Campus Units

Ames Laboratory, Chemistry

Document Type


Publication Version

Submitted Manuscript

Publication Date


Journal or Book Title

Chemistry of Materials




Soft chemistry methods offer the possibility of synthesizing metastable and kinetic products that are unobtainable through thermodynamically-controlled, high-temperature reactions. A recent solution-phase exploration of Li-Zn-Sb phase space revealed a previously unknown cubic half-Heusler MgAgAs-type LiZnSb polytype. Interestingly, this new cubic phase was calculated to be the most thermodynamically stable, despite prior literature reporting only two other ternary phases (the hexagonal half-Heusler LiGaGe-type LiZnSb, and the full-Heusler Li2ZnSb). This surprising discovery, coupled with the intriguing optoelectronic and transport properties of many antimony containing Zintl phases, required a thorough exploration of syn-thetic parameters. Here, we systematically study the effects that different precursor concentrations, injection order, nucleation and growth temperatures, and reaction time have on the solution-phase synthesis of these materials. By doing so, we identify conditions that selectively yield several unique ternary (c-LiZnSb vs. h*-LiZnSb), binary (ZnSb vs. Zn8Sb7), and metallic (Zn, Sb) products. Further, we find one of the ternary phases adopts a variant of the previously observed hexagonal LiZnSb struc-ture. Our results demonstrate the utility of low temperature solution phase—soft synthesis—methods in accessing and mining a rich phase space. We anticipate that this work will motivate further exploration of multinary I-II-V compounds, as well as encourage similarly thorough investigations of related Zintl systems by solution phase methods.


“This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Chemistry of Materials, copyright © American Chemical Society after peer review. To access the final edited and published work see

Copyright Owner

American Chemical Society



File Format


Published Version