Campus Units

Chemistry, Biochemistry, Biophysics and Molecular Biology, Roy J. Carver Department of, Ames Laboratory

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

8-7-2017

Journal or Book Title

Angewandte Chemie

Volume

129

Issue

33

First Page

9934

Last Page

9938

DOI

10.1002/ange.201704471

Abstract

Engineering nanoparticle (NP) functions at the molecular level requires a detailed understanding of the dynamic processes occurring at the NP surface. Herein we show that a combination of dark‐state exchange saturation transfer (DEST) and relaxation dispersion (RD) NMR experiments on gel‐stabilized NP samples enables the accurate determination of the kinetics and thermodynamics of adsorption. We used the former approach to describe the interaction of cholic acid (CA) and phenol (PhOH) with ceria NPs with a diameter of approximately 200 nm. Whereas CA formed weak interactions with the NPs, PhOH was tightly bound to the NP surface. Interestingly, we found that the adsorption of PhOH proceeds via an intermediate, weakly bound state in which the small molecule has residual degrees of rotational diffusion. We believe the use of aqueous gels for stabilizing NP samples will increase the applicability of solution NMR methods to the characterization of nanomaterials.

Comments

This is the peer reviewed version of the following article: Egner, Timothy K., Pranjali Naik, Nicholas C. Nelson, Igor I. Slowing, and Vincenzo Venditti. "Mechanistic Insight into Nanoparticle Surface Adsorption by Solution NMR Spectroscopy in an Aqueous Gel." Angewandte Chemie 129, no. 33 (2017): 9934-9938, which has been published in final form at DOI: 10.1002/ange.201704471. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Copyright Owner

Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim

Language

en

File Format

application/pdf

Published Version

Share

COinS