Campus Units

Chemistry, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

1-16-2014

Journal or Book Title

Journal of the American Chemical Society

Volume

136

Issue

4

First Page

1398

Last Page

1409

DOI

10.1021/ja409011y

Abstract

Metal-semiconductor heterostructures are promising visible light photocatalysts for many chemical reactions. Here, we use high-resolution superlocalization imaging to reveal the nature and photocatalytic properties of the surface reactive sites on single Au-CdS hybrid nanocatalysts. We experimentally reveal two distinct, incident energy-dependent charge separation mechanisms that result in completely opposite photogenerated reactive sites (e- and h+) and divergent energy flows on the hybrid nanocatalysts. We find that plasmon-induced hot electrons in Au are injected into the conduction band of the CdS semiconductor nanorod. The specifically designed Au-tipped CdS heterostructures with a unique geometry (two Au nanoparticles at both ends of each CdS nanorod) provide more convincing high-resolution single-turnover mapping results and clearly prove the two charge separation mechanisms. Engineering the direction of energy flow at the nanoscale can provide an efficient way to overcome important challenges in photocatalysis, such as controlling catalytic activity and selectivity. These results bear enormous potential impact on the development of better visible light photocatalysts for solar-to-chemical energy conversion.

Comments

Reprinted (adapted) with permission from Journal of the American Chemical Society 135 (2014): 1398, doi: 10.1021/ja409011y. Copyright 2014 American Chemical Society.

Copyright Owner

American Chemical society

Language

en

File Format

application/pdf

Share

COinS