Campus Units

Chemistry

Document Type

Article

Publication Version

Published Version

Publication Date

8-2003

Journal or Book Title

Journal of Physical Chemistry A

Volume

107

Issue

34

First Page

6638

Last Page

6647

DOI

10.1021/jp030157o

Abstract

The possible existence of FN5 was studied by ab initio electronic structure theory. Calculations were carried out at the MP2/6-31+G(d) and CCSD(T)/aug-cc-pVDZ levels of theory for the N5+AsF6- ion pair and its decomposition to FN5 and AsF5. Six different vibrationally stable isomers of FN5 were identified. Intrinsic reaction coordinate (IRC) and dynamic reaction path (DRP) calculations were used to study the isomerization of FN5 and its decomposition to FN3 and N2. A Rice−Ramsperger−Kassel−Marcus (RRKM) analysis was performed, indicating upper limits to the lifetimes of the FN5 isomers in the nanosecond range. These theoretical predictions were confirmed by an experimental study of the thermolyses of N5AsF6 and [N5]2SnF6 and the displacement of FN5 from N5SbF6 with CsF, using FT-IR spectroscopy. In accord with the theoretical predictions, the primary reaction product FN5 could not be observed, but its decomposition products FN3, F2N2, and NF3 were identified.

Comments

This article is from Journal of Physical Chemistry A 107 (2003): 6638, doi:10.1021/jp030157o.

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS