgZn1.25Pd0.75”. Multi‐centered bonding is evident from electron localization function (ELF) plots for “MgZn1.25Pd0.75”, an outcome which is in accordance with analysis of other Laves phases.

Comments

This is the peer-reviewed version of the following article: Thimmaiah, Srinivasa, and Gordon J. Miller. "Influence of Valence Electron Concentration on Laves Phases: Structures and Phase Stability of Pseudo‐Binary MgZn2–xPdx." Zeitschrift für anorganische und allgemeine Chemie 641, no. 8‐9 (2015): 1486-1494, which has been published in final form at doi: 10.1002/zaac.201500197. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2015
Collections