Auxiliary Basis Sets for Grid-Free Density Functional Theory

Thumbnail Image
Date
2000-06-01
Authors
Glaesemann, Kurt
Gordon, Mark
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

Density functional theory(DFT) has gained popularity because it can frequently give accurate energies and geometries. The evaluation of DFT integrals in a fully analytical manner is generally impossible; thus, most implementations use numerical quadrature over grid points. The grid-free approaches were developed as a viable alternative based upon the resolution of the identity (RI). Of particular concern is the convergence of the RI with respect to basis set in the grid-free approach. Conventional atomic basis sets are inadequate for fitting the RI, particularly for gradient corrected functionals [J. Chem. Phys. 108, 9959 (1998)]. The focus of this work is on implementation of and selection of auxiliary basis sets. Auxiliary basis sets of varying sizes are studied and those with sufficient flexibility are found to adequately represent the RI.

Comments

The following article appeared in Journal of Chemical Physics 112 (2000): 10738, and may be found at doi:10.1063/1.481763.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sat Jan 01 00:00:00 UTC 2000
Collections