Super-Resolution Mapping of Photogenerated Electron and Hole Separation in Single Metal−Semiconductor Nanocatalysts

Thumbnail Image
Supplemental Files
Date
2014-01-16
Authors
Ha, Ji
Purnima, T.
Ruberu, A.
Han, Rui
Dong, Bin
Vela, Javier
Fang, Ning
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Vela, Javier
University Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

Metal-semiconductor heterostructures are promising visible light photocatalysts for many chemical reactions. Here, we use high-resolution superlocalization imaging to reveal the nature and photocatalytic properties of the surface reactive sites on single Au-CdS hybrid nanocatalysts. We experimentally reveal two distinct, incident energy-dependent charge separation mechanisms that result in completely opposite photogenerated reactive sites (e- and h+) and divergent energy flows on the hybrid nanocatalysts. We find that plasmon-induced hot electrons in Au are injected into the conduction band of the CdS semiconductor nanorod. The specifically designed Au-tipped CdS heterostructures with a unique geometry (two Au nanoparticles at both ends of each CdS nanorod) provide more convincing high-resolution single-turnover mapping results and clearly prove the two charge separation mechanisms. Engineering the direction of energy flow at the nanoscale can provide an efficient way to overcome important challenges in photocatalysis, such as controlling catalytic activity and selectivity. These results bear enormous potential impact on the development of better visible light photocatalysts for solar-to-chemical energy conversion.

Comments

Reprinted (adapted) with permission from Journal of the American Chemical Society 135 (2014): 1398, doi: 10.1021/ja409011y. Copyright 2014 American Chemical Society.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections