Synthetic glycosidases for the precise hydrolysis of oligosaccharides and polysaccharides

Thumbnail Image
Date
2021-01-01
Authors
Li, Xiaowei
Zhao, Yan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Zhao, Yan
Professor
Research Projects
Organizational Units
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

Glycosidases are an important class of enzymes for performing the selective hydrolysis of glycans. Although glycans can be hydrolyzed in principle by acidic water, hydrolysis with high selectivity using nonenzymatic catalysts is an unachieved goal. Molecular imprinting in cross-linked micelles afforded water-soluble polymeric nanoparticles with a sugar-binding boroxole in the imprinted site. Post-modification installed an acidic group near the oxygen of the targeted glycosidic bond, with the acidity and distance of the acid varied systematically. The resulting synthetic glycosidase hydrolyzed oligosaccharides and polysaccharides in a highly controlled fashion simply in hot water. These catalysts not only broke down amylose with similar selectivities to those of natural enzymes, but they also could be designed to possess selectivity not available with biocatalysts. Substrate selectivity was mainly determined by the sugar residues bound within the active site, including their spatial orientations. Separation of the product was accomplished through in situ dialysis, and the catalysts left behind could be used multiple times with no signs of degradation. This work illustrates a general method to construct synthetic glycosidases from readily available building blocks via self-assembly, covalent capture, and post-modification. In addition, controlled, precise, one-step hydrolysis is an attractive way to prepare complex glycans from naturally available carbohydrate sources.

Comments

This article is published as Li, Xiaowei, and Yan Zhao. "Synthetic glycosidases for the precise hydrolysis of oligosaccharides and polysaccharides." Chemical Science 12, no. 1 (2021): 374-383. DOI: 10.1039/D0SC05338D. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections