Campus Units

Chemistry

Document Type

Article

Publication Version

Published Version

Publication Date

11-2004

Journal or Book Title

Journal of Chemical Physics

Volume

121

Issue

20

First Page

9931

Last Page

9937

DOI

10.1063/1.1809601

Abstract

We use density functional theory to investigate the binding of propene to small mixed Au–Ag clusters, in the gas phase. We have found that the rules proposed by us for propene binding to Au and Ag clusters, also work for binding to mixed Au–Ag clusters. The rules state that propene binds to those sites on the edge of the cluster where the equal density plots of the LUMO of the naked cluster protrude into the vacuum. Furthermore, the desorption energy of propene correlate with the LUMO energy: the lower the LUMO energy, the stronger the propene bond. We have also found an additional rule that is specific to mixed clusters. We call active the atoms on which the LUMO of the naked cluster protrude in the vacuum, and inactive those for which such protrusions do not exist. To define the rules we use the following notation: A is an active site to which propene is bound B is another active site, and C is an inactive site. If the atom in C(Ag or Au) is replaced with another atom (Au or Ag) propene desorption energy changes very little. If we replace the atom B with a more electronegative atom (i.e., we replace Ag by Au) the propene bond to A becomes stronger. If we replace the atom B with a less electronegative atom (i.e., we replace Au by Ag) the propene bond to A becomes weaker.

Comments

The following article appeared in Journal of Chemical Physics 121 (2004): 9931, and may be found at doi:10.1063/1.1809601.

Rights

Copyright 2004 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Copyright Owner

American Institute of Physics

Language

en

File Format

application/pdf

Included in

Chemistry Commons

Share

COinS