Adsorption, intercalation, diffusion, and adhesion of Cu at the 2H−MoS2 (0001) surface from first-principles calculations

Thumbnail Image
Date
2020-02-01
Authors
Tringides, Michael
Evans, James
Thiel, Patricia
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Person
Evans, James
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyMaterials Science and EngineeringChemistry
Abstract

Study of the adsorption of a transition metal on the surface of a layered material and the possible subsequent intercalation into that layered material is of fundamental interest and potential technological importance. In the present work, we choose the transition metal Cu as the adsorbate or intercalant and 2H-MoS2 as the layered material. Energetics are calculated characterizing four of the most basic surface and interfacial phenomena: adsorption, intercalation, diffusion, and adhesion. Using first-principles density functional theory (DFT), we find that intercalating a Cu atom into the van der Waals (vdW) gap below the MoS2 (0001) surface is 0.665 eV more favorable than adsorbing the Cu atom on top of the surface, i.e., intercalation of single Cu atoms is strongly favored thermodynamically. Also, we find that the system with adsorbed Cu is magnetic, while the system becomes nonmagnetic after the Cu atom is intercalated into the vdW gap. We obtain the diffusion barriers of the Cu atom on the surface and in the vdW gap to be 0.23 and 0.32 eV, respectively. We also obtain an adhesion energy of 0.874 J/m2 for a Cu (111) slab bonding with a 2H-MoS2 (0001) slab. The DFT value of adhesion energy, as well as the gap width at the interface between the Cu and MoS2, depends strongly on the choice of the functional. From our analysis on bulk properties of both MoS2 and Cu, we suggest that our vdW-DF2-B86R results listed above are reliable for applications, e.g., interpretation of experimental results and physical modeling of this adsorption system.

Comments

This article is published as Han, Yong, Michael C. Tringides, James W. Evans, and Patricia A. Thiel. "Adsorption, intercalation, diffusion, and adhesion of Cu at the 2H−MoS2 (0001) surface from first-principles calculations." Physical Review Research 2, no. 1 (2020): 013182. DOI: 10.1103/PhysRevResearch.2.013182. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2020
Collections