Campus Units

Chemistry, Ames Laboratory

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

5-8-2019

Journal or Book Title

ACS Catalysis

DOI

10.1021/acscatal.9b00195

Abstract

Aminopropyl-functionalized mesoporous silica nanoparticles (AP-MSN) catalyze aldol condensations. The activity of AP-MSN decreases with increasing solvent polarity due to the stabilization of ion pairs formed between acidic silanol groups and the amines, which ultimately decreases the number of catalytically active amine sites. However, the reac-tion in water is faster than expected based on polarity, because water limits the formation of Schiff bases that are also responsible for blocking active sites. In this work, we combined the action of water with a low-local-polarity environment around the catalytic sites of AP-MSN to maximize active site availability and catalyst performance. We specifically demonstrate how the local polarity of AP-MSN can be controlled by modifying its surface with varying concentra-tions of hexyl groups, and how the dielectric constant of the silica-water interface can be determined using the solvatochromic probe Prodan. The catalytic activities of hexyl-modified AP-MSN in water were inversely proportional to their interfacial dielectric constants, and were significantly higher (roughly by a factor of 4) than those of AP-MSN in anhydrous solvents of comparable polarities. Producing low-local-polarity environments in aqueous AP-MSN also enhanced the sensitivity of the aldol reaction to the electronic effects of substituents in the substrate. The enhancement of catalytic activity by low interfacial polarity was also observed in other amine-catalyzed C-C bond forming reactions such as the Henry and Vinylogous aldol reactions. Overall, our results demonstrate that the catalytic activity of AP-MSN can be controlled by the synergistic action of water and a low interfacial dielectric constant.

Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Catalysis, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acscatal.9b00195. Posted with permission.

Copyright Owner

American Chemical Society

Language

en

File Format

application/pdf

Published Version

Included in

Chemistry Commons

Share

COinS