A Study of Water Clusters Using the Effective Fragment Potential and Monte Carlo Simulated Annealing

Thumbnail Image
Date
2000-02-01
Authors
Day, Paul
Pachter, Ruth
Gordon, Mark
Merrill, Grant
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

Simulated annealing methods have been used with the effective fragment potential to locate the lowest energy structures for the water clusters (H2O)n with n=6, 8, 10, 12, 14, 16, 18, and 20. The most successful method uses a local minimization on each Monte Carlo step. The effective fragment potential method yielded interaction energies in excellent agreement with those calculated at the ab initio Hartree–Fock level and was quite successful at predicting the same energy ordering as the higher-level perturbation theory and coupled cluster methods. Analysis of the molecular interaction energies in terms of its electrostatic,polarization, and exchange-repulsion/charge-transfer components reveals that the electrostatic contribution is the dominant term in determining the energy ordering of the minima on the (H2O)n potential energy surfaces, but that differences in the polarization and repulsion components can be important in some cases.

Comments

This article is from Journal of Chemical Physics 112 (2000): 2063, doi:10.1063/1.480775.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections