Campus Units

Chemistry

Document Type

Article

Publication Version

Published Version

Publication Date

8-2003

Journal or Book Title

Journal of Chemical Physics

Volume

119

Issue

5

First Page

2531

Last Page

2537

DOI

10.1063/1.1587115

Abstract

Presented in this work are the results of a quantum chemical study of oxygen adsorption on small Aun and Au−n (n=2,3) clusters. Density functional theory(DFT), second order perturbation theory (MP2), and singles and doubles coupled clustertheory with perturbative triples [CCSD(T)] methods have been used to determine the geometry and the binding energy of oxygen to Aun. The multireference character of the wave functions has been studied using the complete active space self-consistent field method. There is considerable disagreement between the oxygen binding energies provided by CCSD(T) calculations and those obtained with DFT. The disagreement is often qualitative, with DFT predicting strong bonds where CCSD(T) predicts no bonds or structures that are bonded but have energies that exceed those of the separated components. The CCSD(T) results are consistent with experimental measurements, while DFT calculations show, at best, a qualitative agreement. Finally, the lack of a regular pattern in the size and the sign of the errors [as compared to CCSD(T)] is a disappointing feature of the DFT results for the present system: it is not possible to give a simple rule for correcting the DFT predictions (e.g., a useful rule would be that DFT predicts stronger binding of O2 by about 0.3 eV). It is likely that the errors in DFT appear not because of gold, but because oxygen binding to a metal cluster is a particularly difficult problem.

Comments

The following article appeared in Journal of Chemical Physics 119 (2003): 2531, and may be found at doi:10.1063/1.1587115.

Rights

Copyright 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS