Campus Units

Chemical and Biological Engineering, Chemistry, Ames Laboratory

Document Type


Publication Version

Submitted Manuscript

Publication Date


Journal or Book Title

Chemistry of Materials




The ability to engineer the surface chemistry of complex ternary nanocrystals is critical to their successful application in photovoltaic, thermoelectric, and other energy conversion devices. For many years, several studies have shed light into the surface chemistry of unary and binary semiconductor nanocrystals, as well as their surface modification with monodentate and multidentate ligands in a variety of applications. In contrast, our understanding of the surface chemistry and ligand modification of ternary and other complex multinary nanocrystals remains relatively limited. Recently, our group reported the synthesis of colloidal NaBiS2 semiconductor nanocrystals with sizes tunable between 2–60 nm, and a light absorption edge of ca. 1.4 eV. Here, we use a combination of infrared and nuclear magnetic resonance spectroscopies to show that the as-made NaBiS2 nanocrystals are capped by oleylamine and neodecanoate ligands. We investigate biphasic liquid-liquid exchange as a means to replace these native ligands with either carboxylate-terminated lipoic acid or with small iodide ligands, leading in both cases to solubility in polar solvents—such as methanol, water, and dimethylformamide. We also investigate a layer-by-layer, biphasic solid-liquid exchange approach to prepare films of NaBiS2 nanocrystals capped with halide ligands—iodide, bromide, chloride. Upon exchange and removal of the native ligands, we show that the resistance of NaBiS2 nanocrystal films greatly decreases, with their measured conductivity being comparable to that of films made of isostructural PbS nanocrystals, which have been used in solar cells. Lastly, we report the first solar cell device made of NaBiS2 nanocrystal films with a limited power conversion efficiency (PCE) of 0.07. Further nanostructuring and ligand optimization may enable the preparation of much more efficient energy conversion devices based on NaBiS2 as well as other non-toxic and Earth-abundant, biocompatible multinary semiconductors.


This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Chemistry of Materials, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI:10.1021/acs.chemmater.0c01689. Posted with permission.

Copyright Owner

American Chemical Society



File Format


Published Version