Spacer-Dependent Folding and Aggregation of Oligocholates in SDS Micelles

Thumbnail Image
Supplemental Files
Date
2009-09-01
Authors
Zhao, Yan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Zhao, Yan
Professor
Research Projects
Organizational Units
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

Insertion of flexible, 4-aminobutyroyl spacers in between the cholate repeat units had been found previously to enhance the folding of cholate oligomers in homogeneous solution (Zhao, Y. J. Org. Chem. 2009, 74, 834−843). The opposite effect was observed when the oligomers were solubilized in aqueous solutions of sodium dodecyl sulfate (SDS). The spacers enabled formation of tight aggregates of the oligocholates in SDS solutions when the surfactant was below its critical micelle concentration (CMC). Above the CMC, SDS micelles formed and dissociated the oligocholate aggregates. The parent oligocholates (without spacers in between the repeat units) also aggregated when they were too short to fold (e.g., dimer). The longer tetramer and hexamer preferred to fold, as their rigid, awkwardly shaped backbones prevented tight packing needed in the formation of stable aggregates. Folding was favored both below and above the CMC of SDS and was enhanced by an increase in the chain length.

Comments

Reprinted (adapted) with permission from Journal of Organic Chemistry 74 (2009): 7470, doi:10.1021/jo901651h. Copyright 2009 American Chemical Society.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Thu Jan 01 00:00:00 UTC 2009
Collections