Campus Units

Chemistry

Document Type

Article

Publication Version

Submitted Manuscript

Publication Date

11-8-2017

Journal or Book Title

ACS Applied Materials & Interfaces

Volume

9

Issue

44

First Page

38436

Last Page

38444

DOI

10.1021/acsami.7b10591

Abstract

The extraordinary catalytic properties of enzymes are derived not only from their catalytic groups but also the unique properties of the active site. Tuning the microenvironment of synthetic catalysts is expected to enhance their performance if effective strategies can be developed. Interfacially cross-linked reverse micelles were prepared from three different cross-linkable surfactants. Pd nanoparticles were deposited in the core of the micelle for the catalytic hydrogenation of bicarbonate and CO2. The catalytic performance was found to depend heavily on the nature of the headgroup of the surfactant. Quaternary ammonium-based surfactants through ion exchange could bring bicarbonate to the catalytic center, whereas tertiary amine-based surfactants worked particularly well in CO2 hydrogenation, with turnover numbers an order of magnitude higher than that of commercially available Pd/C. The amines were proposed to bring CO2 to the proximity of the catalysts through reversible formation of carbamate, in the nanospace of the hydrophilic core of the cross-linked reverse micelle. In the bicarbonate reduction, additional improvement of the catalysts was achieved through localized sol–gel synthesis that introduced metal oxide near the catalytic metal.

Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acsami.7b10591. Posted with permission.

Copyright Owner

American Chemical Society

Language

en

File Format

application/pdf

Published Version

Share

COinS