Campus Units
Chemistry, Ames Laboratory
Document Type
Article
Publication Version
Published Version
Publication Date
4-22-2012
Journal or Book Title
ACS Nano
Volume
6
Issue
6
First Page
5348
Last Page
5359
DOI
10.1021/nn301182h
Abstract
We demonstrate molecular control of nanoscale composition, alloying, and morphology (aspect ratio) in CdS-CdSe nanocrystal dots and rods by modulating the chemical reactivity of phosphine-chalcogenide precursors. Specific molecular precursors studied were sulfides and selenides of triphenylphosphite (TPP), diphenylpropylphosphine (DPP), tributylphosphine (TBP), trioctylphosphine (TOP), and hexaethylphosphorustriamide (HPT). Computational (DFT), NMR ( 31P and 77Se), and high-temperature crossover studies unambiguously confirm a chemical bonding interaction between phosphorus and chalcogen atoms in all precursors. Phosphine-chalcogenide precursor reactivity increases in the order: TPPE < DPPE < TBPE < TOPE 1-xSex quantum dots were synthesized via single injection of a R3PS-R3PSe mixture to cadmium oleate at 250 degree C. X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis and PL optical spectroscopy reveal that relative R3PS and R3PSe reactivity dictates CdS1-xSex dot chalcogen content and the extent of radial alloying (alloys vs core/shells). CdS, CdSe, and CdS1-xSex quantum rods were synthesized by injection of a single R3PE (E = S or Se) precursor or a R3PS-R3PSe mixture to cadmium-phosphonate at 320 or 250 degree C. XRD and TEM reveal that the length-to-diameter aspect ratio of CdS and CdSe nanorods is inversely proportional to R 3PE precursor reactivity. Purposely matching or mismatching R3PS-R3PSe precursor reactivity leads to CdS1-xSe x nanorods without or with axial composition gradients, respectively. We expect these observations will lead to scalable and highly predictable "bottom-up" programmed syntheses of finely heterostructured nanomaterials with well-defined architectures and properties that are tailored for precise applications.
Copyright Owner
American Chemical society
Copyright Date
2012
Language
en
File Format
application/pdf
Recommended Citation
Ruberu, Thanthirige Purnima Anuththara; Albright, Haley R.; Callis, Brandon; Ward, Brittney; Cisneros, Joana; Fan, Hua-Jun; and Vela, Javier, "Molecular control of the nanoscale: Effect of phosphine-chalcogenide reactivity on CdS-CdSe nanocrystal composition and morphology" (2012). Chemistry Publications. 136.
https://lib.dr.iastate.edu/chem_pubs/136
Comments
Reprinted (adapted) with permission from ACS Nano 6 (2012): 5348, doi: 10.1021/nn301182h. Copyright 2012 American Chemical Society.