Campus Units

Chemistry

Document Type

Article

Publication Version

Published Version

Publication Date

6-2000

Journal or Book Title

Journal of Chemical Physics

Volume

112

Issue

23

First Page

10247

Last Page

10258

DOI

10.1063/1.481666

Abstract

The doublet and quartet potential energy surfaces for the Ti++C2H6→TiC2H+4+H2 and Ti++C2H6→TiCH+2+CH4reactions are studied using density functional theory(DFT) with the B3LYP functional and ab initiocoupled cluster CCSD(T) methods with high quality basis sets. Structures have been optimized at the DFT level and the minima connected to each transition state (TS) by following the intrinsic reaction coordinate (IRC). Relative energies are calculated both at the DFT and coupled-cluster levels of theory. The relevant parts of the potential energy surface, especially key transition states, are also studied using multireference wave functions with the final energetics obtained with multireference second-order perturbation theory.

Comments

The following article appeared in Journal of Chemical Physics 112 (2000): 10247,and may be found at doi:10.1063/1.481666.

Rights

Copyright 2000 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS