Campus Units

Chemistry, Physics and Astronomy, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

2021

Journal or Book Title

Inorganic Chemistry Frontiers

Volume

8

Issue

7

First Page

Inorganic Chemistry Frontiers

Last Page

1685

DOI

10.1039/D0QI01150A

Abstract

Here we show the effect of Li chemical pressure on the structure of layered polymorphs with LiNiB composition: RT-LiNiB (room temperature polymorph) and HT-LiNiB (high temperature polymorph), resulting in stabilization of the novel RT-Li1+xNiB (x ∼ 0.17) and HT-Li1+yNiB (y ∼ 0.06) phases. Depending on the synthesis temperature and initial Li content, precisely controlled via hydride route synthesis, [NiB] layers undergo structural deformations, allowing for extra Li atoms to be accommodated between the layers. In situ variable temperature synchrotron and time-dependent laboratory powder X-ray diffraction studies suggest Li step-wise deintercalation processes: RT-Li1+xNiB → RT-LiNiB (high temp.) → LiNi3B1.8 → binary Ni borides and HT-Li1+yNiB → HT-LiNiB (high temp.) → LiNi3B1.8 → binary Ni borides. Quantum chemistry calculations and solid state 7Li and 11B NMR spectroscopy shed light on the complexity of real superstructures of these compounds determined from high resolution synchrotron powder diffraction data.

Comments

This article is published as Gvozdetskyi, Volodymyr, Yang Sun, Xin Zhao, Gourab Bhaskar, Scott L. Carnahan, Colin P. Harmer, Feng Zhang, Raquel Ribeiro, Paul Canfield, Aaron J Rossini, Cai Zhuang Wang, Kai Ming Ho, and Julia V. Zaikina. "Lithium Nickel Borides: evolution of MBene layers driven by Li pressure." Inorganic Chemistry Frontiers 8, no. 7 (2021): 1675. DOI: 10.1039/D0QI01150A. Posted with permission.

Creative Commons License

Creative Commons Attribution-Noncommercial 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License

Copyright Owner

the Partner Organisations

Language

en

File Format

application/pdf

Share

COinS